|
Edward Thommes Person1 #715419 Edward W. Thommes is an Adjunct Professor of Mathematics at the University of Guelph and at York University. He is a Global Modeling Lead in the Modeling, Epidemiology and Data Science (MEDS) team of Sanofi Vaccines, an Affiliate Researcher in the Waterloo Institute for Complexity and Innovation (WICI), and a member of the Strategic Advisory Committee for the Mathematics for Public Health program at the Fields Institute. | Research Interests - dynamical systems
- biomathematics and infectious disease modeling
- epidemiology
- AI and machine learning
Education - B.Sc. Physics, University of Alberta (1994)
- Ph.D. Astrophysics, Queen's University (2000)
|
+Citations (10) - CitationsAdd new citationList by: CiterankMapLink[1] Estimating social contacts in mass gatherings for disease outbreak prevention and management: case of Hajj pilgrimage
Author: Mohammadali Tofighi, Ali Asgary, Ghassem Tofighi, Mahdi M. Najafabadi, Julien Arino, Amine Amiche, Ashrafur Rahman, Zachary McCarthy, Nicola Luigi Bragazzi, Edward Thommes, Laurent Coudeville, Martin David Grunnill, Lydia Bourouiba, Jianhong Wu Publication date: 1 September 2022 Publication info: Tropical Diseases, Travel Medicine and Vaccines, Volume 8, Article number: 19 (2022) Cited by: David Price 2:51 PM 18 November 2023 GMT Citerank: (6) 679750Ali AsgaryAssociate Professor and Associate Director, Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM) in the School of Administrative Studies, and Adjunct Professor in the School of Information Technology, at York University.10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH – Publications144B5ACA0, 70104406 Infection Control during Mass Gathering EventsMass gatherings (MG) have the potential to facilitate global spread of infectious pathogens. Individuals from disease-free areas may acquire the pathogen while at the mass gathering site, which in turn could lead to its translocation in the originally disease-free zones when individuals return home.12070BEA3, 701222OMNI – Publications144B5ACA0 URL: DOI: https://doi.org/10.1186/s40794-022-00177-3
| Excerpt / Summary [Tropical Diseases, Travel Medicine and Vaccines, 1 September 2022]
Background: Most mass gathering events have been suspended due to the SARS-CoV-2 pandemic. However, with vaccination rollout, whether and how to organize some of these mass gathering events arises as part of the pandemic recovery discussions, and this calls for decision support tools. The Hajj, one of the world's largest religious gatherings, was substantively scaled down in 2020 and 2021 and it is still unclear how it will take place in 2022 and subsequent years. Simulating disease transmission dynamics during the Hajj season under different conditions can provide some insights for better decision-making. Most disease risk assessment models require data on the number and nature of possible close contacts between individuals.
Methods: We sought to use integrated agent-based modeling and discrete events simulation techniques to capture risky contacts among the pilgrims and assess different scenarios in one of the Hajj major sites, namely Masjid-Al-Haram.
Results: The simulation results showed that a plethora of risky contacts may occur during the rituals. Also, as the total number of pilgrims increases at each site, the number of risky contacts increases, and physical distancing measures may be challenging to maintain beyond a certain number of pilgrims in the site.
Conclusions: This study presented a simulation tool that can be relevant for the risk assessment of a variety of (respiratory) infectious diseases, in addition to COVID-19 in the Hajj season. This tool can be expanded to include other contributing elements of disease transmission to quantify the risk of the mass gathering events. |
Link[4] Workplace absenteeism due to COVID-19 and influenza across Canada: A mathematical model
Author: W.S. Avusuglo, Rahele Mosleh, Tedi Ramaj, Ao Li, Sileshi Sintayehu Sharbayta, Abdoul Aziz Fall, Srijana Ghimire, Fenglin Shi, Jason K.H. Lee, Edward Thommes, Thomas Shin, Jianhong Wu Publication date: 7 September 2023 Publication info: Journal of Theoretical Biology, 111559–111559, Volume 572, 7 September 2023, Cited by: David Price 7:07 PM 20 November 2023 GMT Citerank: (4) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 701037MfPH – Publications144B5ACA0, 704045Covid-19859FDEF6, 715454Workforce impact859FDEF6 URL: DOI: https://doi.org/10.1016/j.jtbi.2023.111559
| Excerpt / Summary [Journal of Theoretical Biology, 7 September 2023]
The continual distress of COVID-19 cannot be overemphasized. The pandemic economic and social costs are alarming, with recent attributed economic loss amounting to billions of dollars globally. This economic loss is partly driven by workplace absenteeism due to the disease. Influenza is believed to be a culprit in reinforcing this phenomenon as it may exist in the population concurrently with COVID-19 during the influenza season. Furthermore, their joint infection may increase workplace absenteeism leading to additional economic loss. The objective of this project will aim to quantify the collective impact of COVID-19 and influenza on workplace absenteeism via a mathematical compartmental disease model incorporating population screening and vaccination. Our results indicate that appropriate PCR testing and vaccination of both COVID-19 and seasonal influenza may significantly alleviate workplace absenteeism. However, with COVID-19 PCR testing, there may be a critical threshold where additional tests may result in diminishing returns. Regardless, we recommend on-going PCR testing as a public health intervention accompanying concurrent COVID-19 and influenza vaccination with the added caveat that sensitivity analyses will be necessary to determine the optimal thresholds for both testing and vaccine coverage. Overall, our results suggest that rates of COVID-19 vaccination and PCR testing capacity are important factors for reducing absenteeism, while the influenza vaccination rate and the transmission rates for both COVID-19 and influenza have lower and almost equal affect on absenteeism. We also use the model to estimate and quantify the (indirect) benefit that influenza immunization confers against COVID-19 transmission. |
Link[5] Age-stratified transmission model of COVID-19 in Ontario with human mobility during pandemic’s first wave
Author: R. Fields, L. Humphrey D. Flynn-Primrose, Z. Mohammadi, M. Nahirniak, E.W. Thommes, M.G. Cojocaru Publication date: 1 September 2021 Publication info: Heliyon, 7(9), e07905. Cited by: David Price 0:17 AM 23 November 2023 GMT Citerank: (6) 701037MfPH – Publications144B5ACA0, 701624Zahra MohammadiPostdoctoral Fellow, Mathematics for Public health, Fields Institute, Department of Mathematics and Statistics, University of Guelph, Memorial University of Newfoundland.10019D3ABAB, 703963Mobility859FDEF6, 704045Covid-19859FDEF6, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6, 715762Monica CojocaruProfessor in the Mathematics & Statistics Department at the University of Guelph. 10019D3ABAB URL: DOI: https://doi.org/10.1016/j.heliyon.2021.e07905
| Excerpt / Summary [Heliyon, 1 September 2021]
In this work, we employ a data-fitted compartmental model to visualize the progression and behavioral response to COVID-19 that match provincial case data in Ontario, Canada from February to June of 2020. This is a “rear-view mirror” glance at how this region has responded to the 1st wave of the pandemic, when testing was sparse and NPI measures were the only remedy to stave off the pandemic. We use an SEIR-type model with age-stratified subpopulations and their corresponding contact rates and asymptomatic rates in order to incorporate heterogeneity in our population and to calibrate the time-dependent reduction of Ontario-specific contact rates to reflect intervention measures in the province throughout lockdown and various stages of social-distancing measures. Cellphone mobility data taken from Google, combining several mobility categories, allows us to investigate the effects of mobility reduction and other NPI measures on the evolution of the pandemic. Of interest here is our quantification of the effectiveness of Ontario's response to COVID-19 before and after provincial measures and our conclusion that the sharp decrease in mobility has had a pronounced effect in the first few weeks of the lockdown, while its effect is harder to infer once other NPI measures took hold. |
Link[6] Meaningful Contact Estimates among Children in a Childcare Centre with Applications to Contact Matrices in Infectious Disease Modelling
Author: Darren Flynn-Primrose, Nickolas Hoover, Zahra Mohammadi, Austin Hung, Jason Lee, Miggi Tomovici, Edward W. Thommes, Dion Neame, Monica G. Cojocaru Publication date: 18 May 2022 Publication info: Journal of Applied Mathematics and Physics, 2022, 10, 1525-1546 Cited by: David Price 3:34 PM 23 November 2023 GMT Citerank: (4) 701037MfPH – Publications144B5ACA0, 701624Zahra MohammadiPostdoctoral Fellow, Mathematics for Public health, Fields Institute, Department of Mathematics and Statistics, University of Guelph, Memorial University of Newfoundland.10019D3ABAB, 708813Agent-based models859FDEF6, 715762Monica CojocaruProfessor in the Mathematics & Statistics Department at the University of Guelph. 10019D3ABAB URL: DOI: https://doi.org/10.4236/jamp.2022.105107
| Excerpt / Summary [Journal of Applied Mathematics and Physics, 18 May 2022]
We present a mathematical model of a day care center in a developed country (such as Canada), in order to use it for the estimation of individual-to-individual contact rates in young age groups and in an educational group setting. In our model, individuals in the population are children (ages 1.5 to 4 years) and staff, and their interactions are modelled explicitly: person-to-person and person-to-environment, with a very high time resolution. Their movement and meaningful contact patterns are simulated and then calibrated with collected data from a child care facility as a case study. We present these calibration results as a first part in the further development of our model for testing and estimating the spread of infectious diseases within child care centers. |
Link[7] Modelling Disease Mitigation at Mass Gatherings: A Case Study of COVID-19 at the 2022 FIFA World Cup
Author: Martin Grunnill, Julien Arino, Zachary McCarthy, Nicola Luigi Bragazzi, Laurent Coudeville, Edward W. Thommes, Amine Amiche, Abbas Ghasemi, Lydia Bourouiba, Mohammadali Tofighi, Ali Asgary, Mortaza Baky-Haskuee, Jianhong Wu Publication date: 29 March 2023 Publication info: medRxiv 2023.03.27.23287214 Cited by: David Price 4:01 PM 23 November 2023 GMT
Citerank: (7) 679750Ali AsgaryAssociate Professor and Associate Director, Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM) in the School of Administrative Studies, and Adjunct Professor in the School of Information Technology, at York University.10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH – Publications144B5ACA0, 703963Mobility859FDEF6, 704045Covid-19859FDEF6, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6 URL: DOI: https://doi.org/10.1101/2023.03.27.23287214
| Excerpt / Summary [medRxiv, 29 March 2023]
The 2022 FIFA World Cup was the first major multi-continental sporting Mass Gathering Event (MGE) of the post COVID-19 era to allow foreign spectators. Such large-scale MGEs can potentially lead to outbreaks of infectious disease and contribute to the global dissemination of such pathogens. Here we adapt previous work and create a generalisable model framework for assessing the use of disease control strategies at such events, in terms of reducing infections and hospitalisations. This framework utilises a combination of meta-populations based on clusters of people and their vaccination status, Ordinary Differential Equation integration between fixed time events, and Latin Hypercube sampling. We use the FIFA 2022 World Cup as a case study for this framework. Pre-travel screenings of visitors were found to have little effect in reducing COVID-19 infections and hospitalisations. With pre-match screenings of spectators and match staff being more effective. Rapid Antigen (RA) screenings 0.5 days before match day outperformed RT-PCR screenings 1.5 days before match day. A combination of pre-travel RT-PCR and pre-match RA testing proved to be the most successful screening-based regime. However, a policy of ensuring that all visitors had a COVID-19 vaccination (second or booster dose) within a few months before departure proved to be much more efficacious. The State of Qatar abandoned all COVID-19 related travel testing and vaccination requirements over the period of the World Cup. Our work suggests that the State of Qatar may have been correct in abandoning the pre-travel testing of visitors. However, there was a spike in COVID-19 cases and hospitalisations within Qatar over the World Cup. The research outlined here suggests a policy requiring visitors to have had a recent COVID-19 vaccination may have prevented the increase in COVID-19 cases and hospitalisations during the world cup. |
Link[8] Human behaviour, NPI and mobility reduction effects on COVID-19 transmission in different countries of the world
Author: Zahra Mohammadi, Monica Gabriela Cojocaru, Edward Wolfgang Thommes Publication date: 22 August 2022 Publication info: BMC Public Health volume 22, Article number: 1594 (2022) Cited by: David Price 8:54 PM 27 November 2023 GMT
Citerank: (9) 701037MfPH – Publications144B5ACA0, 701624Zahra MohammadiPostdoctoral Fellow, Mathematics for Public health, Fields Institute, Department of Mathematics and Statistics, University of Guelph, Memorial University of Newfoundland.10019D3ABAB, 703963Mobility859FDEF6, 704036Immunology859FDEF6, 704041Vaccination859FDEF6, 704045Covid-19859FDEF6, 704045Covid-19859FDEF6, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6, 715762Monica CojocaruProfessor in the Mathematics & Statistics Department at the University of Guelph. 10019D3ABAB URL: DOI: https://doi.org/10.1186/s12889-022-13921-3
| Excerpt / Summary [BMC Public Health, 22 August 2022]
Background: The outbreak of Coronavirus disease, which originated in Wuhan, China in 2019, has affected the lives of billions of people globally. Throughout 2020, the reproduction number of COVID-19 was widely used by decision-makers to explain their strategies to control the pandemic.
Methods: In this work, we deduce and analyze both initial and effective reproduction numbers for 12 diverse world regions between February and December of 2020. We consider mobility reductions, mask wearing and compliance with masks, mask efficacy values alongside other non-pharmaceutical interventions (NPIs) in each region to get further insights in how each of the above factored into each region’s SARS-COV-2 transmission dynamic.
Results: We quantify in each region the following reductions in the observed effective reproduction numbers of the pandemic: i) reduction due to decrease in mobility (as captured in Google mobility reports); ii) reduction due to mask wearing and mask compliance; iii) reduction due to other NPI’s, over and above the ones identified in i) and ii).
Conclusion: In most cases mobility reduction coming from nationwide lockdown measures has helped stave off the initial wave in countries who took these types of measures. Beyond the first waves, mask mandates and compliance, together with social-distancing measures (which we refer to as other NPI’s) have allowed some control of subsequent disease spread. The methodology we propose here is novel and can be applied to other respiratory diseases such as influenza or RSV. |
Link[9] Disease transmission and mass gatherings: a case study on meningococcal infection during Hajj
Author: Laurent Coudeville, Amine Amiche, Ashrafur Rahman, Julien Arino, Biao Tang, Ombeline Jollivet, Alp Dogu, Edward Thommes, Jianhong Wu Publication date: 22 March 2022 Publication info: BMC Infectious Diseases, Volume 22, Article number: 275 (2022) Cited by: David Price 10:26 PM 29 November 2023 GMT Citerank: (5) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 701037MfPH – Publications144B5ACA0, 703963Mobility859FDEF6, 715688Neisseria meningitidis859FDEF6 URL: DOI: https://doi.org/10.1186/s12879-022-07234-4
| Excerpt / Summary [BMC Infectious Diseases, 22 March 2022]
Background: Mass gatherings can not only trigger major outbreaks on-site but also facilitate global spread of infectious pathogens. Hajj is one of the largest mass gathering events worldwide where over two million pilgrims from all over the world gather annually creating intense congestion.
Methods: We developed a meta-population model to represent the transmission dynamics of Neisseria meningitidis and the impact of Hajj pilgrimage on the risk of invasive meningococcal disease (IMD) for pilgrims population, local population at the Hajj site and country of origin of Hajj pilgrims. This model was calibrated using data on IMD over 17 years (1995–2011) and further used to simulate potential changes in vaccine policy and endemic conditions.
Results: The effect of increased density of contacts during Hajj was estimated to generate a 78-fold increase in disease transmission that impacts not only pilgrims but also the local population. Quadrivalent ACWY vaccination was found to be very effective in reducing the risk of outbreak during Hajj. Hajj has more limited impact on IMD transmission and exportation in the pilgrim countries of origin, although not negligible given the size of the population considered.
Conclusion: The analysis performed highlighted the amplifying effect of mass gathering on N. meningitidis transmission and confirm vaccination as a very effective preventive measure to mitigate outbreak risks. |
Link[10] “Hot-spotting” to improve vaccine allocation by harnessing digital contact tracing technology: An application of percolation theory
Author: Mark D. Penney, Yigit Yargic, Lee Smolin, Edward W. Thommes, Madhur Anand, Chris T. Bauch Publication date: 22 September 2021 Publication info: PLoS ONE 16(9): e0256889 Cited by: David Price 0:04 AM 30 November 2023 GMT Citerank: (3) 701037MfPH – Publications144B5ACA0, 704041Vaccination859FDEF6, 715294Contact tracing859FDEF6 URL: DOI: https://doi.org/10.1371/journal.pone.0256889
| Excerpt / Summary [PLoS ONE, 22 September 2021]
Vaccinating individuals with more exposure to others can be disproportionately effective, in theory, but identifying these individuals is difficult and has long prevented implementation of such strategies. Here, we propose how the technology underlying digital contact tracing could be harnessed to boost vaccine coverage among these individuals. In order to assess the impact of this “hot-spotting” proposal we model the spread of disease using percolation theory, a collection of analytical techniques from statistical physics. Furthermore, we introduce a novel measure which we call the efficiency, defined as the percentage decrease in the reproduction number per percentage of the population vaccinated. We find that optimal implementations of the proposal can achieve herd immunity with as little as half as many vaccine doses as a non-targeted strategy, and is attractive even for relatively low rates of app usage. |
|
|