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Abstract

Vaccinating individuals with more exposure to others can be disproportionately effective, in

theory, but identifying these individuals is difficult and has long prevented implementation of

such strategies. Here, we propose how the technology underlying digital contact tracing

could be harnessed to boost vaccine coverage among these individuals. In order to assess

the impact of this “hot-spotting” proposal we model the spread of disease using percolation

theory, a collection of analytical techniques from statistical physics. Furthermore, we intro-

duce a novel measure which we call the efficiency, defined as the percentage decrease in

the reproduction number per percentage of the population vaccinated. We find that optimal

implementations of the proposal can achieve herd immunity with as little as half as many

vaccine doses as a non-targeted strategy, and is attractive even for relatively low rates of

app usage.

Introduction

Vaccine allocation decisions for pandemic infectious diseases such as COVID-19 must weigh a

complex set of competing factors based on transmission characteristics [1], differences in vul-

nerability across demographic groups [2, 3], and the principle of reciprocity, which states that

those who accept the greatest risks to mitigate the effects of the pandemic should be vaccinated

first [4]. The initially limited supply of vaccines that is expected during a pandemic highlights

the importance of these trade-offs, necessitating careful decisions about their use [5].

One particular trade-off that has been explored in the influenza modelling literature is

whether to use the vaccine to protect vulnerable groups, or to reduce community transmission

[6]. Recent models of SARS-CoV-2 transmission dynamics suggest that in certain parameter
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regimes and for COVID-19 vaccines that have some effectiveness against both disease and

infection, vaccinating to block transmission may prevent more deaths than targeting vulnera-

ble age groups [1, 7, 8]. The strong potential effects of using vaccines to interrupt transmission,

and the initially restricted supply of vaccines that is expected during a pandemic, motivate us

to ask the following question: How can one best allocate a limited supply of vaccines in order

to achieve the greatest reduction in disease transmission?

Allocation of vaccines is often based on age or other demographic factors, since we know

that contact patterns differ between demographic groups. However, heterogeneity within

demographic groups is much greater than the differences between them [9]. Empirical evi-

dence from the ongoing COVID-19 pandemic has pointed to significant overdispersion in the

number of secondary cases [10] which is not entirely explained by differing viral loads [11, 12].

Because individuals with more contacts (and, thus, exposure) have the potential to cause more

transmission than individuals with low exposure to others, targeting these individuals for vac-

cination has been found to be highly effective in mathematical models [13–15]. But such strat-

egies are difficult to implement in practice since public health authorities only have

information on broad demographic or regional factors upon which to act.

It is exactly in this regard that digital contact tracing technologies have opened up a new

avenue for public health interventions. The core functionality of Bluetooth-based exposure

notification apps is the creation of an encounter log between app users. This encounter log is

useful for more than just exposure notification: It also quantifies the user’s exposure to others.

Said another way, these apps are also sensors that measure the duration of exposure–an epide-

miologically significant quantity.

We propose that Bluetooth exposure notification apps can be harnessed to improve vaccine

program effectiveness. These apps could be used to increase vaccine coverage among individu-

als with very high exposure rates, and thereby provide a highly efficient means to limit trans-

mission in the population. We present mathematical modelling results in support of our

proposal based on percolation theory: a collection of analytical techniques from statistical

physics [16] that have been applied to material sciences [17], the spread of forest fires [18, 19],

infectious diseases [20] and other areas. We assume a public health goal of interrupting trans-

mission as efficiently as possible, and where vaccines can prevent transmission. The tools we

developed show that the improved efficiency gained by piggy-backing vaccine allocation strat-

egies on top of exposure notification apps is a robust phenomenon, as it derives its power from

the very heterogeneities in contact patterns that shape the spread of infectious diseases.

Bluetooth exposure notification

In March 2020, COVID Watch released a white paper detailing an anonymous Bluetooth-

based system that exploits the ubiquity of Android and iOS smartphones to support contact

tracing [21]. The idea has seen widespread adoption, with nearly every developed country hav-

ing incorporated it into their digital contact tracing solutions. Both the Google/Apple and

BlueTrace frameworks are also based on this technology, the former of which is available

throughout North America and the European Union and the latter in Singapore and Australia.

Uptake has varied significantly between countries (Table 1), with most countries having made

the usage of the app a personal choice. Singapore is a notable exception to this, having achieved

high uptake rates due to mandatory use of the software.

Protecting users’ privacy was a fundamental principle underlying the design process. Every

10-20 minutes, anonymous tokens are exchanged between app users who are in close proxim-

ity to one another. Each user’s device stores these tokens in an encounter log. The data stored

by the app is able to determine neither the number of contacts nor the duration of any
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individual contact. Instead, the number of tokens logged over a given time frame is a measure

of the user’s total exposure time to others: the sum, over each contact, of the duration of that

contact.

Theoretical vaccination strategies that vaccinate individuals in accordance to their number

of contacts have previously been studied in the context of immunizing scale-free networks

[13]. Using exposure notification apps one can implement strategies which preferentially vac-

cinate individuals in accordance with their total exposure time. In what follows we will develop

a model for more general vaccination strategies which depend on both the number and dura-

tion of contacts. We present this more general model not just because it is no more difficult,

but also because such strategies could, with changes to the exposure notification systems, be

implemented without the centralized collection of user data. Of course, any changes to the pro-

tocols come with concerns around privacy and data protection, and so for our simulations we

restrict ourselves to considering a hot-spotting strategy that can be implemented without

introducing any new privacy concerns.

The means by which the decentralized encounter log is used to facilitate contact tracing is

by the central collection and communication of those tokens associated with individuals who

have tested positive for COVID-19. In the Google/Apple framework public health authorities

provide COVID-19 positive individuals with a code which, when voluntarily entered in the

app, uploads their tokens to a central repository.

This same system can be used for ring vaccination strategies, which have been used in cam-

paigns against smallpox [27] and Ebola [28]. However, there would have to be an important

change in the type of information sent to the central repository from infected users. Instead of

sending their own tokens, they would share the tokens they’ve collected from other users.

With the same change, neighbor vaccination strategies [29] are also possible. Despite the fact

that ring vaccination has already been studied using percolation theory [30, 31], and neighbor

vaccination strategies certainly can in principle be, we restricted our attention to exposure-

based strategies for the same reasons as in the preceding paragraph.

Weighted percolation theory

Many infectious diseases spread through close contact, and contact patterns in human popula-

tions display a high degree of heterogeneity [32, 33]. One successful approach to understand-

ing the impact of heterogeneity is to model the spread of infectious disease as a percolation

process on the network of contacts [34–36]. In a series of foundational works [37, 38], New-

man developed analytical techniques based on probability generating functions. In this formal-

ism, the information needed from the network is the degree distribution {pk}, where pk is the

fraction of the individuals in the network which have k contacts or, equivalently, have degree

k. Using the probability generating function of the degree distribution, G0(x) = ∑k pk xk, a stan-

dard technique for studying discrete probability distributions [39], Newman derived formulas

for key epidemiological quantities in terms of G0 and its derivatives.

Table 1. Exposure notification app download rates in selected countries based on official sources.

Country Downloads per 100 people

Canada [22] 23

Germany [23] 36

Italy [24] 19

New Zealand [25] 60

Singapore [26] >90

https://doi.org/10.1371/journal.pone.0256889.t001

PLOS ONE “Hot-spotting” to improve vaccine allocation by harnessing digital contact tracing technology

PLOS ONE | https://doi.org/10.1371/journal.pone.0256889 September 22, 2021 3 / 15

https://doi.org/10.1371/journal.pone.0256889.t001
https://doi.org/10.1371/journal.pone.0256889


More concretely, the infectious process is modelled as an instance of bond percolation. The

disease spreads through occupied edges, and in Newman’s work each edge has a uniform prob-

ability T of being occupied. In the language of percolation theory, the basic reproduction num-

ber R0 is the expected number of occupied edges attached to an infected vertex, with one edge

removed from each infected vertex to account for the individual which infected the vertex in

question. It was shown in [38] that this expectation value can be computed in terms of G0 as

R0 ¼ T
G@

0
ð1Þ

G0
0
ð1Þ
¼ T m 1þ

s2

m2

� �

� 1

� �

where μ and σ are, respectively, the mean and standard deviation of the degree distribution.

Let us briefly summarize the derivation for those readers who may be unfamiliar with these

techniques.

First, the probability that a vertex of degree k has n� k occupied edges attached to it is

k
n

� �
ð1 � TÞk� nTk. This fact allows one to determine that the distribution of occupied degree in

the network has probability generating function G0(x;T) = G0(1 − T + Tx). The basic reproduc-

tion number is the expectation value of a closely related distribution. Namely, the expectation

must be taken over only the infected vertices in the network. In Newman’s work it is assumed

that the network of contacts is a random graph, an assumption implying that the desired distri-

bution has probability generating function G1ðx;TÞ ¼ 1

m
G0

0
ð1 � T þ TxÞ. A general property

of probability generating functions is that the expected value of a distribution is simply the

derivative of its generating function evaluated at x = 1. So, the basic reproduction number is

calculated as R0 ¼ G0
1
ðx;TÞ, leading to the formula stated above.

In order to model vaccine allocation strategies based on exposure notification apps it is nec-

essary to incorporate contact duration into the percolation model. To do this we consider the

contact network to be weighted: each edge is further equipped with a weight w. The transmis-

sion probability T along an edge for the percolation process is assumed to depend on that

edge’s weight, so that the single parameter is replaced with a distinct Tw for each weight w.

For our purposes in this paper the weight represents the number of time-steps over which

the contact took place. If one assumes that in each time-step there is an independent probabil-

ity T1 of transmission, the transmission probability after w time-steps is Tw = 1−(1 − T1)w.

However, the weights could represent any factor which influences the transmission proba-

bility along an edge, such as the nature of the contact, the setting, or the presence or absence of

PPE. Unless stated otherwise, our analytical results hold for this general interpretation of

weights.

In a weighted network we represent the configuration of edges around each vertex by a gen-
eralized degree, denoted k. This is a vector having an entry for each of the possible weights

appearing in the network. For a vertex of generalized degree k, the entry corresponding to

weight w, denoted kw, is the number of contacts having weight w.

To generalize Newman’s results to the weighted setting we introduce a multivariable gener-
ating function for the distribution of generalized degrees. Since we are keeping track of the

number of edges of each weight separately, the generating function needs a variable yw for

each weight w appearing in the network. Let qk denote the fraction of vertices in the network

having generalized degree k and let y denote the vector of variables yw. Then the multivariable

generating function of the network is

QðyÞ ¼
X

k

qky
k ; yk ¼

Y

w

ykww :
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We derive the basic reproduction number using the exact same approach as Newman,

except starting from the multivariable generating function. Specifically, the distribution of

occupied degree has probability generating function,

G0ðx;TÞ ¼ Qð1 � T þ TxÞ ;

where T is the vector composed of the transmission probabilities Tw. Furthermore, we intro-

duce

G1ðx;TÞ ¼
G0

0
ðx;TÞ

G0
0
ð1;TÞ

as the probability generating function for the number of other occupied edges attached to a

vertex reached by following a random occupied edge (cf. [38]). By definition, the basic repro-

duction number R0 is precisely the mean of this final distribution, i.e. R0 ¼ G0
1
ð1;TÞ.

One can express R0 directly in terms of the generating function Q(y). This is accomplished

by introducing the differential operatorrT, defined as

rTQðyÞ ¼
X

w

Tw
@QðyÞ
@yw

:

Then, we find

R0 ¼
r2

TQð1Þ
rTQð1Þ

:

Alternatively, this result can be rewritten in a form which is more amenable to computa-

tion,

R0 ¼
Av ½ð

P
iTwðiÞÞ

2
� � Av ½

P
iT

2
wðiÞ�

Av ½
P

iTwðiÞ�
:

In this equation, the averages Av[� � �] are taken over all vertices in the network and the

sums ∑i are taken over all contacts i of a vertex, with w(i) being the weight of that contact. Note

that this formula holds regardless of the interpretation of the weights as contact duration.

Modelling vaccination

We model vaccination as a stochastic process wherein a vertex of generalized degree k has a

probability v(k) of being vaccinated. Vaccination modifies the original contact network by

removing vaccinated vertices, as we assume that a vaccinated individual can neither become

infected nor infect others. The model can readily incorporate imperfect efficacy and results in

a simple rescaling of the main results shown below. Indeed, in the language of percolation the-

ory vaccination is an instance of site percolation, and the combined spread of a disease and

vaccination is modeled as a mix of bond and site percolation.

The formulas for the basic reproduction number R0 can be adapted to give the expected

post-vaccination reproduction number. This adaptation requires two changes: Firstly, each

vertex of generalized degree k has a probability 1 − v(k) of remaining in the network, that is, of

being unvaccinated. Secondly, the changes to the generalized degree of the remaining unvacci-

nated individuals must be taken into account. Specifically, the probability that a weight w edge
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leads to an unvaccinated vertex is,

φw ¼ 1 �
Av ½kwvðkÞ�
Av ½kw�

:

Hence, the expected post-vaccination reproduction rate is given by

E Rv½ � ¼
Av ½ð1 � vðkÞÞðð

P
i
~TwðiÞÞ

2
�
P

i
~T 2
wðiÞÞ�

Av ½ð1 � vðkÞÞ
P

i
~TwðiÞ�

;

where ~Tw ¼ Tw�w, and the averages Av[� � �] on the right-hand side run through all vertices in

the network.

To compare two vaccine strategies in a context of limited supply we introduce a novel mea-

sure of the efficiency of a vaccination strategy:

Ev ¼
1 � Rv=R0

V
;

where Rv is the post-vaccination reproduction number and V is the fraction of the population

that receives the vaccine. In other words, the efficiency of a strategy is the percentage decrease

in the reproduction number per percentage of the population vaccinated.

In a stochastic process of vaccination, V, Rv and Ev are all random variables. In particular,

the vaccine coverage rate V has the expected value E½V� ¼ Av ½vðkÞ� and the variance

Var ½V� ¼ 1

N Av vðkÞ 1 � v kð Þð Þ½ �, where N is the size of the population. Therefore, for comput-

ing the expectation value of the efficiency Ev in a large population, we may neglect the variance

in V and treat it as a fixed number at its mean value. Hence, we can write

E Ev½ � ¼
1 � E½Rv�=R0

E½V�
:

One can compare any vaccination strategy to the uniform one, under which vaccines are

distributed uniformly across the population to achieve a target vaccine coverage without taking

into account any form of contact or exposure heterogeneity. For a uniform vaccination proba-

bility v, one would have E½Rv� ¼ ð1 � vÞR0 and E½Ev� ¼ 1. Strategies for which the efficiency is

less than 1 are regarded as inefficient, since the same number of vaccines could have achieved

a greater impact if they were allocated uniformly. On the other hand, strategies with efficiency

greater than 1 are promising candidates for a significant impact.

The hot-spotting strategy

Here we propose a “hot-spotting” vaccination strategy, in reference to a fire-fighting practice

that focuses on areas with intense fires [40]. This strategy aims to increase vaccine coverage

among individuals with higher total exposure time, as determined by the Bluetooth apps. It

operates without the central collection of any user data, as the selection of each user is decided

locally by their device.

The hot-spotting strategy depends on a parameter β encoding the probability of success in a

weighted coin-flip. Each user performs a virtual coin flip for each encounter stored in their

encounter log over a fixed time period. The app selects those users who receive at least one suc-

cess. Since the probability of obtaining at least one success on n weighted coin flips is 1−(1 −
β)n, we see that users with a greater number of recorded encounters have a greater probability

of being selected. Note that the extent to which high total exposure time individuals are prefer-

entially selected can be increased by requiring a greater number of successes.
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In order to estimate the impact and efficiency of our hot-spotting strategy on the whole

population, we must take into account that not every person in the population uses the app in

question. To this end, we assume that there is an app usage rate of U and that the app users are

homogeneously distributed in the population. We also assume that there is no preferential

attachment between app users. This implies that for a random individual with the contact

structure k, which is not necessarily registered in the app network, the probability for them

being an app user and also being selected by the app is given by

vðk; b;UÞ ¼ U 1 �
Y

w

gkww

 !

;

where

gw ¼ 1 � U þ Uð1 � bÞw:

We simulate an implementation of hot-spotting wherein individuals receive a vaccine if

and only if they have been selected by the app, although the results are qualitatively similar if

the app only increases the likelihood of vaccine acceptance among these individuals.

Methods

Model network

The model weighted contact network is based on contact data collected in the well-known

POLYMOD study that surveyed over 7000 individuals across 8 European countries (Belgium,

Germany, Finland, Great Britain, Italy, Luxembourg, the Netherlands, and Poland) between

May 2005 and September 2006 [9]. Respondents kept a log of all contacts made on a single day

noting, among other features, how long the contact lasted and how frequently that contact is

made. This data captures normal contact patterns and doesn’t reflect any changes which can

occur in response to an ongoing pandemic.

In the language of time-weighted networks, the inclusion of duration data means that the

survey responses sample from the generalized degree distribution of the daily contact network.

The network should capture the contacts made over the typical infectious period of the disease

being modelled. For simplicity we choose a period of 14 days, as it aligns well with the fre-

quency responses in the survey.

Using the daily contact data we must generate samples from the generalized degree distri-

bution of the fortnightly contact network. We accomplish this by a bootstrapping technique.

More precisely, for each contact recorded, respondents chose between 5 options concerning

both the duration and the frequency of that contact as shown in Table 2. We can therefore rep-

resent each respondent’s contacts on that day in a 5 × 5 matrix whose (i, j) entry is the number

of contacts recorded with frequency key i and duration key j. For respondent n we denote this

matrix by Dn.

Table 2. Possible responses on POLYMOD survey concerning frequency and duration of contact.

Keys Frequency Duration

(1) daily < 5 mins

(2) 1 − 2 times per week 5 − 15 mins

(3) 1 − 2 times per month 15 − 60 mins

(4) less than once a month 1 − 4 hrs

(5) first time > 4 hrs

https://doi.org/10.1371/journal.pone.0256889.t002
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Our goal is to extrapolate fortnightly contact matrices Fn from the daily contact matrices

Dn. In our bootstrapping procedure, it is important that we distinguish between daily repeating

contacts, which have frequency key (1), and infrequent contacts, which have frequency keys

(2)-(5). We denote by In the matrix of infrequent contacts for respondent n. The matrix In is

obtained from the same respondent’s Dn by setting the first row of daily repeating contacts

to 0.

The matrices Fn are created by sampling from the daily contact matrices. Each sample is

generated as follows:

1. Sample 14 respondents, n1, . . ., n14.

2. Set F0n ¼ Dn1
þ In2

þ . . .þ In14
.

3. Produce Fn from F0n by dividing each entry in the second row by 3 and rounding it to the

nearest integer.

In words, we sample 14 daily contact logs from the survey. Then, we add together the 1-day

duration-frequency matrices for each of the samples, excluding the daily repeating contacts

from all but the first sample. Then, assuming that a frequency-key-(2) contact is seen 3 times

in a fortnight, we divide the second row by three to account for repeated counting of the same

contact.

Finally, we assign to each type of contact in the matrix Fn a certain weight. Each unit of

weight is approximately 10 minutes of contact time, which corresponds to the token exchange

rate of the exposure notification apps. We chose these weights to be given as in the following

weight matrix:

W ¼

0 12 36 120 480

0 3 9 30 120

0 1 3 10 40

0 1 3 10 40

0 1 3 10 40

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

Hence, we obtain a list of generalized degrees sampled from a virtual weighted contact net-

work, in which the set of possible weights is {1, 3, 9, 10, 12, 30, 36, 40, 120, 480}.

Simulation

The simulations are based on 500 samples of fortnightly generalized degree distributions gen-

erated through the bootstrapping procedure described above. We interpret these 500 samples

as an observed cohort of 500 individuals within a much larger population. As such, the

recorded contacts are assumed to lie outside the observed cohort.

For these simulations we set the unit transmission probability at T1 = 0.000375 yielding a

basic reproduction number (in the absence of vaccination) of R0 = 1.501. This value of T1 was

chosen as the corresponding value of R0 is on the lower range of R0 estimates for the 2009

influenza A/H1N1 pandemic in the USA [41]. The expected efficiency is, in fact, quite insensi-

tive to the value of T1, with the change of τ in T1 leading to a change in expected efficiency of

Oðt2Þ.

We select a set of parameters β for the vaccination probability function v(k;β, U) of the hot-

spotting strategy (and a set of parameters v for the uniform strategy) to target a homogeneous
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distribution of the vaccinate rate V in the outcome over its range of possible values. 10,000

simulations are performed for each selected parameter. This accounts to a total of 990,000 sim-

ulations for the strategies with U = 100%. For the strategies with U = 20%, 40%, and 60%, we

ran a total of 190,000, 390,000, and 590,000 simulations, respectively.

Each simulation consists of four steps:

1. The vaccination probabilities v(k;β, U) for each individual, and the probabilities φw for each

weight are calculated for the given parameters.

2. For each component kw of the generalized degree of each individual, a binomial process is

performed with the probability φw. The outcome of this process replaces kw as the residual

contact number.

3. For each individual, a Bernoulli trial is performed with the probability v(k;β, U). If the out-

come is a success, the individual is removed from the list with all their contacts, otherwise

they remain.

4. The base reproduction number is computed in the residual list and saved as the post-vacci-

nation reproduction number Rv. The vaccine coverage V is deduced from the length of the

residual list. The efficiency Ev is calculated from Rv and V.

Results

Our simulation results show that the hot-spotting strategy is one to four times more efficient

than the uniform vaccination strategy (Fig 1). The difference in efficiency between the two

strategies is most pronounced when the vaccine coverage V is small, since in this case, high

exposure individuals are likely to be vaccinated first under a hot-spotting strategy. As the vac-

cine coverage increases, hot-spotting becomes indistinguishable from the uniform strategy

and its efficiency approaches 1. Indeed, when the vaccine coverage equals the app usage rate all

app users are vaccinated. By our model assumptions, the app using population have the same

contact patterns as the general population, and so vaccinating all app users is equivalent to uni-

formly vaccinating the same fraction of the population.

We also find that hot-spotting retains its lead in efficiency across a wide range of values

for U, the rate of app usage in the population (Fig 1): vaccinating individuals with more

exposure always provides more population protection for fewer vaccines expended, even if

public health cannot reach all of the high-exposure individuals. The success of digital contact

tracing technologies has been hampered by inadequate uptake rates [42, 43]. Our simula-

tions show that our proposal doesn’t suffer from this issue, at least from the perspective of

efficient use.

These trends are also reflected in the impact of the two strategies on the post-vaccination

reproduction number (Fig 2). Under the uniform strategy, the post-vaccine reproduction

number declines in direct proportion to the vaccine coverage. But for the hot-spotting strategy,

the post-vaccine reproduction number declines very rapidly for very low vaccine coverage

before eventually converging to the same level as the uniform strategy, when enough individu-

als are vaccinated. The greatest relative impact is achieved by vaccinating 20-40% of the app

users. Finally, when app usage rates are high enough, hot-spotting achieves herd immunity

with fewer than half as many doses. In Fig 3 we show that the significantly lower herd immu-

nity thresholds persist at a higher R0 value of 2.2, which is in the middle range of estimates for

the 2009 influenza A/H1N1 pandemic in the USA [41].
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In general, the necessary vaccine coverage VH required to reach herd immunity is given by

the solution of the equation

VH ¼
1

EvðVHÞ
1 �

1

R0

� �

:

For a vaccine allocation strategy with Ev> 1, this equation shows that VH can be reduced

through such strategy by a factor of EvðVHÞ.

App-using subnetwork

In our model we assumed that app users are uniformly distributed in the network and that

there is no preferential attachment. The actual contact patterns of app users need not satisfy

this condition in a given population and can have meaningful impacts on the efficiency of the

hot-spotting strategy. For example, if very few high exposure individuals are app users the hot-

spotting strategy might be less efficient than the uniform strategy. Or if there is very little mix-

ing between the app using and non-app using populations.

Fig 1. Efficiency of hot-spotting strategy. The efficiency for the hot-spotting strategy for R0 = 1.5 with various app

usage rates are compared with the uniform vaccination in relation to vaccine coverage. The dots represent the mean

efficiency obtained from 10,000 simulations for each dot. The shaded regions show the intervals that capture 90% of all

simulation results. The dashed lines in the bottom figures show the expected efficiency obtained analytically.

https://doi.org/10.1371/journal.pone.0256889.g001
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In order to model non-uniformly distributed app-using populations one can make use of

mixing matrices (cf. [44]). More specifically, one needs the following information about the

network: The distributions of generalized degree for both app users, fqAk g, and non-users

fqNk g; and, for each weight w, a mixing matrix ewij where each entry is the fraction of edges in

the network having weight w and joining a vertex of type i to one of type j, i, j 2 {A, N}. The

assumptions made in our model are that the app using and non-app using population have the

same generalized degree distribution, qAk ¼ qNk , and that the mixing matrices for an app usage

rate of U are ewAA / U2, ewAN / Uð1 � UÞ and ewNN / ð1 � UÞ2.

One can readily extend our formula obtained above for the expected post-vaccination

reproduction number E½Rv� to a non-uniformly distributed app-using subnetworks along the

same lines as [44]. The more difficult part is finding data to determine the network variables

for the model. For exposure notification apps operating under the Google/Apple framework

there is currently no centralized collection of contact data and so no direct way for public

health authorities to measure these variables. In principle such a functionality could be

included in the future, though concerns over privacy must be addressed.

Fig 2. The post-vaccination reproduction numbers for the hot-spotting strategy. The post-vaccination

reproduction numbers for the hot-spotting strategy for R0 = 1.5 with various app usage rates are compared with the

uniform vaccination in relation to vaccine coverage. The dots represent the mean reproduction number obtained from

10,000 simulations for each dot. The shaded regions show the intervals that capture 90% of all simulation results. The

dashed lines in the bottom figures show the expected post-vaccination reproduction numbers obtained analytically.

https://doi.org/10.1371/journal.pone.0256889.g002
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The Digital Global Health & Humanitarianism Lab carried out case studies on uptake of

digital contact tracing apps in 5 countries: Iceland, Cyprus, Ireland, Scotland, and South Africa

[45]. Their research indicated a number of individual and system-level factors influencing

uptake, such as concerns around data collection, sense of community, accessibility and trust in

institutions. While these results likely indicate a degree of preferential attachment, it is other-

wise impossible to extract quantitative network statistics. This is especially true since the same

social factors could lead to very different network structures in different communities. In par-

ticular, there is no a priori reason to assume that app users have more or less exposure on aver-

age than non-users.

In the absence of data to inform the structure of the app-using population we limited the

scope of this work to the uniform case. We can, however, briefly comment on some features of

the general case.

In the limit when all app users are vaccinated the residual network of unvaccinated individ-

uals is exactly the subnetwork of non-users. The post-vaccination reproduction number there-

fore agrees with the basic reproduction number, RN
0

, of the non-user subnetwork. If there is a

high degree of preferential attachment between non-users and/or they have much higher over-

all exposure it could be that RN
0
> R0, leading to an expected efficiency of less than 1 for the

hot-spotting strategy. In other words, in this scenario it would have been better to vaccinate

the same number of people using the uniform strategy. This doesn’t necessarily imply that the

uniform strategy is always better than hot-spotting in this population. The hot-spotting strat-

egy initially prioritizes the highest exposure app-users and so can still achieve a higher effi-

ciency than the uniform strategy when vaccinating a smaller fraction of the app-using

Fig 3. Necessary vaccine coverage to achieve herd immunity. The necessary vaccine coverage to bring the reproduction number from its initial value

R0 = 1.5 (black) or R0 = 2.2 (red) to the herd immunity threshold Rv = 1 is demonstrated for the uniform and hot-spotting strategy for various app usage

rates. The dots represent the mean value from our simulations, whereas the intervals show the range that captures 1σ (68.27%) of all simulation results.

If R0 = 2.2 and U = 40%, vaccinating only the app users would not be enough to reach herd immunity.

https://doi.org/10.1371/journal.pone.0256889.g003
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population, assuming there are high exposure app-users. Conversely, in cases where RN
0
< R0

the efficiency of the hot-spotting strategy is always more efficient than the uniform strategy.

Concluding remarks

An important limitation of our modelling is the underlying data used to construct the model

network [9], which does not take into account any changes in contact patterns as a result of

disease spread. Moreover, in both our theoretical work and our simulations we have assumed

that there is no distinction between a potentially infectious contact and the contacts detected

by Bluetooth exposure notification apps. Our percolation model is not equipped to analyze the

time evolution of concurrent vaccination and disease spread. Instead, it is limited to describing

the structural properties of the network of unvaccinated individuals. We have also limited our

modelling to the hot-spotting strategy deployed in isolation, rather than as one part of a

broader vaccine allocation strategy. Finally, we have only considered the impact of vaccination

strategies on overall disease spread. Other factors such as mortality or health care system strain

are, of course, also important features to consider when comparing vaccination strategies.

These simplifying assumptions could be relaxed in future work with more detailed agent-

based simulations that test the generality of the new theory we have introduced. However, we

note that a diverse collection of previous literature already finds that prioritizing individuals

based on their contact patterns can be highly effective [8, 13–15, 46] at reducing the burden of

infectious disease. We have built upon this literature by (1) proposing a measure Ev of the rela-

tive efficiency of different strategies, (2) showing that existing COVID-19 digital contact trac-

ing technology allows the measurement of epidemiologically important quantities without

violating privacy, (3) proposing a new vaccination strategy based on these measures that is

technically feasible to implement, and (4) introducing novel analytical techniques and simula-

tions that (5) demonstrate how hot-spotting is dramatically more efficient than uniform

allocation.
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