Modelling Disease Mitigation at Mass Gatherings: A Case Study of COVID-19 at the 2022 FIFA World Cup.

Martin Grunnill ^{1,*}, [¤], Julien Arino ², Zachary McCarthy ¹, Nicola Luigi Bragazzi¹, Laurent Coudeville ³, Edward W. Thommes^{3,4}, Amine Amiche⁵, Abbas Ghasemi ^{1,6}, Lydia Bourouiba ⁶ Mohammadali Tofighi^{7,8}, Ali Asgary^{8,9}, Mortaza Baky-Haskuee⁸ and Jianhong Wu^{1,9}

1 Laboratory of Industrial and Applied Mathematics (LIAM), York University, Toronto, Ontario, Canada

 ${\bf 2}$ Department of Mathematics & Data Science Nexus, University of Manitoba, Winnipeg, Manitoba, Canada

3 Modeling, Epidemiology and Data Science (MEDS), Sanofi, Lyon, France

4 Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada

5 Sanofi, Dubai, United Arab Emirates

6 The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

7 Dahdaleh Institute for Global Health Research, York University, Toronto, Canada8 Disaster & Emergency Management, York University, Toronto, Canada

 ${\bf 9} {\rm York}$ Emergency Mitigation, Response, Engagement and Governance Institute, York University, Toronto, Ontario, Canada

¤Current Address: Laboratory of Industrial and Applied Mathematics (LIAM), York University, 8 The Chimneystack Rd, Toronto, Ontario, M3J 3K1 * grunnill@yorku.ca

Abstract

The 2022 FIFA World Cup was the first major multi-continental sporting Mass Gathering Event (MGE) of the post COVID-19 era to allow foreign spectators. Such large-scale MGEs can potentially lead to outbreaks of infectious disease and contribute to the global dissemination of such pathogens. Here we adapt previous work and create a generalisable model framework for assessing the use of disease control strategies at such events, in terms of reducing infections and hospitalisations. This framework utilises a combination of meta-populations based on clusters of people and their vaccination status, Ordinary Differential Equation integration between fixed time events, and Latin Hypercube sampling. We use the FIFA 2022 World Cup as a case study for this framework. Pre-travel screenings of visitors were found to have little effect in reducing COVID-19 infections and hospitalisations. With pre-match screenings of spectators and match staff being more effective. Rapid Antigen (RA) screenings 0.5 days before match day outperformed RT-PCR screenings 1.5 days before match day. A combination of pre-travel RT-PCR and pre-match RA testing proved to be the most successful screening-based regime. However, a policy of ensuring that all visitors had a COVID-19 vaccination (second or booster dose) within a few months before departure proved to be much more efficacious. The State of Qatar abandoned all COVID-19 related travel testing and vaccination requirements over the period of the World Cup. Our work suggests that the State of Qatar may have been correct in abandoning the pre-travel

testing of visitors. However, there was a spike in COVID-19 cases and hospitalisations within Qatar over the World Cup. The research outlined here suggests a policy requiring visitors to have had a recent COVID-19 vaccination may have prevented the increase in COVID-19 cases and hospitalisations during the world cup.

Author summary

Mass Gathering Events (MGEs) can potentially lead to outbreaks of infectious disease and facilitate the dissemination of such pathogens. We have adapted previous work to create a framework for simulating disease transmission and mitigation at such MGEs. We use the 2022 FIFA World Cup as a test case for this framework. A policy of Pre-travel screenings of visitors was found to have little effect in reducing COVID-19 cases and hospitalisations. Pre-match screenings of spectators and match staff was found to be more effective. The most effective policy was to ensure that all visitors had a COVID-19 vaccination (second or booster dose) within a few months before departure. Qatar abandoned all COVID-19 related travel testing and vaccination requirements over the period of the World Cup. Our work suggests that the State of Qatar may have been correct in abandoning the pre-travel testing of visitors. However, there was a spike in COVID-19 cases and hospitalisations within Qatar over the World Cup. Given our findings, we suggest a policy requiring visitors to have had a recent COVID-19 vaccination may have prevented the increase in COVID-19 cases and hospitalisations during the world cup.

1 Introduction

The continuing COVID-19 pandemic, caused by an emerging coronavirus (1), has been affecting more than 200 countries since early 2020, profoundly overwhelming healthcare infrastructure worldwide (2; 3). Given the initial lack of availability of effective drugs and vaccines, in order to control and contain the pandemic, governments and authorities have implemented a package of public health interventions. Such interventions have collectively become known as NPIs (Non-Pharmaceutical Interventions) (4). In some countries, NPIs have included the ban of inter-household mingling and/or outdoor activities, particularly Mass Gathering Events (MGEs). As such, there is a large body of work pointing to the ban of MGE as an effective NPI (4). Furthermore, there are several examples of outbreaks of communicable diseases at MGEs occurring in the pre-COVID era, many of which contributed to the global dissemination of the pathogens responsible (5; 6; 7; 8; 9; 10; 11). The WHO defines MGEs as highly visible events attended by tens of thousands of people, such as pilgrimages and sporting events, and coordinates with member states on matters of pathogen control at such gatherings (12).

The resulting ban of MGEs in the wake of COVID-19 has affected the sporting world. Athletes have had to cope with unprecedented disruption, characterized by the loss of regular routine (e.g. training and matches), and the postponement or even cancellation of major national and international sporting events (Tokyo 2020 Olympic and Paralympic Games). During the pandemic, sports organizations have collaborated closely with the WHO and national public health bodies, assessing and implementing COVID-19-related risk reduction interventions to facilitate a safe step-wise return of sporting events (13). Generally, these measures have focused on three areas. First, lowering the risk from the actual sport itself: focusing on activities that can maintain physical distancing; holding matches outdoors; re-consider whether to allow contact sports (13). Second, lowering risks inherent to the size of an event, considering both participants and spectators. Third, reducing risks inherent to the geographic 1

2

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

> localisation of the event by considering the local epidemiological conditions such as COVID-19 community transmission and prevalence. There are many COVID-19 mitigation protocols that can be utilised in planning for MGEs, either sporting events or others. However, the effectiveness and performance of these protocols in controlling and reducing the risk of COVID-19 transmission and hospitalisations is not clearly established.

Here we build on previous work (14) to create a generalised framework simulating disease transmission specifically adapted for use in planning pathogen control at MGEs. The 2022 FIFA World Cup hosted in Qatar was the first multi-continental sporting MGE of the post COVID-19 era to allow foreign spectators (15; 16; 17). Denhing *et al.* (2023) and Subedi *et al.* (2022) (18; 19) highlighted the potential for disease spread at the world cup. Therefore, we chose to use the 2022 FIFA World Cup as a test case of the framework we developed, assessing various strategies to mitigate COVID-19 spread through match attendee testing and visitor vaccination requirements.

2 Methods

2.1 A Generalised Framework for Simulating Disease Transmission at Mass Gatherings

In order to model the spread of COVID-19 at MGEs we have built upon our previous work (14) and created a generalised deterministic model framework (see Fig 1, Eqs 1 and Tables 1 to 3). The general framework is that of a metapopulation stratified by clusters and vaccination groups, designated by subscripts i and v, respectively. Cluster composition is customisable to a range of MGEs. Specifically for the model outlined in this manuscript there are three main sets of clusters, the hosts, the visitor fans of team A and the visitor fans of team B. The effects of vaccination are controlled through parameters designated with a subscript v, effecting classes denoted within that vaccine group (see Vaccination Groups). ODE integration of this model framework is achieved through Scipy's ODEint function (20).

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Table 1.	Description	of State	Variables
----------	-------------	----------	-----------

Variables	Descriptions			
Start of all Pathways				
S_{iv}	Susceptible population in cluster i and vaccination group v .			
E_{iv}	Early latent infected population in cluster i and vaccination group v . Note undetectable via RT-PCR and Rapid Antigen (RA) tests.			
	Asymptomatic Pathway			
G_{Aiv}	Latent infected population in cluster i and vaccination group v . Note Now detectable via RT-PCR.			
P_{++}	Incubating infected population in cluster i and vaccination group v .			
I Aiv	Note Now detectable via RA tests.			
M_{Aiv}	Mid-stage of infection population in cluster i and vaccination group v .			
F_{Aiv}	Final Stage of infection population in cluster i and vaccination group v .			
	Symptomatic Pathway			
G_{Iiv}	Latent infected population in cluster i and vaccination group v . Note Now detectable via BT-PCB			
P_{Iiv}	Incubating infected population in cluster i and vaccination group v . Note Now detectable via RA tests.			
M_{Iiv}	Mid-stage of infection population in cluster i and vaccination group v . Note Now displaying symptoms.			
F_{Iiv}	Final Stage of infection population in cluster i and vaccination group v .			
Hospitalised Pathway				
M	Mid-stage of infection population in cluster i and vaccination group v .			
IVIHiv	Note Now displaying symptoms, but not yet hospitalised.			
F_{Hiv}	Hospitalised population in cluster i and vaccination group v .			
End of all Pathways				
R_{iv}	Recovered population in cluster i and vaccination group v .			

 Table 2. Description of Parameters Volume 1: Disease Progression

Parameters	Descriptions	Values	Sources
p_s	Probability of developing symptoms.	0.41 to 0.84	(21; 22; 23)
6.	Progression from early latent phase and to being RT-PCR	$0.598 dev^{-1}$	(24)
	detectable.	0.556 day	
	Progression from later latent phase to incubating infection		
ϵ_2	phase (infectious) and being Rapid Antigen (RA) test de-	$1 \mathrm{day^{-1}}$	(24)
	tectable.		
	Progression from incubating phase to mid-infection phase.		
ϵ_3	If not on asymptomatic pathways this is also progression to	1 day^{-1}	(24)
	displaying symptoms.		
			Upper bound is from (25) . Lower
p_h	Probability of being hospitalised if unvaccinated.	0.0 to 0.0234	bound assumes decreasing mor-
			bidity with future strains.
$p_{h _{\alpha}}$	Probability of being hospitalised given symptoms if unvacci-	p_h	
1 11 5	nated.	p_s	
			Range in vaccine effectiveness
	Efficacy of vaccination with regards to hospitalisation for	0.007.1	against infection leading to hospi-
$h'_{v=effective}$	those effectively vaccinated	0.837-1	talisation or death seen over the
	v		first 6 months since second dose
			(26)
			Vaccine effectiveness against in-
$h'_{v=waned}$	Efficacy of vaccination with regards to nospitalisation for	0.5560	rection leading to nospitalisation
c_aanca	the waned vaccination group		or death after 6 months from sec-
	Efficiency of vaccination with records to heapitalization given		Transformation taken from (27)
h_v	efficacy of vaccination with regards to hospitalisation given	$1 - \frac{1 - h'_v}{1 - h'_v}$	11 $(27;$
	Probability of being hospitalized in vaccination group v .	$\begin{pmatrix} 1 & -i_v \\ m & (1 & h) \end{pmatrix}$	20).
Ph s,v	Total time infected for symptomatic or symptomatic path	$p_{h s}(1-n_v)$	
γ^{-1}	way	10 days	(24)
	Progression from mid asymptomatic and symptomatic in		
γ_1	fection to late stage infection	$\frac{2}{\gamma^{-1} - \epsilon_{-}^{-1} - \epsilon_{-}^{-1} - \epsilon_{-}^{-1}}$	
	Recovery from final phase of asymptomatic or symptomatic		
γ_2	infection	$\frac{2}{\gamma^{-1}-\epsilon_1^{-1}-\epsilon_2^{-1}-\epsilon_2^{-1}}$	
EII	Bate of hospitalisation	$0 103 \text{ to } 0 3820 \text{ dav}^{-1}$	(29:30:31)
$\begin{vmatrix} \gamma_H \\ \gamma_H \end{vmatrix}$	Recovery from hospitalisation	$0.0448 \text{ to } 0.1550 \text{ dav}^{-1}$	(32)
<i>П</i>		0.0110 to 0.1000 day	

Table 3. Description of Parameters	Volume 2:	Force of	Infection	and Testing
------------------------------------	-----------	----------	-----------	-------------

Parameters	Descriptions	Values	Sources
la.	Vaccine effectiveness against infection for those in vaccine		
	group v.		Den na in an aire affections and
$l_{v=effective}$	Vaccine effectiveness against infection for those effectively vaccinated.	0.1730 to 0.7750	Range in vaccine effectiveness against infection seen over the first 6 months since second dose (26)
$l_{v=waned}$	Vaccine effectiveness against infection for the waned vacci- nation group.	0.2230	Vaccine effectiveness against in- fection after 6 months from sec- ond dose (26)
$egin{array}{c} \lambda_i \ \lambda_{iv} \end{array}$	Force of infection experienced by cluster i . Force of infection experienced by cluster i and vaccination group v .	$\begin{array}{c} \operatorname{person}^{-1} \operatorname{day}^{-1} \\ \lambda_i (1 - l_v) \operatorname{person}^{-1} \\ \operatorname{day}^{-1} \end{array}$	
θ	Modification of transmission from asymptomatic and pre- symptomatic states.	0.3420 to 1 person ⁻¹ day ⁻¹	Lower bound from (21; 33; 34). Upper bound assumes no differ- ence in transmission from symp- tomatic states.
κ	Reduction in transmission due to quarantine/isolation as those in this cluster (i) have tested positive via RT-PCR or RA test.	0 to 1 person ^{-1} day ^{-1}	Covers assumptions of completely successful to completely unsuc- cessful isolation.
R_0	Basic reproduction number for a single cluster (homogeneous mixing) and no vaccination.	2 to 7	Covers range seen in (29), but goes beyond 5 to account possible future strains.
β	Baseline transmission from infectious states.	Derived from R_0 (person ⁻¹ day ⁻¹)	See S2 Methods
b	Increase in transmission for those that attend the sports match (day 3).	1 to 78.5 person ^{-1} day ^{-1}	Lower bound assumes no increase. Upper bound taken to be in- crease in meningococcal transmis- sion seen with Hajj (14).
ν_v	Rate of progress from one vaccination group to the next (e.g. any arrow in Fig 1B).	$0 \mathrm{day}^{-1}$	
$\nu_{v=unvaccinated}$	Rate of completing primary vaccination series.	$0 day^{-1}$	
$\nu_{v=effective}$	Rate of waning immunity of vaccination.	0 day^{-1}	
$\nu_{v=waned}$	booster vaccination).	0 day^{-1}	
τ_{RA}	RA test sensitivity.	0.728 test^{-1}	(35)
$ au_{RT-PCR}$	RT-PCR test sensitivity.	0.968 test^{-1}	(36)
ω_{RT-PCR}	RT-PCR test turnaround time.	1 day^{-1}	Turnaround time seen other mass testing regimes (37; 38; 39)

$$\begin{split} dS_{iv}/dt = &\nu_{v-1}S_{iv-1} - \lambda_{iv}S_{iv} - \nu_{v}S_{iv} \\ dE_{iv}/dt = &\nu_{v-1}E_{iv-1} + \lambda_{iv}S_{iv} - (\epsilon_{1} + \nu_{v})E_{iv} \\ dG_{Aiv}/dt = &\nu_{v-1}G_{Aiv-1} + \epsilon_{1}(1 - p_{s})E_{iv} - (\epsilon_{2} + \nu_{v})G_{Aiv} \\ dG_{Iiv}/dt = &\nu_{v-1}G_{Iiv-1} + \epsilon_{1}p_{s}E_{iv} - (\epsilon_{2} + \nu_{v})G_{Iiv} \\ dP_{Aiv}/dt = &\nu_{v-1}P_{Aiv-1} + \epsilon_{2}G_{Aiv} - (\epsilon_{3} + \nu_{v})P_{Aiv} \\ dP_{Iiv}/dt = &\nu_{v-1}P_{Iiv-1} + \epsilon_{2}G_{Iiv} - (\epsilon_{3} + \nu_{v})P_{Iiv} \\ dM_{Aiv}/dt = &\nu_{v-1}M_{Aiv-1} + \epsilon_{3}P_{Aiv} - (\gamma_{1} + \nu_{v})M_{Aiv} \\ dM_{Iiv}/dt = &(1 - p_{h|s,v})\epsilon_{3}P_{Iiv} - \gamma_{1}M_{Iiv} \\ dM_{Hiv}/dt = &p_{h|s,v}\epsilon_{3}P_{Iiv} - \epsilon_{H}M_{Hiv} \\ dF_{Aiv}/dt = &\nu_{v-1}F_{Aiv-1} + \gamma_{1}M_{Aiv} - (\gamma_{2} + \nu_{v})F_{Aiv} \\ dF_{Iiv}/dt = &\epsilon_{H}M_{Hiv} - \gamma_{H}F_{Hiv} \\ dF_{Hiv}/dt = &\epsilon_{H}M_{Hiv} - \gamma_{H}F_{Hiv} \\ dR_{iv}/dt = &\nu_{v-1}R_{iv-1} + \gamma_{2}(F_{Aiv} + F_{Iiv}) + \gamma_{H}F_{Hiv} - \nu_{v}R_{iv} \end{split}$$

2.1.1 Disease Stages

Within each population cluster and vaccination group susceptible individuals, S_{iv} , can be infected through the force of infection λ_{iv} (see Fig 1A, Eqs 1 and Force of Infection). Infection leads to the early latent stages of infection E_{iv} , where infection is not detectable through RT-PCR or Rapid Antigen (RA) tests. From here infected individuals progress (ϵ_1) to one of two later latent phases G_{Iiv} or G_{Aiv} , where infection is detectable through RT-PCR tests but not RA tests. Here an individuals infection pathway diverges either down a path leading to eventual symptoms at a proportion p_s or asymptomatic infection at a proportion $1 - p_s$ (with classes denoted with subscripts I and A, respectively) (see Fig 1A).

Infections become both transmissible, and detectable through RA tests, at rate ϵ_2 , moving to the incubating phases P_{Iiv} and P_{Aiv} (24; 40; 41). From this stage on the asymptomatic track, P_{Aiv} , people progress at rate ϵ_3 to stages M_{Aiv} , then at rate γ_1 to F_{Aiv} , finally recovering at rate γ_2 to R_{iv} . If on the symptomatic track P_{Iiv} people progress to the first stages of symptoms at rate ϵ_3 . Here there is a risk of people progressing down the hospitalisation pathway, moving to stage M_{Hiv} , at probability $p_{h|s,v}$ (see Fig 1A). Eventually individuals in M_{Hiv} are hospitalised at rate ϵ_H moving to compartment F_{Hiv} . It is assumed that those hospitalised do not contribute to the force of infection (see Force of Infection). Recovery from hospitalisation, F_{Hiv} , occurs at rate γ_H and leads to stage R_{iv} . If a person does not move to the hospitalised pathway, $1 - p_{h|s,v}$, they remain on the symptomatic pathway develop symptoms and progress to stage M_{Iiv} . From here people progress to the final stage of infection F_{Iiv} at rate γ_1 and then to recovered class, R_{iv} , at rate γ_2 .

2.1.2 Vaccination Groups

All individuals start in the Unvaccinated group (indexed as 1 in Figure Fig 1B). After completing a primary series of vaccination people move to the Effective vaccination group, $\nu_{v=unvaccinated}$ (indexed as 2 in Figure Fig 1B). Several months after primary series of vaccination immunity wanes (26; 42) moving people from vaccine group Effective to Waned, $\nu_{v=effective}$. The waned vaccination group is indexed as group 3. Note subscript v indexes the vaccination group not the number of doses of a vaccine. Individuals in the Waned vaccination group can receive a booster dose, at rate $\nu_{v=waned}$, moving them back to the Effective vaccination group. Again after several 55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

> months in the effectively vaccinated group immunity wanes, at rate $\nu_{v=effective}$, moving people to the Waned vaccination group. In other words, after a primary series of vaccination people loop from the Effective vaccination group to the Waned vaccination group through the waning of immunity, $\nu_{v=effective}$, and back again with booster doses, $\nu_{v=waned}$. In concordance with many national public health agencies' advice (43; 44) only non-symptomatic people (i.e. all classes but M_{Iiv} , M_{Hiv} , F_{Iiv} , and F_{Hiv}) can be vaccinated at rates $\nu_{v=unvaccinated}$ or $\nu_{v=waned}$. The effectiveness of vaccination plays out in the different vaccine groups, through modification of force of infection (λ_{iv}) and hospitalisation $(p_{h|s,v})$, see Eqs 2, Tables 2 and 3

$$\lambda_{iv} = \lambda_i (1 - l_v)$$

$$p_{h|s,v} = p_{h|s} (1 - h_v)$$
(2)

2.1.3Clusters

Clusters come under two main categories, visitor clusters and host clusters (see Table 4). In order to simulate COVID-19 screening, each of these main clusters have associated clusters for "RA Positive", "Waiting for Positive RTPCR" and "RTPCR Positive". Tests are simulated using the event queue system (see Event Queue). In the case of RA 100 test events, a proportion of a clusters population (τ_{RA}) from states P_{Iiv} , M_{Iiv} , 101 $F_{Iiv}, M_{Hiv}, P_{Aiv}, M_{Aiv}$ and F_{Aiv} are moved to the associated RA Positive cluster (see 102 Fig 1A). This detected proportion being based on the RA tests sensitivity (40). Those 103 in the RA Positive cluster are isolating and thereby contribute less to transmission (see 104 Table 4 and Force of Infection). RT-PCR tests are capable of detecting the presence of 105 COVID-19 earlier in an infection (40), meaning that the proportion of a clusters 106 population (τ_{RT-PCR}) is also drawn from states G_{Iiv} and G_{Aiv} (see Fig 1A). However, 107 RT-PCR tests have a much longer turnaround time (40), typically a day or two 108 (37; 38; 39). Therefore, the detected proportion from RT-PCR tests (τ_{RT-PCR}) will 109 populate a "Waiting for Positive RT-PCR" cluster. All the classes in the "Waiting for 110 Positive RT-PCR" cluster transition to the associated "RTPCR Positive" cluster at rate 111 ω_{RT-PCR} (RTPCR turnaround time). As with the RA Positive cluster, the RT-PCR 112 Positive cluster is isolating and thereby contributes less to transmission (see Table 4 and 113 Force of Infection). 114

87

88

89

91

92

93

94

95

96

97

98

Name	Host or	Attends	Isolating
	Visitor	Match	
Host	Host		
Host: Positive RA	Host		\checkmark
Host: Waiting for Positive RTPCR	Host		
Host: Positive RTPCR	Host		\checkmark
Host Spectators	Host	\checkmark	
Host Spectators: Positive RA	Host		\checkmark
Host Spectators: Waiting for Positive RTPCR	Host	\checkmark	
Host Spectators: Positive RTPCR	Host		\checkmark
Host Staff	Host	\checkmark	
Host Staff: Positive RA	Host		\checkmark
Host Staff: Waiting for Positive RTPCR	Host	\checkmark	
Host Staff: Positive RTPCR	Host		\checkmark
Team A Fans	Visitor	\checkmark	
Team A Fans: Positive RA	Visitor		\checkmark
Team A Fans: Waiting for Positive RTPCR	Visitor	\checkmark	
Team A Fans: Positive RTPCR	Visitor		\checkmark
Team B Fans	Visitor	\checkmark	
Team B Fans: Positive RA	Visitor		\checkmark
Team B Fans: Waiting for Positive RTPCR	Visitor	\checkmark	
Team B Fans: Positive RTPCR	Visitor		\checkmark

Table 4. Description of Cluster Behaviour and Organisation

2.1.4 Event Queue

In order to simulate changes in parameter values (such as increasing transmission) and 116 the transfer of population between compartments (e.g. moving to isolation) an event 117 queue system has been employed. This runs a model between events, then changes a 118 parameter value, adds or deducts from compartments in a compartment model 119 depending on the event. The code for this has been made freely available (see S1 120 Methods). A note of caution with making comparisons between scenarios with events at 121 different times. If no event occurs at a time point in one scenario but there is an event 122 in the other at that time, a null (do nothing) event must be inserted at that time point 123 for simulations made without the event at that time. This is critical to ensure 124 comparable accuracy of the integration for simulations of distinct scenarios. 125

2.1.5 Force of Infection

Force of infection is calculated for each cluster summing up the contribution from all clusters (including itself) (j) and their vaccination groups (v) (see Eq 3). As already mentioned states that do not display symptoms have their transmission modified by θ . Isolation is achieved in "RA Positive" and "RTPCR Positive" clusters by their $\kappa_j = \kappa$, for other clusters $\kappa_j = 1$.

$$\lambda_{i} = \sum_{j=1}^{n_{j}} \frac{\kappa_{j} \beta_{ij} (\sum_{v=1}^{n_{v}} \theta(P_{Ijv} + P_{Ajv} + M_{Ajv} + F_{Ajv}) + M_{Ijv} + F_{Ijv} + M_{Hjv})}{N_{i*}}$$
(3)

The transmission term β_{ij} refers to transmission to cluster *i* from cluster *j*. For the majority of simulation time this is set at a baseline ($\beta_{ij} = \beta$). However, this can be changed using the event queue system to have $\beta_{ij} = b\beta$ for a period of time, *b* being a 134

115

> strengthening or weakening of transmission over that time period. N_{i*} represents the 135 population in which the interaction between a susceptible individual of cluster $i(S_{iv})$ 136 and an infectious individual of cluster j (P_{Ijv} , P_{Ajv} , M_{Ajv} , F_{Ajv} , M_{Ijv} , F_{Ijv} , or M_{Hjv}) 137 takes place. Similarly to the transmission term (β_{ij}) , N_{i*} is typically set at the baseline 138 value of the entire population being modelled (N). However, this can be changed using 139 the event queue system allowing for transmission to be modelled through interactions 140 taking place within certain sub-populations. Note the summation term $\sum_{v=1}^{n_v}$ means to 141 sum through all the infectious stages of all the vaccination groups of cluster j, in this 142 case vaccine groups 1: Unvaccinated, 2: Effective and 3: Waned. Recall from 143 Vaccination Groups that the subscript v indexes the vaccination group not the number 144 of doses of a vaccine. 145

2.2 Simulating FIFA 2022 World Cup Matches, as a Case Study 146

For a test case scenario of the generalised framework above (see A Generalised Framework for Simulating Disease Transmission at Mass Gatherings), we chose to model possible matches from the FIFA 2022 World Cup (not involving the Qatari team). Each match is seen as a 7 day MGE (see Uncertainty and Sensitivity Analyses).

2.2.1 Simulation of a FIFA 2022 World Cup Match

For each match there were five main clusters, one for hosts in general, one for host 152 spectators, one for host staff and two clusters of visitor fans, one for each team, (see 153 Tables 4 and 5). The eight stadiums hosting matches have estimated capacities ranging 154 from 40,000 to 80,000 (45). We assume therefore that the population attending 155 simulated fixtures ranges from 4,000 to 80,000 (N_A) . A proportion of tickets go to the 156 host spectator cluster ($0 \le \eta_{spectators} \le 0.5$), meaning that the two visitor clusters 157 made up the rest of the attendees, N_A , split evenly. The host staff cluster population, 158 $N_{\rm S}$, ranged from 4,000 to 20,000. The host general population cluster equaled the 159 population of Qatar, 2,930,524 (46), minus the host spectator $(N_A * \eta_s)$ and staff cluster 160 (N_S) populations. 161

Table 5. Starting Values of Variables used for Simulating a FIFA 2022World Cup Match

Variables	Descriptions	Values	Sources
N _{hosts}	Combined population of host clusters (population of Qatar)	2930524 people	(46)
$N_{hosts,full}$	Combined fully vaccinated population for all host clusters (e.g. $N_{hosts,eff} + N_{hosts,wan}$)	2848639 people	Qatari Fully Vaccinated population for 15/11/2022 (47).
$N_{hosts,eff}$	Effectively vaccinated population across all host clusters.	1898869 people	Qatari Booster vaccines given for 15/11/2022 (47)
N _A	Population of attendees of sports match.	4,000 to 80,000 people	Lower bound assumes a tenth of tickets of lowest capacity stadium is filled (45). Upper bound is capacity of largest sta- dium (45).
N_Q^*	Proportion of tickets given to host population. 0 to 0.5		
N_S	Population of hosts staffing sports match.	4,000 to 20,000 people	A tenth of the typical stadium capacity to a quarter of the maximum stadium capacity (45).
σ_H	Prevalence in host nation.	0.0006 to 0.0011 person ⁻¹	Inverse of Uncertainty Intervals for Qatari cumulative detection to infection ratio in (48) multiplied by Qatar's preva- lence 18/11/2022 (47).
σ_A and σ_B	Prevalence in nation A and B, respectively.	4.47×10^{-6} to 0.0030 person ⁻¹	Inverse of the maximum and minimum of Uncertainty Intervals for cumula- tive detection to infection ratio of non- Qatari teams playing at FIFA World Cup2022 (48) multiplied by non-Qatari sides prevalence 18/11/2022 (47).
v_A and v_B	Proportion effectively vaccinated arriving from nations A and B, respectively. The rest of the visitors are in the waned vaccinations group.	0 to 1	

No vaccination occurred during simulations

 $(\nu_{v=unvaccinated} = \nu_{v=waned} = \nu_{v=effective} = 0)$, as the simulations occur over a short time frame. The host unvaccinated population was set at Qatar's population minus the number of people fully vaccinated in Qatar as of 15/11/2022 (47). The hosts effectively vaccinated population was set as the total boosters given as of 15/11/2022 (47). The hosts effectively total boosters given as of 15/11/2022 (47). The hosts effectively total boosters given as of 15/11/2022 (47). The host is unvaccinated minus total total boosters given.

Team A and B fans were assumed to have at least completed a primary series of vaccination. Prior to the world cup Qatar had travel restrictions requiring a primary series of vaccination to access public facilities (17; 49; 50). The proportion of effectively vaccinated in these two clusters therefore ranged between simulations, $0 \le v_A \le 1$ for Team A and $0 \le v_B \le 1$ for Team B fans. The remaining population of these two clusters was placed in the waned vaccination group.

The Host, Host Spectator, Host Staff, Team A and Team B Clusters were seeded 175 with COVID-19 infections. For the three host clusters the starting prevalence, σ_H , was 176 sampled from a range (see Table 5). The 7-day smoothed new cases per person for 177 Qatar on 18/11/2022 (46; 47), multiplied by the lower and upper estimate of reported to 178 actual infections for Qatar (48) to give this range. Similarly, the starting prevalence for 179 Team A and B fans (σ_A and σ_B) was also sampled from a range based on the smoothed 180 new cases per person 18/11/2022 (46; 47). The new smoothed cases per person for each 181 nation was multiplied by the respective lower and upper estimate of reported to actual 182 infections (48). The minimum and maximum from this set of values then informed the 183 range for starting prevalences for Team A and Team B fans (see Table 5). 184

We chose a probabilistic approach to pick the seed infection stages. First we made a random draw to select which infection pathway (branch) a host is on, using the probability of being on an infection pathway. Then each infection stage of a pathway was assigned a weight. The weight was calculated as the inverse of the outflow rate from that compartment. We normalised the weights for each infectious stage by dividing by the sum of all weights, prior to using the result to draw the selection of infection stage. All draws were made using numpy's multinomial function (51) see S1 Methods.

The baseline transmission term β was derived for a given value of R_0 , assuming no vaccination and a single cluster population. R_0 was derived using Next Generation Matrix Methods (52) and sympy (53) (see S2 Methods for details). Simulation then proceeded as outlined in Table 6. We initiated the simulation 2 days prior to the actual MGE so as to capture pre-travel COVID-19 screenings (54). The simulation extended from 7 to 100 days post MGE without transmission, so as to capture the number of hospitalisations resulting from transmission during the MGE.

162

169

170

171

172

173

174

185

186

187

188

189

190

Time of Events	Events	Description
-2	Simulation Begins	 Transmission to and from visitor clusters is 0. Transmission between host clusters is at baseline (β). For host clusters the population denominator for the force of infection is the population
-1.5	Pre-Travel RTPCR or	 of Qatar. Pre-Travel RTPCR: a proportion of those in the RTPCR detectable states are removed (τ_{RTPCR}) from visitor clusters.
-0.5	Null Event Pre-Travel RA or Null Event	• Pre-Travel RA: a proportion of those in the RA detectable states are removed (τ_{RA}) from visitor clusters.
0	MGE Begins and Visitor Clusters Arrive	 Transmission to and from visitor clusters is set to baseline (β). For all clusters the population denominator for the force of infection is set to the population of Qatar plus that of the two visitor clusters.
1.5	Pre-Match RTPCR or Null Event	• Pre-Match RTPCR: a proportion of those in the RTPCR detectable states are moved (τ_{RTPCR}) from clusters attending the match to their associated "Waiting for Positive RTPCR" cluster.
2.5	Pre-Match RA or Null Event	• Pre-Match RA: a proportion of those in the RA detectable states are moved (τ_{RTPCR}) from clusters attending the match to their associated "Positive RA" cluster.
3	Match Day Begins	 Transmission to and from match attending clusters is increased by a factor, b). For transmission to clusters attending the match the population denominator for the force of infection is set to the population attending the match.
		• For transmission to clusters not attending the match the population denominator for the force of infection is set to the population not attending the match.
4	Match Day Ends	 All transmission terms to and from match attending clusters is reset to baseline β. The force of infection is set to the population the Qatari population plus visitors for all clusters.
7	MGE ends	• All transmission terms, β_{ij} , are set to 0.
100	Simulation Ends	

Table 6. Event Timeline used for Modelling International Sports Matches

2.2.2 Uncertainty and Sensitivity Analyses

Parameters and starting variable values were either held fixed or sampled using Latin ²⁰⁰ Hypercube Sampling (LHS) (55), using scipy's LatinHypercube function (20) (see ²⁰¹ Tables 2, 3 and 5). LH sampling was done using uniform distributions and a sample size ²⁰² of 10,000. Partial Rank Correlation Coefficients (PRCCs) were then used to asses the ²⁰³ effect of each sampled parameter on total hospitalised, peak hospitalised, total infected ²⁰⁴ ²⁰⁵

> and peak infected. PRCCs were calculated using pingouin's partial_corr function (56). 205

Analyses of Testing Strategies 2.2.3

In order to asses the effect of different test strategies the same LH sample was run with 207 each of the testing regimes described in Table 7. The effectiveness of the test strategies 208 was measured through two sets of comparisons using the outputs total infections, peak 209 infections, total hospitalisation and peak hospitalisation. The first set of comparisons 210 were PRCC based. Each set of simulations made under a testing strategy was paired 211 with the set of simulations made with no testing regime in place, as a control. For 212 simulations under the test strategy a dummy parameter was given a value of 1. 213 Simulations made without a testing regime in place were given a value of 0 for this 214 dummy parameter. Thus, creating a parameter to base PRCC comparisons on. The 215 second set of comparisons measured a testing regime's percentage relative differences in 216 outputs, using Eq 4, compared to the "No Testing" regime as a control. Regarding Eq 4, 217 R_l is the percentage relative difference in an output O seen between a simulation with a 218 treatment T and a control simulation C, where l is the LH sample used in the two 219 simulations being compared. 220

-		•	
Stuatom	RT-PCR	BA	RT-PCR
Strategy	day _1 5	1 0 5	day 1.5

Table 7. Testing Regimes Employed in Simulations

Strategy	RI-PCR	RA	RI-PCR	RA
0.	day -1.5	day -0.5	day 1.5	day 2.5
No Testing				
Pre-Travel RT-PCR	\checkmark			
Pre-Travel RA		\checkmark		
Pre-Match RT-PCR			\checkmark	
Pre-Match RA				\checkmark
Double RT-PCR	\checkmark		\checkmark	
Double RA		\checkmark		\checkmark
RT-PCR then RA	\checkmark			\checkmark
RA then RT-PCR		\checkmark	\checkmark	

$$R_l = \frac{O_{Tl} - O_{Cl}}{O_{Cl}} \times 100 \tag{4}$$

Analyses of Travel Vaccination Restrictions 2.2.4

The proportions of visitor A and B effectively vaccinated $(v_A \text{ and } v_B)$ where both found 222 to have significantly negative PRCCs with infections and hospitalisation (see Effects of 223 Parameters and Starting Conditions Relating to COVID-19 control measures). This 224 suggests that a policy restricting entry to those effectively vaccinated but no COVID-19 225 screening being enforced, was worth evaluating. Henceforth we will refer to such a 226 policy as "effective visitor vaccination". Therefore, a further LHS of size 10,000 was 227 drawn, this time without v_A and v_B from Tables 2, 3 and 5 being sampled. The LHS 228 parameter sets were then used to simulate a policy of "effective visitor vaccination" 229 $(v_A = v_B = 1 \text{ and no testing being in place})$. Calculations of percentage relative differences in total infections and hospitalisations between this policy, as a control, 231 against simulations made under a different combination of testing regime and visitor 232 effective vaccination $(v_A = v_B)$ with the same LH sample set as treatments were made 233 (see Eq 4). These combinations comprised of $v_A = v_B = 0$, $v_A = v_B = 0.25$, 234 $v_A = v_B = 0.5$ or $v_A = v_B = 0.75$ with "No Testing", "Pre-Travel RT-PCR", 235

221

> "Pre-Match RA" or "RT-PCR then RA" testing regimes. Thereby, capturing a testing regime being in place with different background levels of visitor effective vaccination. 237

3 Results

Here we focus on an analysis of testing regimes, along with the parameters and starting 239 conditions relating to COVID-19 control measures. The supplementary materials 240 contain further analyses of the effects of other parameters and starting conditions that 241 we varied through LHS. We note that for nearly all PRCCs of starting conditions, 242 parameters and testing regimes against peak infections and hospitalisation followed the 243 same trends as total infections and hospitalisation. The exceptions being rate of 244 hospitalisation and recovery from hospitalisation. Similarly % relative differences caused 245 by testing regimes follow the same trend when comparing the peak and total number of 246 infections or hospitalisations (see S1 Results). 247

3.1 Effects of Testing Regimes

PRCCs from single testing regime showed much higher performance for pre-match 249 testing over pre-travel testing in reducing infections and hospitalisations (see Fig 2). 250 Furthermore, pre-travel screenings provide less reductions in infections and 251 hospitalisation compared to pre-match screenings (see Fig 3). Single RT-PCR tests had 252 a greater benefit in pre-travel testing, but less beneficial in pre-match testing compared 253 with single RA testing. Therefore, it is unsurprising that the best overall testing regime 254 for mitigating infections and hospitalisation was a pre-travel RT-PCR test and then a 255 pre-match RA test, "RT-PCR then RA" (see Figs 2 and 3). However, "RT-PCR then 256 RA" testing regime (pre-travel RA and pre-match RA) only narrowly outperformed the 257 "Double RA" testing regime and was not much of an improvement over a single 258 "pre-match RA" test (see Figs 2 and 3). 259

238

Fig 2. Effect of different Test Regimes on infections and hospitalisations as measured by Partial Rank Correlation Coefficient (PRCC). In calculating PRCCs Latin Hypercube (LH) sampling draws on the parameter space outlined in Tables 2, 3 and 5, using uniform distributions. Simulations are made with the resulting LH sample with each of the testing regimes outlined in Table 7. Every set of simulation made under a testing regime is given a dummy parameter value of 1, except "No Testing" which is given a value of 0. Each testing regime's effect on an output (Total Infections or Hospitalisation) is measured through calculating PRCCs using the dummy parameter comparing the 1 for the particular testing regime and 0 for its absence.

Fig 3. Effect of different Test Regimes on infections and hospitalisations as measured by % Relative Difference to simulations with no testing regime. A: Boxplots Total Infections and Hospitalisation in simulations made with no testing regime. B: Boxplots of a Testing Regimes % Relative Differences in Total infections and Hospitalisation. For every parameter set produced under LHS the % relative difference in outputs simulated under a testing regime, Fig B, was calculated against the corresponding output from the "No Testing" regime simulations, depicted in Fig A, as a control (see Eq 4). The white dots are the means. The array of samples used in simulation was generated from Latin Hypercube sampling drawing upon the distributions outlined in Tables 2, 3 and 5. Details of testing regimes can be found in Table 7.

3.2 Effects of Parameters and Starting Conditions Relating to COVID-19 control measures

In terms of active control measures decreasing the transmission from isolating clusters would only be effective in testing regimes that included pre-match testing Fig 4. Note, pre-travel tests remove positive visitors from the model. However, greater reductions in infections and hospitalisations are seen through reduced transmission from pre-symptomatic and asymptomatic people. This could be achieved through many NPIs, such as encouraging or enforcing mask wearing, promoting hand sanitation and, when possible, social distancing.

Fig 4. Partial Rank Correlation Coefficients (PRCCs) between parameters and starting conditions relating to COVID-19 control measures and Total Infections and Hospitalisations. Where, κ is the isolation transmission modifier (0-1), θ is the asymptomatic transmission modifier (0.342-1), and v_A and v_B are the proportion recently vaccinated visitors in group clusters A and B, respectively, (0-1). The array of samples used in simulation was generated from Latin Hypercube sampling drawing upon the distributions outlined above and in Tables 2, 3 and 5, using uniform distributions. Details of testing regimes can be found in Table 7.

The proportions of visitor clusters A and B effectively vaccinated $(v_A \text{ and } v_B)$ have 269 a negative correlation with both infections and hospitalisation (see Fig 4). Differences in 270 PRCCs can be transformed to z-scores, as outlined in (55). These methods were used to 271 determine if the effects of Testing Regimes and v_A and v_B under the 'No Testing' 272 regime are significantly different (compare Fig 2 and 4). PRCCs of v_A and v_B 273 compared to single pre-travel screening testing regimes demonstrate a significantly 274 greater effect in reducing hospitalisations and infections (see one tailed p-values in S1 275 Table). v_A and v_B have a significantly greater effect in reducing hospitalisations than 276 the "Pre-match RT-PCR" testing regime, but no significant differences are seen when it 277 comes to infections. With all other testing regimes PRCCs for v_A and v_B demonstrate a 278 significantly greater effect in lowering hospitalisations. However, in terms of infections 279 negative associations with v_A and v_B are significantly less pronounced compared to the 280 other testing regimes (see one tailed p-values in S1 Table). 281

260

261

262

263

264

265

266

267

3.3 Effects of Proportion of Recently Vaccinated as a COVID-19 Control Measure

It can be seen from Fig 5, that "effective visitor vaccination" ($v_A = v_B = 1$ and no 284 testing being in place) outperforms the "Pre-Travel RTPCR" testing regime, reducing 285 both hospitalisations and infections. When it comes to the "Pre-match RA" and 286 "RT-PCR then RA" testing regimes, "effective visitor vaccination" outperforms for 287 reductions in hospitalisations, but not infections. In terms of reducing infections on 288 average (both mean and median), "Pre-match RA" and "RT-PCR then RA" testing 289 regimes outperform "effective visitor vaccination". At $v_A = v_B = 0.5$ the "Pre-match 290 RA" and "RT-PCR then RA" testing regimes result in a similar number of infections as 291 seen in "effective visitor vaccination". As v_A and v_B reduce below 0.5 the "Pre-match 292 RA" and "RT-PCR then RA" testing regimes are less effective in terms of controlling 293 infections, compared to "effective visitor vaccination". 294

282

Fig 5. Comparison of a policy ensuring all visitors must be effectively vaccinated but not having testing ("effective visitor vaccination") against other policies. A: Boxplots of Total Infections and Hospitalisation under "effective visitor vaccination" ($v_A = v_B = 1$). B and C: Boxplots of % relative differences in Total Infections and Hospitalisation seen under various testing regimes at differing levels of effective vaccination for visitors compared to "effective visitor vaccination" as a control. In B and C % relative differences are calculated between simulations made with the same Latin Hyperche (LH) sample, see Eq 4. Testing regimes used in comparisons are "No Testing", "Pre-Travel RT-PCR", "Pre-Match RA" or "RT-PCR then RA" testing regimes (see Table 7). Levels of effective vaccination for visitors in the comparisons are $v_A = v_B = 0, v_A = v_B = 0.25, v_A = v_B = 0.5$ and $v_A = v_B = 0.75$. The white dots on the boxplots represent mean values. All parameters other than those relating to effective vaccination for visitors (v_A and v_B) are drawn using LH sampling from distributions outlined in Tables 2, 3 and 5.

4 Discussion

Major MGEs such as religious pilgrimages, festivals or sport competitions can generate a variety of health risks. In the context of an ongoing infectious disease pandemic, in addition to risks at the host site, risks of amplification or the dissemination of the pathogen to regions from which it was originally absent or close to it. MGEs have the potential to enable or favor the evolution and spread of novel variants of SARS-CoV-2 and other analogous pathogens (18).

To curtail these risks, host sites have at their disposal an arsenal of public health measures that they can used independently or concurrently. Such measures can act at three different stages: at entry, on-site and at exit. Exit controls are an efficacious way to disrupt the global spread of infectious pathogens (57). However, they are rarely explicitly used because the onus is then on the exit-screening country to treat the detected case. Regarding the world cup, visitors were returning to a large number of home locations, making the assessment of exit controls difficult. For these reasons exit controls were not included in our evaluation.

Instead, we focused our study on the role of the most common stages of control: entry and on-site controls. We used the example of the recent FIFA World Cup in Qatar to investigate the effect of different types of interventions, namely, vaccination, antigen and RT-PCR testing, with the testing taking place at different stages in a participant's travel to or sojourn in the host location. We made the realistic assumption that travellers are vaccinated prior to their arrival in the host location. We focused the implementation of interventions on spectators and those staffing the MGE rather than on the whole population of the host location.

We found that pre-travel testing in the FIFA world cup has little effect on disease burden, potentially due to the pre-existence of community transmission and leakage of COVID-19 false negative visitors from abroad. Indeed, when community transmission is already taking place, the contribution of introduced cases is minimal (58). It can be inferred that in cases were disease is completely absent from the mass gathering site, pre-travel testing would prove beneficial, as has been observed in location which implemented a COVID-zero policy (59), but this was not evaluated here. We found that pre-match testing was more effective, particularly with RA testing a half day prior to the match. We found only marginal improvements in COVID-19 control if visitors had undergone a pre-travel RT-PCR test and match attendees had undergone a pre-match RA test.

We also investigated the relative roles of pre-match and pre-travel testing in comparison to requirements for visitors to be effectively vaccinated. We found that such a vaccination based policy generally outperformed testing regimes in controlling infections. When it came to reducing hospitalisation such a policy more consistently outperformed testing regimes and often to a much greater extent. As the background levels of effective vaccination amongst visitors decreased, the reduction in hospitalisation under various testing regimes paled in comparison to reductions under a requirement that all visitors be effectively vaccinated.

The state of Qatar decided to remove COVID-19 pre-travel testing and vaccination 337 related travel restrictions for the period of the World Cup. Instead merely suggesting 338 that all visitors in this period be fully vaccinated and up to date on their booster doses 339 (17; 49; 50). Although, it should be mentioned that in order to access Qatari healthcare 340 facilities visitors had to register their health status on the Ehetraz app (54). Fig 6 341 demonstrates that the number of COVID-19 cases and hospitalisations had been on a 342 downward trajectory before the World Cup. An increase in the number of COVID-19 343 cases and hospitalisations starts towards the end of the group stages, peaking at the 344 beginning of the quarter final stage of the tournament. Such an increase may support 345 (19), who found that there was little effect on COVID-19 transmission associated with a 346

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

> nation hosting a UEFA 2020 match, but speculated that hosting an entire tournament 347 such as FIFA 2022 could increase COVID-19 transmission. The increase in cases and 348 hospitalisations is then followed by a decline, most probably reflecting less interest from 349 certain fan-bases as their national side drops out of the tournament. Our work here 350 would suggest that the State of Qatar's removal of pre-travel testing may have been 351 reasonable. However, the resulting spike in COVID-19 cases and hospitalisations may 352 have been avoided with the enforcement of a policy requiring visitors to have had a 353 second dose or a booster COVID-19 vaccination within a reasonable time-frame (e.g., 6 354 months to 14 days) prior to entry. Thus, ensuring COVID-19 vaccination among visitors 355 was actually effective (26; 60; 61; 62). 356

Fig 6. Qatari COVID-19 New Cases Smoothed (47) and Acute Cases under Hospital Treatment (63) around the time of the World Cup. The area between the yellow dotted lines is the time between the first world cup match and the final match. The area between the red dotted lines is the time between the last group stage match and the beginning of the quarter finals.

Daily Qatari data on the number of COVID-19 detections, hospitalisations and 357 vaccinations differentiating between second and third (booster dose) required to fit our model is limited. The data-set from the (63) is missing data between 27-10-2021 and 29-6-2022, the data is patchy after 29-6-2022 and no record was made to indicate if a 360

> vaccine dose was a second or third booster. When it comes to Qatar 'Our World in 361 Data' (47) only lists COVID-19 case detections, missing the data on hospitalisations 362 and vaccinations that were also required to fit our model. Furthermore, we did not have 363 access to estimates of staffing (stadium or policing) and numbers of spectators for matches (including their composition by nationality) from the State of Qatar. Therefore, 365 we chose to use a scenario analyses based on LHS. If the required data was available, 366 our scenario analyses could have been based on a two stage approach. The first stage 367 would have been to fit a single host cluster version of the model to Qatari COVID-19 368 detections, hospitalisations and vaccinations. The second stage would have been to use 369 the parameters and variable estimates from the fitting in stochastic processes, such as 370 τ -leap methods (64), to simulate the scenarios. The large number of LHS samples used 371 for our scenario analyses rendered the use of such stochastic simulations impractical, at 372 least with numbers of stochastic simulations large enough to control for the resulting 373 aleatoric uncertainty. However, a fitting stage would have decreased the epistemic 374 uncertainty, making such large numbers of stochastic simulations feasible. 375

A further limitation of our work is that we assumed isolation is as effective at reducing transmission from visitors as residents. Adding differential effects of isolation on transmission between hosts and visitors would have added more complexity to our model and increased the parameter space being sampled. A scenario with fewer clusters of people would present a more simplified and therefore ideal setting for assessing the effect differential group isolation on transmission, using our generalised model framework.

5 Conclusion

Our study demonstrates the feasibility of using modelling to assess disease control strategies at large MGEs, such as the FIFA World Cup 2022, in a time of COVID-19 and other pandemics. We find that requiring visitors to be effectively vaccinated is more effective than visitor pre-travel COVID-19 testing, and typically outperforms pre-event COVID-19 testing of attendees. Differing conclusions may be drawn if COVID-19 transmission was absent from the host nation (59). Therefore, the State of Qatar's abandonment of pre-travel COVID-19 testing may have been reasonable. However, in light of the COVID-19 cases and hospitalisations seen over the world cup we conclude that pre-travel COVID-19 testing should have been replaced with required effective vaccination pre-entry. Put another way, all visitors should have completed a primary series of vaccination close to the time of entry or should have had a booster dose timed so as to ensure the fullest possible immunity.

Supporting information

S1 Methods. Can be found at https://github.com/LIAM-COVID-19-Forecasting/Modelling-Disease-Mitigation-at-Mass-Gatherings-A-Case-Study-of-COVID-19-at-the-2022-FIFA-World-Cup.git

S2 Methods. Deviation of the Basic Reproductive Number, R_0 , and its relationship to the transmission term, β .

S1 Results. In depth examinations of % relative differences and PRCCs. 402

364

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

396

397

398

399

400

S1 Table. Differences in PRCCs between proportions of visitor clusters A and B effectively vaccinated (v_A and v_B) and different testing regimes. Differences are transformed to z-scores using methods outlined in (55). 403

Declaration of Potential Conflicts of Interest

Laurent Coudeville, Edward W. Thommes and Amine Amiche are Sanofi employees and may hold stock options within Sanofi. 408

Acknowledgments

There are multiple funders of this research to which we are grateful, as without their 410 support this research would not have been possible. Martin Grunnill's position was 411 funded through the Fields Institute's Mathematics for Public Health Next Generation 412 program, grant number 72062654. Julien Arino is funded through the Discovery Grant 413 program from the Natural Science and Engineering Research Council of Canada 414 (NSERC), grant number RGPIN-2017-05466. L. Bourouiba's work is supported, in part, 415 by the US National Science Foundation (NSF). Ali Asgary is funded through the 416 Advanced Disaster, Emergency and Rapid Response Simulation Initiative (ADERSIM), 417 Ontario Research Fund 33270. Jianhong Wu's work is also supported by the Canada 418 Research Chairs program (230720), the Discovery Grant program from NSERC (105588), 419 and the ADERSIM (Ontario Research Fund 33270). This work was supported by the 420 NSERC-Sanofi Industrial Research Chair program in Vaccine Mathematics, Modelling, 421 and Manufacturing (517504). These funding bodes had no role in the design of this 422 study, its execution, the interpretation of the data or the decision to submit results. 423

References

- Sharma A, Ahmad Farouk I, Lal SK. Covid-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention; 2021. Available from: https://www.mdpi.com/1999-4915/13/2/202/htmhttps: //www.mdpi.com/1999-4915/13/2/202.
- Bernacki EJ, Hunt DL, Yuspeh L, Lavin RA, Kalia N, Leung N, et al. What industrial categories are workers at excess risk of filing a COVID-19 workers' compensation claim? a study conducted in 11 midwestern US States. Journal of Occupational and Environmental Medicine. 2021;63(5):374–380. doi:10.1097/JOM.00000000002126.
- 3. Singhal T. A Review of Coronavirus Disease-2019 (COVID-19); 2020. Available from: /pmc/articles/PMC7090728//pmc/articles/PMC7090728/?report= abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090728/.
- 4. Perra N. Non-pharmaceutical interventions during the COVID-19 pandemic: A review; 2021.
- 5. Lingappa JR, Al-Rabeah AM, Hajjeh R, Mustafa T, Fatani A, Al-Bassam T, et al. Serogroup W-135 meningococcal disease during the Hajj, 2000. Emerging Infectious Diseases. 2003;9(6):665–671. doi:10.3201/eid0906.020565.
- 6. Wilder-Smith A, Tai Goh K, Barkham T, Paton NI. Hajj-associated outbreak strain of Neisseria meningitidis serogroup W135: Estimates of the attack rate in a

406

defined population and the risk of invasive disease developing in carriers. Clinical Infectious Diseases. 2003;36(6):679–683. doi:10.1086/367858.

- Pfaff G, Lohr D, Santibanez S, Mankertz A, van Treeck U, Schönberger K, et al. Spotlight on measles 2010: Measles outbreak among travellers returning from a mass gathering, Germany, September to October 2010. Eurosurveillance. 2010;15(50):19750. doi:10.2807/ese.15.50.19750-en.
- 8. Memish ZA, Goubeaud A, Bröker M, Malerczyk C, Shibl AM. Invasive meningococcal disease and travel; 2010.
- Ehresmann KR, Hedberg CW, Grimm MB, Norton CA, Macdonald KL, Osterholm MT. An outbreak of measles at an international sporting event with airborne transmission in a domed stadium. Journal of Infectious Diseases. 1995;171(3):679–683. doi:10.1093/infdis/171.3.679.
- Blyth CC, Foo H, van Hal SJ, Hurt AC, Barr IG, McPhie K, et al. Influenza outbreaks during world youth day 2008 mass gathering. Emerging Infectious Diseases. 2010;16(5):809–815. doi:10.3201/eid1605.091136.
- 11. Alzeer AH. Respiratory tract infection during Hajj; 2009. Available from: /pmc/articles/PMC2700482//pmc/articles/PMC2700482/?report= abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700482/.
- 12. WHO. Managing health risks during mass gatherings; 2021. Available from: https://www.who.int/activities/ managing-health-risks-during-mass-gatherings.
- Murray A, Pluim B, Robinson PG, Mountjoy ML, Falvey ÉC, Budgett R, et al.. The journey so far: professional sport during the COVID-19 pandemic; 2022. Available from: https://bmjopensem.bmj.com/content/8/2/e001362https: //bmjopensem.bmj.com/content/8/2/e001362.abstract.
- Coudeville L, Amiche A, Rahman A, Arino J, Tang B, Jollivet O, et al. Disease transmission and mass gatherings: a case study on meningococcal infection during Hajj. BMC Infectious Diseases. 2022;22(1):1–10. doi:10.1186/s12879-022-07234-4.
- 15. Harding R, Inagaki K, Ahmed M, Gemano S. Tokyo 2020: can the Olympics succeed behind closed doors?; 2021. Available from: https://www.ft.com/content/75f2b380-1d04-4a5a-981a-9ef033fe409e.
- Keh A, Bradsher K. As Olympics Near, China Tightens Rules and Athletes Invent Their Own; 2021. Available from: https://www.nytimes.com/2021/12/ 23/sports/olympics/beijing-olympics-coronavirus.html.
- 17. Al Jazeera. What are Qatar's COVID, travel requirements for World Cup 2022?
 Qatar World Cup 2022 News Al Jazeera; 2022. Available from: https://www.aljazeera.com/news/2022/10/31/ what-are-qatars-covid-travel-requirements-for-world-cup-2022.
- Subedi D, Pantha S, Chandran D, Bhandari M, Acharya KP, Dhama K. FIFA World Cup 2022 and the Risk of Emergence of Zoonotic Diseases. Journal of Pure and Applied Microbiology. 2022;doi:10.22207/jpam.16.4.47.
- Dehning J, Mohr SB, Contreras S, Dönges P, Iftekhar EN, Schulz O, et al. Impact of the Euro 2020 championship on the spread of COVID-19. Nature Communications. 2023;14(1). doi:10.1038/s41467-022-35512-x.

- Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods. 2020;17(3):261–272. doi:10.1038/s41592-019-0686-2.
- 21. Yanes-Lane M, Winters N, Fregonese F, Bastos M, Perlman-Arrow S, Campbell JR, et al. Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: A systematic review and meta-analysis. PLoS ONE. 2020;15(11 November). doi:10.1371/journal.pone.0241536.
- He J, Guo Y, Mao R, Zhang J. Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis. Journal of Medical Virology. 2021;93(2):820–830. doi:10.1002/jmv.26326.
- Syangtan G, Bista S, Dawadi P, Rayamajhee B, Shrestha LB, Tuladhar R, et al. Asymptomatic SARS-CoV-2 Carriers: A Systematic Review and Meta-Analysis. Frontiers in Public Health. 2021;8:1066. doi:10.3389/FPUBH.2020.587374/BIBTEX.
- Killingley B, Mann AJ, Kalinova M, Boyers A, Goonawardane N, Zhou J, et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nature Medicine. 2022;28(5):1031–1041. doi:10.1038/s41591-022-01780-9.
- Ayoub HH, Mumtaz GR, Seedat S, Makhoul M, Chemaitelly H, Abu-Raddad LJ. Estimates of global SARS-CoV-2 infection exposure, infection morbidity, and infection mortality rates in 2020. Global Epidemiology. 2021;3:100068. doi:10.1016/j.gloepi.2021.100068.
- 26. Chemaitelly H, Tang P, Hasan MR, AlMukdad S, Yassine HM, Benslimane FM, et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. New England Journal of Medicine. 2021;385(24):e83. doi:10.1056/nejmoa2114114.
- 27. Lipsitch M, Kahn R. Interpreting vaccine efficacy trial results for infection and transmission. Vaccine. 2021;39(30):4082–4088. doi:10.1016/j.vaccine.2021.06.011.
- PHAC. COVID-19: PHAC Modelling Group Report (External): JANUARY 13, 2022; 2022. January.
- Pellis L, Scarabel F, Stage HB, Overton CE, Chappell LHK, Fearon E, et al. Challenges in control of COVID-19: Short doubling time and long delay to effect of interventions. Philosophical Transactions of the Royal Society B: Biological Sciences. 2021;376(1829). doi:10.1098/rstb.2020.0264.
- 30. Faes C, Abrams S, Van Beckhoven D, Meyfroidt G, Vlieghe E, Hens N. Time between symptom onset, hospitalisation and recovery or death: Statistical analysis of belgian covid-19 patients. International Journal of Environmental Research and Public Health. 2020;17(20):1–18. doi:10.3390/ijerph17207560.
- 31. Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung SM, et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: A statistical analysis of publicly available case data. Journal of Clinical Medicine. 2020;9(2):538. doi:10.3390/jcm9020538.

- 32. Naushad VA, Purayil NK, Chandra P, Saeed AAM, Radhakrishnan P, Varikkodan I, et al. Comparison of demographic, clinical and laboratory characteristics between first and second COVID-19 waves in a secondary care hospital in Qatar: a retrospective study. BMJ Open. 2022;12(6):61610. doi:10.1136/bmjopen-2022-061610.
- He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine. 2020;26(5):672–675. doi:10.1038/s41591-020-0869-5.
- 34. Wu J, Scarabel F, McCarthy Z, Xiao Y, Ogden NH. A window of opportunity for intensifying testing and tracing efforts to prevent new COVID-19 outbreaks due to more transmissible variants. Canada Communicable Disease Report. 2021;47(7/8):329–338. doi:10.14745/ccdr.v47i78a06.
- Riccò M, Ranzieri S, Peruzzi S, Valente M, Marchesi F, Bragazzi NL, et al. Antigen Detection Tests for SARS-CoV-2: a systematic review and meta-analysis on real world data. Acta Biomedica Atenei Parmensis. 2022;93(2):e2022036–e2022036. doi:10.23750/ABM.V93I2.11031.
- 36. Pu R, Liu S, Ren X, Shi D, Ba Y, Huo Y, et al. The screening value of RT-LAMP and RT-PCR in the diagnosis of COVID-19: systematic review and meta-analysis. Journal of Virological Methods. 2022;300:114392. doi:10.1016/j.jviromet.2021.114392.
- 37. Public Health Ontario. Coronavirus Disease 2019 (COVID-19) PCR: Test Frequency and Turnaround Time (TAT); 2022. Available from: https://www.publichealthontario.ca/en/laboratory-services/ test-information-index/covid-19.
- 38. NHS. How you get your NHS coronavirus (COVID-19) test result NHS; 2022. Available from: https://www.nhs.uk/conditions/coronavirus-covid-19/ testing/test-results/how-you-get-your-test-result/.
- 39. Finnis A. How long do PCR test results take? When to expect results from NHS and day 2 private Covid travel tests; 2021. Available from: https://inews.co.uk/news/health/ pcr-test-results-how-long-take-nhs-private-covid-travel-tests-when-back-1
- 40. Pickering S, Batra R, Merrick B, Snell LB, Nebbia G, Douthwaite S, et al. Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: a single-centre laboratory evaluation study. The Lancet Microbe. 2021;2(9):e461-e471. doi:10.1016/S2666-5247(21)00143-9.
- Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. The Lancet Microbe. 2021;2(1):e13–e22. doi:10.1016/S2666-5247(20)30172-5.
- 42. Chemaitelly H, Tang P, Hasan MR, AlMukdad S, Yassine HM, Benslimane FM, et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. (Supplementary Appendix). New England Journal of Medicine. 2021;385(24):e83. doi:10.1056/nejmoa2114114.

- 43. NHS. How to get a booster dose of the coronavirus (COVID-19) vaccine; 2022. Available from: https://www.nhs.uk/conditions/coronavirus-covid-19/ coronavirus-vaccination/how-to-get-a-coronavirus-vaccine/ how-to-get-a-booster-dose/.
- 44. City of Toronto. COVID-19: City Immunization Clinics; 2022. Available from: https://www.toronto.ca/home/covid-19/covid-19-vaccines/ covid-19-how-to-get-vaccinated/ covid-19-city-immunization-clinics/.
- FIFA. Qatar World Cup Stadiums FIFA World Cup Qatar 2022[™]; 2022. Available from: https://hospitality.fifa.com/2022/en/the-stadiums/.
- 46. World Bank. Population, total Qatar Data; 2022. Available from: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=QA.
- 47. Ritchie H, Mathieu E, Rodés-Guirao L, Appel C, Giattino C, Ortiz-Ospina E, et al.. Coronavirus Pandemic Data; 2023. Available from: https://ourworldindata.org/coronavirus.
- COVID-19 Cumulative Infection Collaborators. Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis. Lancet (London, England). 2022;399(10344):2351–2380. doi:10.1016/S0140-6736(22)00484-6.
- 49. Qatar 2022. FIFA World Cup Qatar 2022: COVID-19 Guidebook for Spectators; 2022. Available from: https://www.fifa.com/fifaplus/en/articles/ health-and-hygiene-protocols-enhttps://digitalhub.fifa.com/m/ 2e0007cffeabb4e8/original/COVID-19-Guidebook-Spectators-EN.pdf.
- 50. Qatar 2022. COVID-19 Travel Return Policy for international fans attending this year's FIFA World Cup[™] Qatar 2022[™]; 2022. Available from: https://www.qatar2022.qa/en/news/ covid-19-travel-return-policy-for-international-fans-attending-this-years
- 51. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al.. Array programming with NumPy; 2020. Available from: https://doi.org/10.1038/s41586-020-2649-2.
- Diekmann O, Heesterbeek JAP, Roberts MG. The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface. 2010;7(47):873–885. doi:10.1098/rsif.2009.0386.
- Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, et al. SymPy: Symbolic computing in python. PeerJ Computer Science. 2017;2017(1):e103. doi:10.7717/peerj-cs.103.
- 54. QMfPH. Qatar Travel and Return Policy; 2022. Available from: https:// covid19.moph.gov.qa/EN/travel-and-return-policy/Pages/default.aspx.
- 55. Marino S, Hogue IB, Ray CJ, Kirschner DE. A methodology for performing global uncertainty and sensitivity analysis in systems biology; 2008.
- Vallat R. Pingouin: statistics in Python. Journal of Open Source Software. 2018;3(31):1026. doi:10.21105/joss.01026.

- 57. Khan K, Eckhardt R, Brownstein JS, Naqvi R, Hu W, Kossowsky D, et al. Entry and exit screening of airline travellers during the A(H1N1) 2009 pandemic: a retrospective evaluation. Bulletin of the World Health Organization. 2013;91(5):368–376. doi:10.2471/BLT.12.114777.
- Arino J, Boëlle PY, Milliken E, Portet S. Risk of COVID-19 variant importation

 How useful are travel control measures? Infectious Disease Modelling.
 2021;6:875–897. doi:10.1016/j.idm.2021.06.006.
- Hurford A, Martignoni MM, Loredo-Osti JC, Anokye F, Arino J, Husain BS, et al. Pandemic modelling for regions implementing an elimination strategy. Journal of Theoretical Biology. 2023;561:111378. doi:10.1016/j.jtbi.2022.111378.
- Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S, et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. New England Journal of Medicine. 2021;385(24):e84. doi:10.1056/nejmoa2114583.
- Kirsebom FCM, Andrews N, Stowe J, Toffa S, Sachdeva R, Gallagher E, et al. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. The Lancet Infectious Diseases. 2022;22(7):931–933. doi:10.1016/S1473-3099(22)00309-7.
- Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. New England Journal of Medicine. 2022;386(16):1532–1546. doi:10.1056/nejmoa2119451.
- 63. State of Qatar. Coronavirus Disease 2019 (COVID-19) Statistics; 2023. Available from: https://www.data.gov.qa/explore/dataset/ covid-19-cases-in-qatar/export/?sort=date.
- Cao Y, Gillespie DT, Petzold LR. Efficient step size selection for the tau-leaping simulation method. Journal of Chemical Physics. 2006;124(4):044109. doi:10.1063/1.2159468.