|
Patrick Leighton Person1 #679859 Patrick Leighton is a Professor of Epidemiology and Public Health at the Faculty of Veterinary Medicine, University of Montreal, and an active member of the Epidemiology of Zoonoses and Public Health Research Group (GREZOSP) and the Centre for Public Health Research (CReSP). | 
- Patrick's research focuses on the ecology of wildlife diseases that are transmissible to humans, and in particular the impact of ecological change on the epidemiology of these diseases and the risk they pose to public health. He is director of the Canadian Lyme Disease Research Network (CLyDRN) and co-directs U. Montreal’s Master’s Programs in One Health and Veterinary Public Health.
|
+Citations (2) - CitationsAdd new citationList by: CiterankMapLink[2] When host populations move north, but disease moves south: counter-intuitive impacts of climate warming on disease spread
Author: E. Joe Moran, Maria Martignoni, Nicolas Lecomte, Patrick Leighton, Amy Hurford Publication date: 9 January 2023 Publication info: Theor Ecol 16, 13–19 (2023) Cited by: David Price 11:16 PM 22 November 2023 GMT Citerank: (4) 679752Amy HurfordAmy Hurford is an Associate Professor jointly appointed in the Department of Biology and the Department of Mathematics and Statistics at Memorial University of Newfoundland and Labrador. 10019D3ABAB, 701037MfPH – Publications144B5ACA0, 701222OMNI – Publications144B5ACA0, 703967Climate change859FDEF6 URL: DOI: https://doi.org/10.1007/s12080-022-00551-z
| Excerpt / Summary Empirical observations and mathematical models show that climate warming can lead to the northern (or, more generally, poleward) spread of host species ranges and their corresponding diseases. Here, we consider an unexpected possibility whereby climate warming facilitates disease spread in the opposite direction to the directional shift in the host species range. To explore this possibility, we consider two host species, both susceptible to a disease, but spatially isolated due to distinct thermal niches, and where prior to climate warming the disease is endemic in the northern species only. Previous theoretical results show that species distributions can lag behind species thermal niches when climate warming occurs. As such, we hypothesize that climate warming may increase the overlap between northern and southern host species ranges, due to the northern species lagging behind its thermal tolerance limit. To test our hypothesis, we simulate climate warming as a reaction-diffusion equation model with a Susceptible-Infected (SI) epidemiological structure, for two competing species with distinct temperature-dependent niches. We show that climate warming, by shifting both species niches northwards, can facilitate the southward spread of disease, due to increased range overlap between the two populations. As our model is general, our findings may apply to viral, bacterial, and prion diseases that do not have thermal tolerance limits and are inextricably linked to their hosts distributions, such as the spread of rabies from arctic to red foxes. |
|
|