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Caroline Sauvé1,3 Patrick Leighton1

1Groupe de recherche en épidémiologie des zoonoses et santé publique
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Abstract

Agent-based models (ABMs) are computational models for simulating the ac-
tions and interactions of autonomous agents in time and space. These models allow 
users to simulate the complex interactions between individual agents and the land-
scapes they inhabit and are increasingly used in epidemiology to understand complex 
phenomena and make predictions. However, as the complexity of the simulated sys-
tems increases, notably when disease control interventions are considered, model 
flexibility and processing speed can become limiting. Here we introduce SamPy, 
an open-source Python library for stochastic agent-based modeling of epidemics. 
SamPy is a modular toolkit for model development, providing adaptable modules 
that capture host movement, disease dynamics, and disease control interventions. 
Memory optimization and design provide high computational efficiency allowing 
modelling of large, spatially-explicit populations of agents over extensive geograph-
ical areas. In this article, we demonstrate the high flexibility and processing speed 
of this new library. The version of SamPy considered in this paper is available at 
https://github.com/sampy-project/sampy-paper .
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1 Introduction

The last two years have demonstrated how emerging infectious diseases can have pro-
found impacts on our society, and how mathematical models play a crucial role in pre-
dicting the spread of infectious agents, as well as the efficiency of alternative control
interventions ([18]). Given that 60% of emerging diseases have a zoonotic origin, and
70% of those come from wild fauna ([9]), it is of fundamental importance to understand
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the mechanisms involved in disease transmission within domestic animals and wildlife
populations.

In epidemiology, the demographic and behavioural characteristics of host popula-
tions, coupled with resource availability and geographic characteristics, drive the dy-
namics of epidemics as well as the design of control measures ([19]). Thus, for mathe-
matical models to provide a method to simulate disease dynamics, predict the outcomes
of alternative control interventions, and allow for optimization of intervention efforts,
they have to adequately account for host movement and behaviour parameters, mimic
pathogen characteristics and be representative of landscape characteristics and barriers.

The mathematical models most commonly used for the study of epidemics are equation-
based models, such as compartmental models [3], or simulation models, such as agent-
based models (ABMs) [6]. Equation-based models are computationally less intensive
than simulation models but assume homogeneous mixing of agents (e.g., individuals,
social groups, or pathogens), where each agent has an equal probability of interacting
with other agents. By contrast, agent-based models are computationally intensive but
simulate individual agents independently, allowing each to have its own set of charac-
teristics, such as age or immunization status [6]. As a result, each agent can behave
uniquely, with consequences for its probability to interact with other agents and, thus,
its susceptibility to contract and spread disease. In addition, ABMs can account for the
spatial heterogeneity of populations and landscapes ([26]).

As the complexity of our models of disease systems increases, such as with the inclu-
sion of detailed geographic information systems (GIS) data [11] or multiple interacting
species, computing power and processing time may become factors limiting our ability
to make optimal use of ABMs [6]. Therefore, choosing the right software to develop an
efficient ABM is critical for the model success. Many frameworks aimed at developing
ABMs are available, like MASON [15] and NetLogo [30] or the Python library Mesa
[10]. Those frameworks are highly versatile, and have been successfully used to develop
ABMs in a wide variety of fields (e.g., Social Science [1], Economy [22], Ecology [17],
etc...). These well-known frameworks can have performance issues when the number of
agents becomes very large. It is almost impossible to give a precise definition of “very
large” since it varies greatly depending on the framework and the ABM itself (even
papers comparing frameworks performances such as [13] have to use qualitative termi-
nology to describe ABM scalability). However, when studying epidemics, we need the
capacity to modelize populations of million of agents, and this is generally considered
too large for the frameworks mentioned above [16]. Other solutions exists, such that
framework allowing the development of ABMs for supercomputers or Graphics process-
ing units (GPUs) (e.g. [12] or [31]) but these come with their own difficulties, requiring
the user to have access to specialized (and expensive) hardware, and such tools are also
generally more complex to use than usual frameworks.

In this paper, we introduce an open-source Python Library called SamPy (Stochastic
Agent-based Modeling with Python). We use Python ([25]) as the underlying comput-
ing language due to its high readability, flexibility, and broad variety of available scientific
libraries such as NumPy [5] and SciPy [27]. NumPy is a performance-focused library
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in Python, providing a multi-dimensional array (ndarray) object that is key to efficient
computing. We optimize performance using the Numba library [14], which allows com-
piling functions on the NumPy arrays and achieves C-like speed. SciPy is built on
top of NumPy by providing more tools for array computing as well as fundamental
algorithms for a wide variety of statistical problems [27].

The optimized processing speed coupled with the modular Python toolkit structure
offers a programmer-friendly, adaptable agent-based modelling method to capture host
movement, disease dynamics, and disease control interventions. SamPy is intended for
use by researchers or human and animal health professionals wishing to assess the effect
of various control strategies (e.g., vaccination programs targeting wildlife, population
reduction efforts, mass sterilization) or the influence of particular drivers (e.g., climate
change, habitat loss, landscape composition and configuration, animal behaviour) on
infectious disease dynamics. SamPy’s source code is open and errors can be reported for
repair, thus offering a high level of code verification.

In the following section, we provide a high-level overview of the structure and func-
tions of SamPy, along with installation instructions. In Section 2, we give a more
detailed overview of SamPy’s capabilities. In Section 3, we demonstrate the application
of SamPy through a variety of examples. Finally, in Section 4, we conclude and suggest
future directions.

1.1 Structure and functions

SamPy is designed for users without advanced programming skills or in-depth knowledge
of the internals of the library. To achieve this, we took inspiration from NumPy and
SciPy. NumPy and SciPy are at the core of the Python ecosystem of scientific
libraries. They provide a wide range of methods and functions allowing users to easily
create and manipulate arrays, and they are designed such that complex and efficient
computations can be performed with little coding. For instance, a user can draw millions
of samples from various probability distributions using one line of code, without having to
worry about pseudo random number generation (which is still an active field of research,
see for instance [8]) or how to efficiently sample from a given distribution. NumPy
and SciPy are designed to perform at maximum efficiency on vectorized algorithms.
Vectorized algorithms are algorithms centered on arrays instead of independent values,
where most manipulations can be done on all the elements of the arrays in parallel. This
constraint may appear very restrictive, but it turns out many problems can be tackled
in a vectorized fashion. Indeed, users of NumPy/SciPy can often vectorize part of the
program, use the two libraries to treat those sections and develop adapted solutions for
the rest. This approach reduces development time and allows users to take advantage
of existing already optimized code. Furthermore, NumPy and SciPy are well tested
(see https://NumPy.org/doc/stable/reference/testing.html), and their widespread use
means that most bugs are quickly reported and resolved.

We now draw a parallel between these two libraries and SamPy. The concept of
arrays, which are structured collections of variables, can be likened to populations in
SamPy, which are structured collections of agents. When functions or methods are ap-
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plied on a population object, it generally results in some process being applied to all
(or a specified selection) of agents in the population (note that the process is generally
not applied in parallel on all the agents, but rather applied to the agents in sequence).
Though it is possible to work with individual agents in SamPy, users are expected to
work mainly with populations objects. A consequence of this is that SamPy is designed
to efficiently create ABMs where agents’ actions are performed one after the other at
the population level. This constraint can be seen as the SamPy equivalent to the Vec-
torization constraint in NumPy and/or SciPy. This is best illustrated using a simple
example of an ABM constructed with SamPy.

Let’s consider an ABM consisting of a population of a theoretical species living on an
artificial landscape. We simulate the spread of an infectious disease within the population
over ten years, using 520 weekly timesteps. When the population is loaded (first week
of our simulation), it contains approximately 110 000 agents. The source code for our
example can be found in ex1 paper.py on GitHub. We begin by focusing on the first
lines of the file, which contains the imports and the initial setup of the model.

from sampy.agent.builtin_agent import BasicMammal

from sampy.graph.builtin_graph import SquareGridWithDiag

from sampy.disease.single_species.builtin_disease import

ContactCustomProbTransitionPermanentImmunity

from constant_paper import (ARR_WEEKLY_MORTALITY,

ARR_NB_WEEK_INF,

ARR_PROB_WEEK_INF)

import numpy as np

my_graph = SquareGridWithDiag(shape=(100, 100))

my_graph.create_vertex_attribute(’K’, 10.)

agents = BasicMammal(graph=my_graph)

agents.load_population_from_csv(’path_to_pop_csv’)

disease = ContactCustomProbTransitionPermanentImmunity(host=agents,

disease_name=’disease’)

arr_new_contamination = disease.contaminate_vertices([(50, 50), (50, 51)],.5)

disease.initialize_counters_of_newly_infected(arr_new_contamination,

ARR_NB_WEEK_INF,

ARR_PROB_WEEK_INF)

This example is constructed using basic built-in objects from SamPy. In SamPy, agents
exist on graphs representing landscapes where vertices are spatial sub-units of the land-
scape (e.g. habitat patches). Therefore, we first instantiate a Graph object using the
class SquareGridWithDiag. In this case, the landscape is a 2-dimentional square grid
of shape 100 x 100. Next, we add an attribute to the graph’s vertices representing the
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‘carrying capacity’ (K) of each spatial unit, which represents the average number of
agents a given spatial unit can sustain. In this example, we set K = 10 for each vertex.
We then create the population object, and we populate it with agents using an exter-
nal source (CSV text file). This ‘Population CSV’ has been generated using the script
ex1 build up paper.py, which is similar to this script but without disease and with a few
manually created pairs of agents placed on selected vertices of the landscape. Finally,
we create a disease object and infect half of the population of agents on the vertices of
coordinates (50, 50) and (50, 51). Agents have four possible states with respect to this
disease: 1) susceptible (i.e., not yet exposed to the disease), 2) infected, 3) contagious,
and 4) immune.

We now move on to the main loop of our model, where the actions are undertaken
in sequence at the population level.

list_inf_pic = []

nb_year_simu = 10

for i in range(nb_year_simu * 52 + 1): # main loop

list_inf_pic.append(my_graph.convert_1d_array_to_2d_array(

disease.count_nb_status_per_vertex(’inf’)))

agents.tick()

my_graph.tick()

disease.tick()

agents.kill_too_old(52 * 6 - 1)

agents.natural_death_orm_methodology(ARR_WEEKLY_MORTALITY,

ARR_WEEKLY_MORTALITY)

agents.kill_children_whose_mother_is_dead(11)

agents.mov_around_territory(0.5,

condition=agents.df_population[’age’] >= 11)

arr_new_infected = disease.contact_contagion(0.1, return_arr_new_infected=True)

disease.initialize_counters_of_newly_infected(arr_new_infected,

ARR_NB_WEEK_INF,

ARR_PROB_WEEK_INF)

disease.transition_between_states(’con’, ’death’, proba_death=0.8)

disease.transition_between_states(’con’, ’imm’)

disease.transition_between_states(’inf’, ’con’,

arr_nb_timestep=np.array([1, 2]),

arr_prob_nb_timestep=np.array([.5, .5]))

if i % 52 == 15:

agents.find_random_mate_on_position(1., position_attribute=’territory’)

if i % 52 == 22:

agents.create_offsprings_custom_prob(np.array([4, 5, 6, 7, 8, 9]),
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np.array([0.1, 0.2, 0.2, 0.2, 0.2, 0.1]))

if i % 52 == 40:

can_move = agents.df_population[’age’] > 11

agents.dispersion_with_varying_nb_of_steps(np.array([1, 2, 3, 4]),

np.array([.25, .25, .25, .25]),

condition=can_move)

Each iteration corresponds to a week of simulation. We begin each week by creating
a 2D array giving the number of infected agents per vertex, and then we store this
array in the list list inf pic. Then we call the tick methods of the objects used in
the simulation. In SamPy, the purpose of a tick method is to perform various internal
updates needed at each new timestep (for instance, updating the age of each agent), and
most of SamPy’s objects come with a tick method. The next three method calls deal
with natural mortality in our model. The first method call eliminates all agents older
than a user-defined threshold (here six years old). The second method call eliminates
some agents according to the methodology found in ORM [24] (see the method code
for detailed description). The third method call eliminates the dependant juveniles (if
any) whose mother is dead. The following method call, mov around territory, is
quite specific to the currently available built-in agents in SamPy. Here, agents represent
territorial mammals, and in SamPy they exists in two distinct locations, one called
“territory” and the second called “position”. The first location is the vertex on which
the animal territory is based (depending on the modeled species, this could for instance
be the vertex where the agent has its burrow/nest). The second location represents
the vertex in which the animal spent most of the current timestep (for instance while
foraging). The mov around territory call updates the ‘position’ of the agents while
keeping their ’territory’ the same, and the position of the agents will either be their
territory vertex, or one of the neighboring vertices. Note that, in our current example, the
only method that uses ‘position’ instead of ‘territory’ as default is contact contagion
that propagates the disease by direct contact among agents.

The next five method calls deal with the disease. The first method call transmits
the disease to new susceptible agents, and the transmission is done by direct contact.
That is, agents sharing the same vertex at the current timestep of the simulation have
a fixed probability of transmitting disease to each other, given that one is susceptible
and the other is contagious. The other method calls address transition between disease
states. Finally, we have a series of yearly events, corresponding respectively to mating
(week 15), giving birth (week 22), and dispersal (week 40). Figure 1 shows maps of the
spatial distribution of infected agents at various stages of the simulation.

As shown in the example above, agents’ actions are performed in sequence at the
population level. That is, each method call will loop through the (generally shuffled) list
of all agents and attempt to perform the action encoded by the method. The execution of
each action is asynchronous uniform when possible (following the terminology of [4]), in
the sense that while looping through the population, each agent has a chance to perform
the action and update any variable shared between the agents. For instance, the method
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Figure 1: Left to right: map of infected agents after 52, 104 and 208 simulated weeks,
respectively, for a simulated population of approximately 100 000 agents of a theoretical
species over a synthetic landscape of 100x100 vertices.

natural death orm methodology uses the number of agents per vertex in order to
compute a probability of death by natural causes for each agent, and the number of
agent per vertex is continuously updated during the method execution as agents are
removed. This contrasts with most other ABM frameworks where a user would be able
to have actions performed in sequence at the agent level.

A consequence of SamPy’s design is that ABMs created using SamPy may be more
sensitive to the order in which actions are performed compared to other frameworks.
That is, the chosen ordering of the actions may introduce stronger biases. Therefore,
working with population objects creates similar constraints as the ones created by arrays
in NumPy and SciPy. When deciding whether SamPy meets the modelling needs of
a user, the user should do the following:

� First, run a series of small scale simulations using SamPy;

� If SamPy provides viable models, then one should decide on the order of the
actions;

� Finally, depending on the model application’s requirements, some code may have
to be developed specifically for it. For instance, a user might decide that having
to choose the order of execution between the natural mortality and the mortality
induced by the disease creates too many biases in the ABM. If so, the user may
choose to develop his or her own custom method to deal with both sources of
mortality simultaneously.

Similar to NumPy and SciPy, SamPy provides users with methods that are opti-
mized and tested, and whose use generally results in reasonably readable scripts. More-
over, as discussed in Section 2.1, SamPy has been designed to be modular, and it is
reasonably straightforward for a Python developer to create their own SamPy compo-
nents, which can then be easily tested and shared with other users.

SamPy is designed to be purely mono-threaded to allow for the execution of many
simulations at once, facilitating large-scale sensitivity or calibration analyses. Therefore,

7

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2022                   doi:10.20944/preprints202211.0556.v2

https://doi.org/10.20944/preprints202211.0556.v2


a typical user would generally be interested in running many simulations efficiently rather
than a few at increased speed. Restricting SamPy to mono-threaded computations
greatly simplifies the use of multiprocessing, since each simulation can be considered
independent from the others.

1.2 Installation instructions

SamPy can be found in the GitHub repository https://github.com/sampy-project/sampy-
paper, and is designed to work with the base environment of an anaconda3 distribution.
If one wants to use his or her own custom environment, here is the list of the dependencies
required to use SamPy.

� Python Programming language (version 3.8 and higher).

� NumPy (≥1.22).

� SciPy (≥1.8).

� Pandas (≥1.4.3).

� Numba (≥0.55.2).

2 Detailed Overview of SamPy’s design features

In this section, we detail the design of SamPy.

2.1 Multi-inheritance and modularity

Every aspect of an ABM is subject to many variations, and it would be difficult in prac-
tice to recode from scratch each possible variation. Moreover, as explained in Section 1,
one of our aims while developing SamPy is to allow users to focus on developing the
methods and functions required by their modelling needs. Therefore, we chose to exploit
the fact that Python allows multiple inheritance to make most objects used in SamPy’s
scripts composite. To clearly show why this leads to an increased modularity, let us
focus on an example from the SamPy source code (at sampy/agent/builtin agent.py).

from .base import BaseAgingAgent

from .mortality import (NaturalMortalityOrmMethodology,

OffspringDependantOnParents)

from .reproduction import (FindMateMonogamous, FindMatePolygamous,

OffspringCreationWithCustomProb)

from .movement import TerritorialMovementWithoutResistance

from ..utils.decorators import sampy_class

@sampy_class
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class BasicMammal(BaseAgingAgent,

NaturalMortalityOrmMethodology,

OffspringDependantOnParents,

FindMateMonogamous,

OffspringCreationWithCustomProb,

TerritorialMovementWithoutResistance):

"""

Agent that represents a basic territorial mammal. This agent is Monogamous.

"""

def __init__(self, **kwargs):

pass

This is the complete definition of an agent class, and it is entirely constructed using ‘class
building blocks’ gathered from SamPy source code. In many respects, those building
blocks are similar to mixins [2], as they are not designed to be instantiated but only to be
inherited and give new capabilities to the class inheriting them. The only real difference
with mixins lies in the fact that those building blocks come with an init method, since
they generally require some modification of the child class datastructures.

This organization based on multiple inheritance allows for easy modularity, as one
simply needs to develop a new building block to satisfy a specific modeling need. This
building block can then be shared, reviewed and tested independently. However, reliance
on multiple inheritance generates two problems that we address using the decorator
sampy class. First, since each building block has an init method, they need to be
called in a specific order. In addition, there may be incompatibilities between building
blocks.

Rather than letting the user deal with these difficulties, the decorator sampy class
modifies the class by changing the order in which the init methods of the building
blocks are called. Note that at the current stage of SamPy’s development, there are
no incompatibilities between blocks, but this will likely change in the future as new
building blocks are developped. Under such circumstances, the decorator will be modified
accordingly to raise a meaningful error in case of incompatibility.

By design, many combinations of building blocks are possible. It is therefore dif-
ficult to allow the init method of each building block to accept positional arguments.
Hence, passing arguments to the constructor should be done using key-word arguments.
Furthermore, in order to simplify how the decorator sampy class works, each building
block and each SamPy class have to define an init method accepting **kwargs, even if
it is not used (as shown above).

2.2 Memory Layout and DataFrameXS

As explained in Section 1.1, SamPy is designed to create ABMs where agents’ actions
are performed sequentially, at the population level. Generally, a given action does not
need to access all of the agents’ characteristics. For instance, a method encoding some
aspect of agents’ migration may only need access to agents’ position, and not their age,

9

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2022                   doi:10.20944/preprints202211.0556.v2

https://doi.org/10.20944/preprints202211.0556.v2


gender, infectious status, etc. Therefore, in order to optimize memory access for each
method, we chose to store agents’ attributes in contiguous one-dimensional arrays. For
example, let us consider a population of agents with only two attributes: an age, which
is an integer, and a position, which is a couple (x, y) of floats situating the agent on a
2D plane. The attributes of all the agents are stored in the population object as three
one-dimensional NumPy arrays, one of integers for the age and two of floats for the
position.

For ease of use, attribute arrays are stored within the population object in a custom
kind of dataframe, called DataFrameXS (see sampy/pandas xs/pandas xs.py). To
some degree, our dataframes are designed to feel like pandas dataframes [29]. That
is, one can set and get columns in the typical way, and it also supports boolean and
integer indexing. DataFrameXS also comes with a few useful built-in methods allowing,
for instance, to concatenate two dataframes and to shuffle its rows. However, there
are several major differences between pandas’ dataframes and DataFrameXS. First,
DataFrameXS columns are always stored as one dimensional NumPy arrays, which
is generally not the case in pandas, where columns of the same type are rearranged in
blocks. In addition, the range of NumPy dtype accepted by a DataFrameXS is smaller
than that accepted by pandas. Namely, it is restricted to the types that Numba
can handle in an optimized manner. The list of allowed types can be found in the
DataFrameXS definition (see sampy/pandas xs/pandas xs.py):

class DataFrameXS:

"""

[...]

"""

LIST_ALLOWED_TYPE = [’bool’, ’uint8’, ’int8’, ’uint16’, ’int16’,

’uint32’, ’int32’, ’uint64’, ’int64’, ’float32’,

’float64’]

Finally, when retrieving a column, the user gets a reference to the underlying NumPy
array. This allows the user to directly feed a Numba compiled function with columns
of the dataframe (which is not possible with a pandas dataframe, as one gets pandas
series), and to directly modify the columns within the function.

2.3 Tests and debug mode

The way SamPy is organised abstracts away from the user most of the technicalities of an
ABM. This organisation has allowed us to optimize the computations, and to extensively
test the components of SamPy. All the tests accompanying SamPy, written using the
library unittest, can be found in the Github test folder. Given the stochastic nature of
the underlying methods, systematic testing of all SamPy’s components is a complex task.
However, tests are among the most important part of any large-scale scientific libraries,
as they significantly reduce the risk of errors. One could argue that they are as important,
if not more important, than performances. Consequently, we chose a testing approach

10

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2022                   doi:10.20944/preprints202211.0556.v2

https://doi.org/10.20944/preprints202211.0556.v2


that provided a compromise between performance and ease of testing. Most of Sampy’s
computations are performed within functions compiled with Numba. Proper testing
of these functions greatly reduces the risk of computation errors within SamPy. As
such, each function of this type is tested at least once in the tests folder available on the
Github. We facilitated the tests of those functions by making them purely deterministic.
That is, all random number generation is done outside of Numba compiled functions,
ensuring that all functions can be easily tested without requiring complicated statistical
methods. This testing design could have consequences on performances due to additional
back and forth between Python and ‘Numba compiled’ code.

It is to be noted that by default, SamPy’s methods perform little to no verification
on user inputs. As most ABMs constructed using SamPy will include a ‘main-loop’ (see
the example in Section 1.1) where the same methods are called repeatedly using the
same parameters, systematic checking of user inputs would induce a considerable loss of
performance. Consequently, input checking has to be purposely activated by the user
using the debug mode which can be activated using the function use debug mode. An
example of its use can be found in the script ex1 paper with debug mode.py on lines
11 to 14. The debug mode is designed to be used when developing a new ABM or
when modifying an existing one, and then be disabled when running the simulations of
interest.

2.4 Graphs

The integration of the spatial dimension into SamPy’s models is currently based on a
highly versatile “graph-oriented” approach, although Sampy’s design flexibility leaves
options for further developments.

A (directed) graph G is mathematically defined as a pair of two sets V and E, V
being a finite set called the vertices and E a set of pairs of elements of V called the edges.
Graphs are treated as directed (and stored in memory as such), but whenever an edge

A

B C

Figure 2: Example with V = {A,B,C} and E = {(A,B), (B,A), (A,C)}.

from a vertex X to a vertex Y exists, then the reverse edge from Y to X exists as well.
Therefore, in the following figures, any edge between two vertices is represented by a
single solid line without any arrow. In SamPy, graphs are used to represent landscapes,
where vertices represent spatial units in which the agents live. In Figure 3, we show
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three examples of graphs that can be used to represent two-dimensional landscapes. In

Figure 3: Three examples of “landscape graphs”.

SamPy, we assume that the graphs used to represent landscapes satisfy the following
properties. There exists an integer N such that:

� any vertex of the graph has degree at most N (here, the degree of a vertex is the
number of edges going out of the vertex);

� most of the vertices have degree N .

Such graphs are encoded in SamPy as instanciated objects as follows. Let G = (V,E)
be a graph. Each vertex v of G is designated by two different names: an id, which is a
string and is generally provided by the user, and an index, which is an integer generally
automatically assigned by SamPy. Indexes and ids are unique, i.e. vertices cannot share
the same id and/or index. Finally, if G has k vertices, then the indexes range between 0
and k− 1. Therefore, given the uniqueness, each value between 0 and k− 1 is the index
of a vertex.

Regarding edge encoding, let N denote the maximum degree of the vertices of G and
k the number of vertices of G. The graph object has an attribute called connections,
which is a two-dimensional NumPy array of integers of shape (k,N). The edges starting
from the vertex of index i are encoded in connections[i], which is an integer valued
one-dimensional NumPy array. Here is an example

>>> graph.connections[i]

array([-1, 4, 5, 0, -1, 18])

Each non-negative value j in connections[i] is the index of a vertex such that there
is an edge from i to j. All negative values are default values which can be ignored.
Therefore, in the above example the vertex i is connected to four other vertices, namely
4, 5, 0 and 18.

Closely related to the connections attribute is the attribute weights, which asso-
ciates a probability to each edge of the graph. This may be useful if the user wants to
use a landscape graph where the distance between two vertices can vary significantly.
For instance, in the center pannel of Figure 3, the diagonal connections are longer than
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the horizontal and vertical connections. Hence, an agent moving on such a graph should
be less likely to move diagonaly than horizontally/vertically, and the attribute weights
encodes that as follows. Returning to the previous example with the vertex i, the prob-
ability to jump to each of the 4, 5, 0 and 18 vertices is 0.1, 0.2, 0.3 and 0.4, respectively.
These probabilities are stored in the attribute weights in a cumulative form:

>>> graph.weights[i]

array([0.0, 0.1, 0.3, 0.6, 0.6, 1.0])

Values j such that connections[i][j] is a negative integer are treated as edges with 0.0
probability.

Remark – weights contains cumulative probabilities rather than actual probabil-
ities for the purpose of optimization. However, this might eventually change to limit
confusion, in which case a new attribute called weights cum could be added.

Finally, graph objects come with a DataFrameXS as the attribute df attributes.
This dataframe has a row for each vertex in the graph, and is used to store all attributes
associated with the graph’s vertices. More precisely, the attributes of any vertex of
index i are stored in the row i of the dataframe. For instance, in our epidemiological
applications, a vertex represents a spatial unit characterized by a carrying capacity (K)
representing the number of agents the unit can sustain. This is generally encoded in
a column named K in df attributes, where df attributes[‘K’][i] is the carrying
capacity of the vertex of index i.

2.5 Agents

Depending on the ecological system being modeled, agents can vary greatly, for example
in their movement behaviour. Therefore, SamPy’s modularity is particularly useful when
defining agents and there are very few “core” components for SamPy agents. In this
section, we introduce those few core agent components, briefly present other options,
and refer the reader to Section 3.3 for an example demonstrating how SamPy can be
adapted to the user’s needs.

As explained in Section 1.1, there is no “single agent” object in SamPy. Instead, one
instantiates a population object. The main attribute of such an object is a DataFrameXS
called df population. Each row of df population corresponds to an agent, and each
column corresponds to an attribute of the agents, such as age, sex, position, etc. Actions
involving agents are performed using and modifying this dataframe. Attached to the
dataframe is the attribute dict default val, which is a dictionary whose keys are the
name of df population’s columns, and values are the default parameters used in cases
when new agents are created without specifying all of their attributes.

All other characteristics of the agents come from building blocks (see 2.1). Currently,
the building blocks included within SamPy cover relatively basic capabilities, like the
ability to search for a mate and reproduce in its home cell, or the ability to undertake
unbiased, uncorrelated random walks on graphs.

13

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2022                   doi:10.20944/preprints202211.0556.v2

https://doi.org/10.20944/preprints202211.0556.v2


2.6 Diseases and interventions

Currently, SamPy provides only one mode of disease transmission, which is direct contact
transmission. That is, an individual can only transmit the disease to another agent
located on the same vertex, which is the main reason why current built-in agents of
SamPy have two different location attributes. The territory, which corresponds to the
vertex on which the agent’s territory is centered and is used for computing the agent’s
access to ressources, and position that may vary during the simulation and is used
to compute disease transmission. Position represents the fact that the agent’s territory
does not necessarily match the vertex shape and that the agents may access neighbouring
vertices while moving around within their territory. Infected agents are characterized
by one of three different states: infectious, contagious, and immune. Several modes of
transition between those stages are provided.

Currently, SamPy provides two different types of interventions: culling and immu-
nization. For culling, the user simply specifies the proportion of agents to be eliminated
on each vertex and at what time step. Immunization is tied to a disease object and
allows the user to protect agents from being susceptible to the disease. Note that this
intervention-induced immunity is different from the natural immunity within SamPy,
and several of its properties, such as the duration of agents’ immunization to the dis-
ease, are user-specified. Similarly to culling, the user specifies the portion of agents to
be immunized on each vertex, and at what time step.

3 SamPy applications

In this section, we provide examples of SamPy applications.

3.1 Population growth and disease.

In this section we continue with the artificial species and disease used as an example
in Section 1.1. We illustrate how the population grows and stabilizes on three different
landscapes, and then we infect a few agents located near the center of the landscape with
the disease. All landscapes are square grids of shape 100x100, without any barrier to
the agent’s movement. They only differ by the spatial distribution of carrying capacity
(K) across the landscape (see Figure 4). The script used for the map creation, the
population build-up and the disease spread are ex2 create maps.py, ex2 build up.py and
ex2 disease unleashed.py, respectively. We start by building up a population on the
three different landscapes (see Figure 5 for the population build-ups) , by introducing five
breeding pairs in the vertex (50, 50) and simulating 80 model years. The first landscape
has a uniform K of 10, representing a broad area with relatively low population density.
The second landscape represents a transition between two habitats, the lower and upper
halves having a K of 50 and 10, respectively. Finally, the third landscape is obtained
by applying a gaussian filter from SciPy to a white noise and then scaling the obtained
smoothed noise by a factor of 20.
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Figure 4: Left to right: map with uniform K of 10, map with upper half with K of 10
and bottom with K of 50, and map with random K between 0 and 20.

Figure 5: Population build-up on the three landscapes after 20 years (top row), 40
years (middle row) and 80 years (bottom row).
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As expected, the colonization of the landscape by the agents is faster in the areas
where K is high, which is particularly visible in the second example where the bottom
half ‘fills’ faster than the top half. In all cases, after 100 simulated years, an equilibrium
is reached and the population distribution spatially matches K. We then introduce the
disease (see example from Section 1.1) by infecting 50% of the agents in cells (50, 50) and
(50, 51) in all three scenarios, and simulate three years of the epidemic (see Figure 6).
As expected, the disease spreads faster in areas where K is high (i.e, where a higher

Figure 6: Map of infected individuals after 52 weeks (top row), 104 weeks (middle row)
and 156 weeks (bottom row) on the three previous landscapes (uniform k of 10 on the
leftmost column, the two halves on the middle and the smoothed noise on the rightmost
column).

number of susceptible agents are available). This is particularly visible on the second
landscape, where the disease wave front crossed the lower half several times during the
three years simulation, while it failed to cross the upper half during the same period.
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3.2 Intervention

In this section, we study the effect of various immunization strategies on the spread
of the disease used for the example in Section 3.1. We use the same artificial species
on a square-grid landscape of shape 100 x 100 with a uniform ‘K’ of 10, which results
in a population of approximately 100 000 agents at equilibrium (with large spikes in
population abundance at birth weeks). Let us assume that each vertex of the landscape
represents a square spatial unit with sides 1 km in length. As in previous examples, we
initiaite the epidemic by infecting 50% of the agents in vertices (50, 50) and (50, 51).

Our aim is to evaluate the relative effectiveness of a range of different immunisation
strategies applied at three different times of the year. Each strategy consists of a single
and uniform immunization of agents located on vertices within a disc-shaped area of
the landscape of variable radius, these disks being centered on the vertex (50, 50) (see
Figure 7).

Figure 7: Example of disks where the vaccination is applied. Their radiuses are 15 km,
20 km and 25 km from left to right.

When immunization is applied, an equal proportion of agents from each vertex lo-
cated within the immunization zone is immunized. This probability is called the ‘level’
of immunization. In this example, we test all possible strategies with immunization zone
radius varying from 10 km to 44 km (with increments of 1 km), immunization levels
varying between 0.05 and 0.95 (increments of 0.05), and with application week set to
either 16, 32 or 52. Each configuration is simulated 20 times for a simulated period of
156 weeks (i.e. three years) of disease spread. The number of active disease cases is
extracted after each simulated week. Figure 8 shows some of the curves obtained by
varying the immunization level.

Remark – In the example presented in the current section, we ran 42 000 simula-
tions. Each took 6.72 seconds to run on average on a AMD Rome 7532 at 2.40 GHz (see
the description of Compute Canada Narval nodes at https://docs.computecanada.ca/wiki/Narval
for more information).
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Figure 8: Evolution of the number of active cases when immunization is applied on a
disk of radius 20 km at week 16 (top left), week 32 (top right) and week 52 (bottom).
These simulations were done with varying level of immunization (from 0% to 95%).

3.3 How to add new functionalities with the example of ORM

In this section, we demonstrate how a user can add new functionalities to SamPy either
by creating new building blocks (see Section 2.1), or by using existing building blocks
to create personalized SamPy objects. We focus on the example of the Ontario Rabies
Model (ORM; see [24]). The ORM has been extensively used and validated to model
rabies dynamics in racoons and mongooses ([20], [21], [23]), but speed and further de-
velopment limitations related to this model have motivated applying SamPy to model
rabies dynamics in these systems. As a result, current ORM users expressed the need
to translated their ORM landscapes and agents into equivalent objects in SamPy. How
this could be done presents a useful illustration of SamPy’s flexibility and development
potential.

First, we created a new graph object to integrate ORM landscapes into SamPy. In
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ORM, landscapes are represented as two-dimensional hexagonal grids (e.g., rightmost
picture in Figure 3). ORM landscapes are generally created using QGIS and exported
as XML files. Each cell is oriented, i.e. each of the 6 neighbours of a given hexagonal
cell is either its north, north-east, south-east, etc (Figure 9) neighbour.

Figure 9: A grid cell with its neighbours.

In addition, the XML encodes other cell-specific information, e.g. its geographic co-
ordinates and carrying capacity. In order to integrate these additional features in SamPy
landscapes, we developed the graph object GraphFromORMxml (see the file
ORM related addons/graph from ORM xml.py). To instantiate this object, one pro-
vides a path to an ORM XML file using the kwarg path to xml. This XML is then
translated into a SamPy graph, by assigning an index to each cell, filling the dataframe
df attributes with all the information stored in the XML, and creating the connec-
tions and weights arrays. The orientation of the cells is encoded within these arrays
as depicted in Figure 10.

Figure 10: Representation of how the orientation is encoded in connections and weights
arrays.

The cell orientation encoded into the arrays connections and weights is essentially
invisible for native SamPy agents (i.e., a script using built-in Sampy agents can use an
ORM-derived graph without any issue). In contrast, this orientation is used extensively
by ORM agents during dispersal (i.e., when they disperse from their home cell). Indeed,
dispersal is modeled as a discrete correlated random walk in ORM, where agents perform

19

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2022                   doi:10.20944/preprints202211.0556.v2

https://doi.org/10.20944/preprints202211.0556.v2


a series of discrete movement steps, and at each new step they have a 60% chance of
continuing in the same direction, 20% chance of turning right and 20% chance of turning
left (Figure 11). In addition, movements in ORM can be altered by two resistance
parameters related to each cell (InRes and OutRes), which can be used to create
topographic or landscape-related barriers to dispersal by adjusting the ease with which
agents can leave and enter a given cell.

Figure 11: Two consecutive steps of dispersion in ORM.

Then, we created a new building block which can be used to create ORM-like agents,
ComponentsFromORM, (see ORM related addons/ORM like agents.py). This build-
ing
block contains an implementation of the ORM dispersal method (orm dispersion), as
well as movement alteration methods which take into account the resistance to enter
and leave cells encoded into the ORM landscape XMLComponentsFromORM. We also
included a new method for modeling natural mortality of agents taken from the latest
version of ORM (method mortality from v08).

4 Conclusion and future directions

SamPy provides a flexible and efficient tool to create ABMs for modelling infectious
diseases on complexe landscapes and with a large number of agents. SamPy models
can involve hundreds of thousands of agents, while running efficiently on a personal
computer. This allows users to assess the effects of various disease control strategies in
a timely manner, without requiring access to high performance computing systems.

SamPy’s design based on building blocks makes it highly flexible, including great
potential for future extensions. Future development plans will focus on extending the
options available for modelling animal behaviour, mainly by adding complex movement
methods. As an example, see the file “sampy/agents/random walk.py” on GitHub, which
contains a preliminary implementation of correlated random walks for SamPy’s agents.
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In addition, we will develop general extensions, including the ability to generate models
in which several species interact directly (currently ABMs with several distinct popula-
tions of agents can be created, but these populations cannot interact with one another).
Finally, we plan on introducing new disease transmission modes (e.g., vector-borne dis-
eases)
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