|
Iain Moyles Person1 #679799 Assistant Professor in the Department of Mathematics and Statistics at York University. | 
Research interests - Mathematical Modelling,
- Industrial Mathematics,
- Model Reduction,
- Scientific Computing
|
+Citations (4) - CitationsAdd new citationList by: CiterankMapLink[2] Determination of significant immunological timescales from mRNA-LNP-based vaccines in humans
Author: Iain R. Moyles, Chapin S. Korosec, Jane M. Heffernan Publication date: 30 April 2023 Publication info: Journal of Mathematical Biology, Volume 86, Article number: 86 (2023) Cited by: David Price 9:22 PM 16 November 2023 GMT Citerank: (3) 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 701037MfPH – Publications144B5ACA0, 701222OMNI – Publications144B5ACA0 URL: DOI: https://doi.org/10.1007/s00285-023-01919-3
| Excerpt / Summary [Journal of Mathematical Biology, 30 April 2023]
A compartment model for an in-host liquid nanoparticle delivered mRNA vaccine is presented. Through non-dimensionalisation, five timescales are identified that dictate the lifetime of the vaccine in-host: decay of interferon gamma, antibody priming, autocatalytic growth, antibody peak and decay, and interleukin cessation. Through asymptotic analysis we are able to obtain semi-analytical solutions in each of the time regimes which allows us to predict maximal concentrations and better understand parameter dependence in the model. We compare our model to 22 data sets for the BNT162b2 and mRNA-1273 mRNA vaccines demonstrating good agreement. Using our analysis, we estimate the values for each of the five timescales in each data set and predict maximal concentrations of plasma B-cells, antibody, and interleukin. Through our comparison, we do not observe any discernible differences between vaccine candidates and sex. However, we do identify an age dependence, specifically that vaccine activation takes longer and that peak antibody occurs sooner in patients aged 55 and greater. |
Link[3] Mathematical modelling of vaccination rollout and NPIs lifting on COVID-19 transmission with VOC: a case study in Toronto, Canada
Author: Elena Aruffo, Pei Yuan, Yi Tan, Evgenia Gatov, Iain Moyles, Jacques Bélair, James Watmough, Sarah Collier, Julien Arino, Huaiping Zhu Publication date: 15 July 2022 Publication info: BMC Public Health, Volume 22, Article number: 1349 (2022) Cited by: David Price 6:50 PM 20 November 2023 GMT
Citerank: (7) 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701222OMNI – Publications144B5ACA0, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada – April 2023 [1] 2794CAE1, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6 URL: DOI: https://doi.org/10.1186/s12889-022-13597-9
| Excerpt / Summary [BMC Public Health, 15 July 2022]
Background: Since December 2020, public health agencies have implemented a variety of vaccination strategies to curb the spread of SARS-CoV-2, along with pre-existing Nonpharmaceutical Interventions (NPIs). Initial strategies focused on vaccinating the elderly to prevent hospitalizations and deaths, but with vaccines becoming available to the broader population, it became important to determine the optimal strategy to enable the safe lifting of NPIs while avoiding virus resurgence.
Methods: We extended the classic deterministic SIR compartmental disease-transmission model to simulate the lifting of NPIs under different vaccine rollout scenarios. Using case and vaccination data from Toronto, Canada between December 28, 2020, and May 19, 2021, we estimated transmission throughout past stages of NPI escalation/relaxation to compare the impact of lifting NPIs on different dates on cases, hospitalizations, and deaths, given varying degrees of vaccine coverages by 20-year age groups, accounting for waning immunity.
Results: We found that, once coverage among the elderly is high enough (80% with at least one dose), the main age groups to target are 20–39 and 40–59 years, wherein first-dose coverage of at least 70% by mid-June 2021 is needed to minimize the possibility of resurgence if NPIs are to be lifted in the summer. While a resurgence was observed for every scenario of NPI lifting, we also found that under an optimistic vaccination coverage (70% coverage by mid-June, along with postponing reopening from August 2021 to September 2021) can reduce case counts and severe outcomes by roughly 57% by December 31, 2021.
Conclusions: Our results suggest that focusing the vaccination strategy on the working-age population can curb the spread of SARS-CoV-2. However, even with high vaccination coverage in adults, increasing contacts and easing protective personal behaviours is not advisable since a resurgence is expected to occur, especially with an earlier reopening. |
Link[4] The stochasticity in adherence to nonpharmaceutical interventions and booster doses and the mitigation of COVID-19
Author: Yi Tan, Pei Yuan, Iain Moyles, Jane Heffernan, James Watmough, Sanyi Tang, Huaiping Zhu Publication date: 1 March 2023 Publication info: Discrete and Continuous Dynamical Systems - S, 2023, Volume 16, Issue 3&4: 602-626. Cited by: David Price 11:50 AM 2 December 2023 GMT Citerank: (5) 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 701037MfPH – Publications144B5ACA0, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6 URL: DOI: https://doi.org/10.3934/dcdss.2023044
| Excerpt / Summary [Discrete and Continuous Dynamical Systems - S, March 2023]
Facing the more contagious COVID-19 variant, Omicron, nonpharmaceutical interventions (NPIs) were still in place and booster doses were proposed to mitigate the epidemic. However, the uncertainty and stochasticity in individuals' behaviours toward the NPIs and booster dose increase, and how this randomness affects the transmission remains poorly understood. We present a model framework to incorporate demographic stochasticity and two kinds of environmental stochasticity (notably variations in adherence to NPIs and booster dose acceptance) to analyze the effects of different forms of stochasticity on transmission. The model is calibrated using the data from December 31, 2021, to March 8, 2022, on daily reported cases and hospitalizations, cumulative cases, deaths and vaccinations for booster doses in Toronto, Canada. An approximate Bayesian computational (ABC) method is used for calibration. We observe that demographic stochasticity could dramatically worsen the outbreak with more incidence compared with the results of the corresponding deterministic model. We found that large variations in adherence to NPIs increase infections. The randomness in booster dose acceptance will not affect the number of reported cases significantly and it is acceptable in the mitigation of COVID-19. The stochasticity in adherence to NPIs needs more attention compared to booster dose hesitancy. |
|
|