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Abstract
A compartment model for an in-host liquid nanoparticle delivered mRNA vaccine is
presented. Through non-dimensionalisation, five timescales are identified that dictate
the lifetime of the vaccine in-host: decay of interferon gamma, antibody priming,
autocatalytic growth, antibody peak and decay, and interleukin cessation. Through
asymptotic analysis we are able to obtain semi-analytical solutions in each of the time
regimes which allows us to predict maximal concentrations and better understand
parameter dependence in the model. We compare our model to 22 data sets for the
BNT162b2 and mRNA-1273 mRNA vaccines demonstrating good agreement. Using
our analysis, we estimate the values for each of the five timescales in each data set and
predict maximal concentrations of plasma B-cells, antibody, and interleukin. Through
our comparison, we do not observe any discernible differences between vaccine can-
didates and sex. However, we do identify an age dependence, specifically that vaccine
activation takes longer and that peak antibody occurs sooner in patients aged 55 and
greater.
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1 Introduction

Vaccines are one of the greatest advents of modern society, significantly reducingmor-
tality (cf. Rodrigues and Plotkin 2020) with Ehreth (2003) estimating a prevention of
6 million deaths of vaccine-preventable diseases each year. Vaccines are derived from
many precursors including from inactivated virus, viral protein subunits, recombinant
human adenovirus, and messenger RNA (mRNA) with the latter being of increasing
interest due to their high potency, lowmanufacturing costs, and the ability to be devel-
oped quickly as outlined by Pardi et al. (2018). mRNA vaccines gained prominence
during the COVID-19 pandemic with the development and deployment of BNT162b2
(produced by Pfizer-BioNTech) and mRNA-1273 (produced by Moderna) both of
which are injected via liquid nanoparticles (LNP). This mechanism was chosen to aid
in cell delivery and protect the mRNA from degradation (cf. Ndeupen et al. 2021).

mRNA vaccines have been in development for many years. A review of their usage
in infectious diseases has been conducted by Zhang et al. (2019). Prior to COVID-19
it was recognized that mRNA vaccines were outperforming other technologies such
as inactivated virus and protein adjuvanted vaccines (cf. Pardi et al. 2018). mRNA
vaccines have also demonstrated robust immune responses to other diseases. A study
by Bahl et al. (2017) showed vaccines to be effective against severe disease of H7N9
and H10N8 influenza viruses in mice, non-human primates, and ferrets.

mRNA vaccines, as with other vaccine types, demonstrate waning effectiveness.
A study by Menni et al. (2022) concluded that antibody protection from COVID-
19 mRNA vaccines showed significant waning beginning 5 months after the standard
two dose regiment, acknowledging that overall vaccine effectivenesswas dependent on
age and comorbidity. However, they also saw continued protection from severe disease
beyond 6months. Clinical studies such as these demonstrate the importance ofmeasur-
ing immunity response, development, and decay in mRNA vaccines for COVID-19.
However, these trials can be very costly and, without a clear understanding of the
immune response, the data collection requirements can be uncertain. Mathematical
modelling and analysis provides a cost-effective tool for understanding and predicting
the immunity response to vaccines.

Most mathematical modelling of infectious disease occurs at the population scale
and throughout the COVID-19 pandemic there have been many such studies (cf. Tang
et al. 2020; Moyles et al. 2021; Yuan et al. 2022; Fair et al. 2022; Childs et al. 2022;
Vignals et al. 2021; Betti et al. 2021; Dick et al. 2021; Moore et al. 2021; Moss
et al. 2020; Smirnova et al. 2021; Wells et al. 2021; Li et al. 2020; Yuan et al. 2022;
Hogan et al. 2021). While the impacts of vaccine efficacy and waning are important
at these scales, the actual process of immune development occurs within-host. In-host
mathematicalmodelling considers pathogen reproduction and cellular infectionwithin
a single individual and has been effectively employed in various diseases. For example,
Heffernan and Keeling (2009) modelled vaccination and waning with measles, Herz
et al. (1996) modelled the intracellular viral life cycle phase of HIV and hepatitis B,
and Perelson (2002) reviewed immune system dynamic modelling for HIV, hepatitis
C, and cytomegalovirus (CMV). In-host modelling has been extended to COVID-19
with studies looking at infection (cf. Hernandez-Vargas and Velasco-Hernandez 2020;
Perelson and Ke 2021; Kim et al. 2021; Néant et al. 2021; Sadria and Layton 2021; Lin
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et al. 2022; Ke et al. 2022; Korosec et al. 2023) and vaccination (cf. Farhang-Sardroodi
et al. 2021; Korosec et al. 2022; Gholami et al. 2023).

In this paper we explore an in-host mathematical model for an LNP vaccine first
considered byKorosec et al. (2022)where computationalmixed-effectsmodellingwas
used to identify model parameters from a variety of data sets. Their results demon-
strated a diverse variability in the parameter estimates and consequently the model
comparisons. Furthermore, the nature of the clinical trial data analyzed meant that the
time series had coarse resolution spread over a long duration. In this paper, we identify
the dominant terms of the model and the timescales over which they are relevant with
the goal of elucidating the antibody process and providing direction for improved data
resolution. However, we also provide mechanistic insight into the immune response
which is important because the precise timescales of activating the immune response
in humans is relatively unknown. Luceripherase mouse studies have been conducted,
for example, by Pardi et al. (2015) and Lutz et al. (2017) showing that the injection site
remains active for approximately 7–10 days and that luceriphase was also present in
the draining lymph nodes nearest the injection site a few days after injection. Similar
luceriphase studies cannot be done on humans and instead highly resolved blood draws
are needed tomonitor the adaptive and innate immune response.Our timescale analysis
provides a framework to understand these physiological processes sequentially.

Understanding a sequential ordering of processes that drive vaccine dynamics is
very beneficial. It helps understand and separate the innate immune responses from
the adaptive ones generated by the vaccine. Separating these timescales helps identify
balance between the immune responses which is important for limiting the body’s
ability to attack vaccine species at dosage. A thorough model analysis also improves
mechanistic understanding. Even though mRNA vaccines have demonstrated strong
immune responses, the immunological activity leading to these responses is less clear
(cf. Lindgren et al. 2017). Our analysis generalizes beyond mRNA vaccines as well.
The model we present is itself adapted from an adenovirus-based vaccine. Therefore,
our work can be used to broadly decompose vaccine-mediated immunity for a variety
of candidates and diseases.

A common approach in immunological modelling studies is to focus solely on sim-
ulations. Our approach exploits asymptotic methods to isolate model structure and
function as it evolves with time identifying important parameter relationships. While
this methodology is mathematically richer than solely a simulation based study, it can
also provide practical and biological insight. For example, parameter identifiability
is an important consideration in modelling studies. Analytic expressions determine
explicit relationships with parameters which can elucidate both model identifiability,
i.e., which parameters form scaling groups, aswell as practical identifiability, i.e., what
time points are needed in data collection to identify certain parameters. Formal asymp-
totic methods can justify the inclusions or removal of certain terms in a model adding
rigor and confidence to biological intuition. Analytic methods can enrich biological
understanding of a problem by linking processes with explicit parameter relation-
ships. For example, understanding a peak immunological response explicitly in terms
of model parameters can provide insight into the processes that drive this response
while also allowing researchers to exploit new vaccines and therapies to improve the
response.
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The paper is organized as follows. We introduce and summarize the model of
Korosec et al. (2022) in Sect. 2. We nondimensionalize the model in Sect. 2.1 where,
through some assumption of scales, we are able to reduce the model to a simpler form.
We identify a series of timescales in Sect. 3 that account for antibody development,
growth, maximum, and ultimately decay. In each timescale regime we are able to
determine asymptotic analytic solutions that explain the immunity response. We com-
pare these analytic results to a full numerical simulation of the model in Sect. 4 where
maxima of key immunity factors are approximated and we compare the model to data
sets from a series of clinical trials.We discuss results and conclude the paper in Sect. 5.

2 Model summary and reduction

We consider a compartmental ordinary differential equation model first published by
Farhang-Sardroodi et al. (2021) for adenovirus-based vaccines and later adapted by
Korosec et al. (2022) for LNP mRNA vaccines. The process being modelled begins
with the injection of a concentration of LNP (L) that diffuses through inactive target
cells of which we assume there is an infinite reservoir. Details of these target cells
are unclear. When injected intramuscularly, such as with humans, Lutz et al. (2017)
found in a study of mice that mRNA vaccines activated the innate immune system near
the site of injection as well as in draining lymph nodes. These target cells activate to
become vaccinated cells (V ) that promote the production of CD4+ (T ) and cytotoxic
CD8+ (C) T-cells. These CD4+ T-cells further promote the production of plasma
B-cells (B), interferon-γ (IFN-γ , F), and interleukin (I ). Finally, the plasma B-cells
stimulate production of immunoglobulin G (IgG) antibody (A). The equations of the
model studied by Korosec et al. (2022) are given by

dL

dt
= − μLVL − γLL, (1a)

dV

dt
=μLVL − γVV , (1b)

dT

dt
=μVTV − γTT , (1c)

dB

dt
=μTBT + βBI

(
I

I + sI

)
B − γBB, (1d)

dA

dt
=μBAB − γAA, (1e)

dC

dt
=μVCV + βCF

(
F

F + sF

)
C − γCC, (1f)

dF

dt
=μTFT − βFCCF − γFF, (1g)

d I

dt
=μTIT − βIB I B − γI I . (1h)

The parametersμi j are priming rates (d−1) that activate component j from component
i . βi j are immune response autocatalytic rates (d−1) arising from non-linear activation
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and inhibition of species j on species i , and γi are the natural decay rates (d−1).
The parameters sI and sF are concentrations of interleukin and IFN-γ , respectively,
that produce half-maximal autocatalytic rates, βi j . Time, t , is measured in days and
concentrations of each component are in arbitrary volumetric units. We note that
equations (1d) and (1f) contain saturation dynamics through the terms sF and sI .
We include these to be consistent with the full model of Korosec et al. (2022), but
biologically it will be important to limit activating kinetics in a general model of
vaccination which could include multiple doses.

The only feasible steady state to (1) is every concentration being zero and thus, in
the absence of some initial vaccine, it is reasonable within the context of the model
to measure no immune response. However, it is possible through previous infection
or other biological mechanisms not accounted for in the model, that some basal con-
centrations may exist for quantities not primed through vaccine. As such, we consider
the generalized initial conditions to (1) to be

L(0) = L i, V (0) = 0, T (0) = 0, B(0) = 0, A(0) = Ai,

C(0) = 0, F(0) = Fi, I (0) = Ii,
(2)

where we have assumed that vaccine is injected at time t = 0 with concentration L i.

2.1 Non-dimensionalization andmodel reduction

To understand the effects of each term in themodel we non-dimensionalize (1). Firstly,
the concentration of LNP will be determined by its initial value as it only decays and
thus we scale L ∼ L i. Secondly, as the dynamics are driven by vaccination, the natural
time scale is the activation of vaccinated cells by LNP and thus we scale t ∼ μ−1

LV. We
do not scale other variables by their initial condition because we expect significant
variability in these levels between individuals. Furthermore, since themodel is derived
based on vaccine response, we anticipate that it should be driven by the dynamics of
vaccination rather than any latent initial concentrations present. Instead, we look to
(1) and choose scales by balancing source and sink terms in the model. For example in
(1b), (1c), (1d), (1f), and (1h) vaccine priming drives production and so it is sensible
to choose scales for V , T , B, C , and I driven by the source terms. For IgG in (1e) it
is sensible to balance the source of plasma cells with decay of antibody, A. For F in
(1g), we scale the concentration of IFN-γ assuming its natural decay is the dominant
sink term. This is consistent with fast decay rates of IFN-γ of between 3 and 40min
in mice and humans reported by Foon et al. (1985); Gonias et al. (1988); Psimadas
et al. (2012). We note that this, and all decay terms, strictly refers to the removal from
the vaccine induced antibody response being modelled here. It does not necessarily
mean that the components are degrading, but could instead by absorbed or consumed
in other biological functions not related to immune response of the vaccine. Overall,
we are led to the following scales for each of the concentrations
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V ∼ L i, T ∼ μVTL i

μLV
, B ∼ μTBμVTL i

μ2
LV

, A ∼ μTBμVTμBAL i

μ2
LVγA

F ∼ μTFμVTL i

γFμLV
C ∼ μVCL i

μLV
, I ∼ μTIμVTL i

μ2
LV

(3)

which leads to the non-dimensional model

L̇ = − (1 + εαL)L, L(0) = 1, (4a)

V̇ =L − εαVV , V (0) = 0, (4b)

Ṫ =V − εαTT , T (0) = 0, (4c)

Ḃ =T + ελB

(
I

κI I + 1

)
B − εαBB, B(0) = 0, (4d)

Ȧ =ε(B − A), A(0) = A, (4e)

Ċ =V + δε2λC

(
F

κFF + 1

)
C − εαCC, C(0) = 0, (4f)

δ Ḟ =T − δελFCF − F, F(0) = F , (4g)

İ =T − ελI I B − εαI I , I (0) = I, (4h)

where dot indicates differentiation with respect to non-dimensional time. The param-
eters in (4) are defined as follows:

ε = γA

μLV
, αi = γi

γA
, λB = βBIμTIμVTL i

sIμ2
LVγA

, λI = βIBμTBμVTL i

μ2
LVγA

, δ = μLV

γF
,

λF = βFCμVCL i

μLVγA
, λC = βCFμTFμVTL i

sFμLVγ 2
A

, κI = μTIμVTL i

μ2
LVsI

, κF = μTFμVTL i

γFμLVsF

A = μ2
LVγAAi

μTBμVTμBAL i
, F = γFμLVFi

μTFμVTL i
, I = μ2

LV Ii
μTIμVTL i

. (5)

Many of these parameters have natural interpretations. For example ε is the timescale
ratio of vaccine absorption to decay of IgG, the terminal antibody; the parameter αi

is the timescale ratio of the natural decay of concentration i relative to the decay of
IgG; and the parameter δ is the timescale ratio of release of vaccine to decay of IFN-γ .
The parameters κI and κF are effective saturation constants which limit the production
of plasma B cells and cytotoxic T-cells while the parameters λi are the strengths
of the autocatalytic production terms compared to the vaccine priming sources for
the B, C , F , and I compartments. Each of A, F , and I are non-dimensional initial
concentrations of IgG, IFN-γ , and interleukin respectively.

We anticipate that an effective immune response necessitates that the decay of
antibodies is much slower than the absorption of vaccine in the LNP and thus that
ε � 1. This is supported experimentally where Lutz et al. (2017), for example,
observed that mice began to produce antigen at the site of injection on the order of
hours after the needle, while antibody decay halflife was on the order of many days.
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Conversely, because of the fast decay rates on the order of minutes of IFN-γ observed
by Foon et al. (1985) and others compared to the LNP absorption timescale of hours
observed by Lutz et al. (2017), we will assume that δ � 1 as well. We anticipate that
the ratio of the remaining decay rates to γA are comparable and thus take αi ∼ O(1).
Without any presupposition about the magnitude of production multipliers, λi , we
simply assume formally that they are O(1). So long as terms are not an order of
magnitude larger than we have assumed, the model will be consistently scaled and its
structure and analysis will be valid. The actual size of terms is dependent on specific
case studies, a detail we resolve in Sect. 4.2.

Assuming the saturation parameters κi are small is generally associatedwith limited
saturation effect. While this is likely true in (4g) where IFN-γ decays quickly, it is less
clear in (4d) where autocatalytic production of interleukinmay significantly contribute
to antibody production. However, if saturation effects become important then this is
likely a consequence of an overactive immune system and we assume that is generally
not the case.

Based on the assumptions, we propose a reduced model to (4) where κI = κF = 0.
Furthermore, since both ε � 1 and δ � 1 then the terms associated to λC in (4f) and
λF in (4g) are likely non-identifiable and therefore, we will assume that λF = λC = 0
without loss of generality. Finally in (4a) since we have two competing sink terms
we assume the second, being the smaller of the two, is non-identifiable. Thus we will
assume that αL = 0. Overall, we are led to the following reduced model:

L̇ = − L (6a)

V̇ =L − εαVV , (6b)

Ṫ =V − εαTT , (6c)

Ḃ =T + ελB I B − εαBB, (6d)

Ȧ =ε(B − A), (6e)

Ċ =V − εαCC, (6f)

δ Ḟ =T − F, (6g)

İ =T − ελI I B − εαI I , (6h)

subject to the same initial conditions as (4). It may seem unsatisfactory that we have
neglected some small terms in the reduced model (6) while leaving others. This is
justified from (6e)where if we take ε ≡ 0 there is nomechanism for antibody response.
Therefore, necessarily, there must be some long timescale antibody production driven
by ε. Thus, we leave the small terms associated to this parameter. We note that this
is also consistent with not scaling terms by latent initial conditions. We demonstrate
agreement between the full model (4) and the reduced model (6) in Sect. 4.

3 Timescale decomposition

We will now analyze the reduced model (6) to understand the impact of different
parameters on the long-term antibody response. We begin by noting that L , V , T ,
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and C in (6) can be solved analytically as these are a cascade of linear equations that
decouple from one another. The solutions, subject to the appropriate initial conditions
L(0) = 1 and V (0) = T (0) = C(0), are

L(t) =e−t , (7a)

V (t) =e−εαVt − e−t

1 − εαV
, (7b)

T (t) = e−εαTt

1 − εαV

(
e−(1−εαT)t − 1

1 − εαT
− e−ε(αV−αT)t − 1

ε(αV − αT)

)
, (7c)

C(t) = e−εαCt

1 − εαV

(
e−(1−εαC)t − 1

1 − εαC
− e−ε(αV−αC)t − 1

ε(αV − αC)

)
. (7d)

Wenote inmodel (7)we havemade the explicit assumption thatαT �= αV andαC �= αV
for generality.Wewill use the assumption that allαV,αT, andαB are unique throughout
the remainder of the manuscript and discuss the specific case where the parameters
are equal in Appendix B.

The anti-body concentration, (6e) depends on the plasma B-cell concentration, B,
and thus can not yet be solved in closed form. However, we can write its solution in
terms of the plasma B-cell concentration,

A(t) =
[
A + ε

∫ t

0
B(s)eεsds

]
e−εt . (8)

We note that we can also solve (6g) which has the general solution,

F(t) = e−t/δ
[
F + δ−1

∫ t

0
T (u)eu/δdu

]
, (9)

with T given by (7c). However, aside from a fast timescale of O(δ) as described in
Sect. 3.1, this equation is mostly in quasi-steady state with

F = T (10)

which is more insightful than the full solution (9).
The solutions (7), (8), and (9) already significantly decouple the eight equation model
(6) to a two equationmodel for B, and I whichwenowsystematically explore through a
series of chronological time scales. The full description of these timescales is presented
and derived in Sects. 3.1 to 3.5, but are also summarized in Table 1 for brevity.

3.1 IFN-� clearance

The first time scale emerges in (6g) when t ∼ O(δ), recalling that δ is the ratio of
vaccine absorption to IFN-γ decay. As such we let t = δt1 resulting in every equation
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Table 1 Summary of chronological timescales discussed in Sects. 3.1 to 3.5

Timescale Description

t = δt1 (Sect. 3.1) Clearance of IFN-γ : The IFN-γ is quickly cleared from the
vaccine-induced immune response. This timescale
removes any latent IFN-γ that exists as an initial
condition. If F = 0 then this timescale is irrelevant

t (Sect. 3.2) Vaccine priming: This is the timescale chosen to beO(1) in
the non-dimensionalisation and therefore represents that
absorption time of the vaccine. During this time, early
production of interleukin and plasma B-cells is primed by
the vaccine. To leading order there is no antibody
production

t = ε−1/3t3 (Sect. 3.3) Antibody autocatalytic growth: During the priming phase,
vaccine induced production of plasma B-cells and
interleukin activates the body’s natural production
mechanism leading to explosive growth of each
constituent and the production of significant antibody

t = ε−1t4 (Sect. 3.4) Peak and decay of antibody: The inhibiting effect of
interleukin on its self-production leads to terminal
production of plasma B-cells and thus terminal production
of antibody. During this timescale all concentration
production slows and decay becomes dominant. This
mechanistic transfer leads to the peak antibody response
occurring in this timescale. Depending on the decay
kinetics of plasma B-cells and CD4+ T-cells, a balancing
between production and removal of interleukin occurs
leading to a quasi-steady state interleukin concentration

t = ε−1
(
− 2

αi
log ε + t5

)
(Sect. 3.5) Interleukin cessation: The model necessitates that all

concentrations decay to zero in the absence of continued
vaccine supply. This timescale resolves the quasi-steady
state concentration of interleukin allowing it to decay to
zero

of (6) to effectively be in equilibrium except for (6g) which becomes

dF

dt1
= T − F .

The CD4+ T-cells at this timescale are given by (7c) after substituting t = δt1 and
expanding for δ � 1. This results in T ≈ 0 and thus that

F = Fe−t1 = Fe−t/δ. (11)

Therefore, at this timescale we have that any initial concentration of IFN-γ quickly
clears the body. Conversely, if there is no initial concentration of IFN-γ then this
timescale can be ignored as none of the other components have yet activated, since B
and I are given by their initial conditions to leaing order when t ∼ O(δ).
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3.2 Vaccine priming

The next time scale occurs when t ∼ O(1), i.e. the selected timescale from the non-
dimensionalisation. Having already removed terms via (7) and (8), and recalling that
F = T from the quasi-steady limit (10), the reduced model at this scale is

Ḃ =T + ελB I B − εαBB, (12a)

İ =T − ελI I B − εαI I . (12b)

These equations are non-linear and do not have direct analytic solutions. Exploiting
the smallness of the parameter ε we can expand (7c) when t ∼ O(1) and ε � 1 to
get,

T ∼ e−t + t − 1 + ε

2
(αV + αT)(2e−t − t2 + 2t − 2) = T0 + εT1, (13)

for the CD4+ T-cell population at this timescale. The formulation of this asymptotic
series suggests we pose expansions B = B0 + εB1 and I = I0 + ε I1 and substitute
into (12). The leading order problem becomes

Ḃ0 = İ0 = T0 (14)

subject to B0(0) = 0 and I0(0) = I which has solution

B0 = t2

2
− t + 1 − e−t , (15a)

I0 = t2

2
− t + 1 − e−t + I. (15b)

Expanding (12) to O(ε) we get

Ḃ1 =T1 + λB I0B0 − αBB0, B1(0) = 0, (16a)

İ1 =T1 − λI I0B0 − αI I0, I1(0) = 0, (16b)

which has solution

B1 = λB

20
t5 − λB

4
t4 +

(
λB

3
− nB

6

)
t3 +

(nB
2

+ λBe
−t

)
t2

− (nB + λB)t + nB(1 − e−t ) + λB

2
(1 − e−2t ) (17a)

I1 = −
[

λI

20
t5 − λI

4
t4 +

(
λI

3
+ nI

6

)
t3 +

(
λIe

−t − nI
2

)
t2

− (λI − αII − nI)t − nI(1 − e−t ) + λI

2
(1 − e−2t )

]
, (17b)
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where we define

nB =αV + αT + αB − λB(I + 2),

nI =αV + αT + αI + λI(I + 2).

Having determined B, the anti-body concentration is given by expanding (8) for t ∼
O(1) and ε � 1 which yields,

A(t) = A + ε

[
t3

6
− t2

2
+ (1 − A)t + e−t − 1

]
. (18)

The leading order anti-body response is given by its initial condition and thus there is
very little production at the t ∼ O(1) timescale. This result supports the physiological
intuition that, at the O(1) timescale, the plasma B-cells and interleukin have yet to
develop. Thus, antibodies are close to their background levels during this timescale.

The need for a longer time scale beyond t ∼ O(1) is immediately clear as each of
the concentrations T , B, A, and I grow without bound. From (13), T loses asymptotic
consistency when t ∼ O(ε−1) because the correction term grows quicker than the
leading order term. This represents a time where the production of CD4+ T cells from
the vaccine has stopped and only decay of remaining cells is taking place. However,
from (17a) the plasma B-cell concentration loses asymptotic consistency when t ∼
O(ε−1/3), an earlier time than t ∼ O(ε−1). This breakdown is also evident in (17b)
for interleukin and (18) for IgG antibody.

The early breakdown of the solution to the plasma B-cell concentration is due to the
rapid autocatalytic production of plasmaB-cells as interleukin concentration increases.
Therefore, t ∼ O(ε−1/3) represents a switchover from the vaccine production of
plasma B-cells being the dominant contribution to the self-stimulating autocatalytic
production becoming dominant. We find that this breakdown happens beyond the
leading order dynamics necessitating the two-term asymptotic expansion posed at this
timescale.

3.3 Antibody autocatalytic growth

We introduce the new timescale t = ε−1/3t3, substitute into (7c) and take ε � 1 to
get that the T-cell concentration at this scale is,

T ∼ t3
ε1/3

− 1 − ε1/3
(

αV + αT

2

)
t3
2 = ε−1/3(T30 + ε1/3T31 + ε2/3T32), (19)

where we have scaled T = ε−1/3T3. Unsurprisingly, we see that T3 loses asymptotic
consistency when t3 ∼ O(ε−2/3) equivalent to the asymptotic breakdown when t ∼
O(ε−1) as discussed in Sect. 3.2. Substituting the t3 timescale into (15b) and (15a)
shows that it is sensible to scale I = ε−2/3 I3 and B = ε−2/3B3. This leads to the
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reduced model (6) at this scale

dB3

dt3
=T3 + λB I3B3 − ε2/3αBB3, (20a)

d I3
dt3

=T3 − λI I3B3 − ε2/3αI I3. (20b)

Unlike the O(1) time in Sect. 3.2, the leading order solution will be sufficient for
capturing the dynamics at this timescale (see Appendix A) and this leading order is
given by

dB30

dt3
=t3 + λB I30B30 , (21a)

d I30
dt3

=t3 − λI I30B30 . (21b)

We obtain the leading order antibody concentration by substituting t = ε−1/3t3 into
(8) and expanding for ε � 1 yielding,

A30(t3) = A +
∫ t3

0
B30(s)ds. (22)

Multiplying (21a) by λI and (21b) by λB and adding yields

(λIB30 + λB I30)t3 = (λI + λB)t3 (23)

and thus

λB I30 = (λI + λB)

2
t3
2 − λIB30 , (24)

where we have chosen the integration constant so that both B3 and I3 tend to t32/2 as
required for matching to (15a) and (15b) when t3 � 1. Substituting (24) into (21a)
yields

dB30

dt3
= t3 + (λI + λB)

2
t3
2B30 − λIB

2
30 . (25)
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This non-linear equation can be solved using Kummer functions (see Appendix A)
leading to the solution

B30 = 1

λIt3

⎡
⎢⎢⎢⎢⎣1 + 3b

⎛
⎜⎜⎜⎜⎝
M

(
b + 1, 4

3 , z
) + 	

(
b− 1

3

)(
b− 1

3

)

3	
(
2
3

) U
(
b + 1, 4

3 , z
)

M
(
b, 4

3 , z
) + 	

(
b− 1

3

)

3	
(
2
3

) U
(
b, 4

3 , z
) − 1

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ ;

z = (λB + λI)

6
t3
3, b = 3λI + λB

3(λI + λB)
(26)

with M(x, y, z) and U(x, y, z) Kummer functions of the first and second kind respec-
tively and	(z) the usual Gamma function (cf. Abramowitz and Stegun 1983; Polyanin
and Zaitsev 2017). The leading order solution (26) satisfies the correct matching con-
dition that B30 ∼ t32/2 for t3 � 1 see (A9) in Appendix A for details coming from the
far-field behaviour of the solution (15a) in the t ∼ O(1) timescale. Having determined
B30 then I30 is determined from (24).

We show in Sect. 1 of Appendix A that the solutions at this timescale do not lose
asymptotic consistency prior to t ∼ O(ε−1)when theCD4+ T-cell concentration given
by (19) loses asymptotic consistency and therefore there are no additional intermedi-
ate timescales for antibody growth to consider. This resolves the loss of asymptotic
consistency for B, I , and A that was discovered at the t ∼ O(1) timescale in Sect. 3.2.
However, the loss of asymptotic consistency in the CD4+ T-cell concentration is still
unresolved as that occurred when t ∼ O(ε) due to the decay terms not being included.

3.4 Peak and decay of antibody

Introducing the timescale t = ε−1t4, we expand (7c) for T yielding,

T ∼ 1

ε

(
e−αTt4 − e−αVt4

(αV − αT)

)
+ αTe−αTt4 − αVe−αVt4

(αV − αT)
+ O(ε)

= ε−1(T40 + εT41 + O(ε2)),

(27)

where we have scaled T = ε−1T4. In Appendix A we show the behaviour of B, A,
and I when t3 � 1 given by (A20), (A17) and (A21) respectively. This provides the
matching scaling at the t4 timescale and therefore suggests we scale B = ε−2B4 and
I = I4 transforming the reduced model (6) at this scale to

B4t4
=T4 + λB I4B4 − αBB4, (28a)

ε2 I4t4 =T4 − λI I4B4 − ε2αI I4. (28b)
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From (28b) we have that I4 is in a quasi-steady state up to O(ε2) and therefore,

I40 = T40
λIB40

(29)

to leading order. As with the t3 timescale in Sect. 3.3, the leading order problem will
be sufficient to capture the dynamics in this t4 timescale. Substituting (29) into (28)
yields

B40t4
=

(
1 + λB

λI

)
T40 − αBB40 , (30)

which has solution

B40(t4) =
(
1 + λB

λI

)
(αV − αT)

[
e−αTt4

αB − αT
− e−αVt4

αB − αV
+ (αV − αT)e−αBt4

(αB − αT)(αB − αV)

]
. (31)

We note that for t4 � 1 that

B4 ∼
(

λB + λI

2λI

)
t24 = 3ct24

λI
(32)

which matches B3 for t3 � 1 as required (see (A16) in Appendix A). Following
(8), after taking t = ε−1t4 and scaling A = ε−2A4, then the antibody concentration
satisfies,

A40 = e−t4

[∫ t4

0
B40(s)e

sds

]
(33)

to leading order.
Since we have assumed that αV, αT and αB have unique values, for t4 � 1,

T4 ∼ e−αi t4

α j − αi
, (34)

where αi = min(αV, αT) and α j = max(αV, αT). Similarly for plasma B-cells,

B4 ∼
(
1 + λB

λI

)
e−α̂i t4

(α̂ j − α̂i )(α̂k − α̂i )
, t4 � 1 (35)

where α̂i = min(αV, αT, αB), α̂k = max(αV, αT, αB), and α̂i < α̂ j < α̂k . If α̂i = αB
then from (29),

I40 ∼ (αV − αB)(αT − αB)

(α j − αi )(λB + λI)
e−(αi−αB)t4 → 0 as t4 → ∞. (36)

123



Determination of significant immunological timescales… Page 15 of 41 86

If instead αB > α̂i then α̂i = αi and

I40 ∼ αB − αi

λB + λI
, t4 � 1 (37)

which is a constant. However, if we look at the full equation (28b) then the steady
state interleukin concentration, I∞

4 , is

I∞
4 = T∞

4

λIB∞
4 + ε2αI

= 0 (38)

because T∞
4 = B∞

4 = 0. Therefore if T and B decay at the same rate then a final
timescale emerges to resolve the decay of interleukin.

3.5 Interleukin cessation

We assume for this Section that αB > α̂i so that (37) is in disagreement with the steady
state interleukin (38) when t4 � 1 necessitating the new timescale. Physiologically,
this will occur when plasma B-cells do not decay slower than CD4+ T-cells. The
failure of interleukin decay stems from neglecting the αI term in the denominator
of (38) which cannot be done if B4 ∼ O(ε2). From (35) this occurs approximately
when e−αi t∗4 = ε2 or t∗4 = − 2

αi
log ε and so we introduce a fifth and final timescale,

t = ε−1(t∗4 + t5) = ε−1(− 2
αi
log ε + t5) with the additive form of t5 originating from

the exponential decay behaviour in B. We substitute this timescale into (7c) for T to
yield,

T ∼ ε
e−αi t5

α j − αi
= εT50 , (39)

to leading order. The reducedmodel (6) at this order becomes a fully non-linear coupled
model which cannot be solved analytically. However, from (35) we know that B4 is
decaying exponentially for t4 � 1. The introduction of the t5 timescale was to include
the natural decay of interleukin and as such we will approximate the plasma B-cell
concentration with (35) substituting in the t5 timescale,

B5 ∼ ε2
(
1 + λB

λI

)
e−αi t5

(α j − αi )(αB − αi )
= ε2B50 . (40)

With this approximation, the antibody response can also be continued from (33).
Using (39) and (40) allows simplification of the reduced model (6) to a linear

equation for interleukin,

I50t5
+ (λIB50 + αI)I50 =T50 , (41)
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with solution,

I50 =
[
αB − αi

λB + λI
+

∫ t5

0
T50e

G(s)ds
]
e−G(t); G(t) = λI

∫ t5

0
B50ds + αIt5. (42)

We note that in (42) we have used I50 = (αB −αi )(λB +λI)
−1 when t5 = 0 following

(37).
The t5 timescale captures the final decay of interleukin and thus completes the

dynamics of the model.

4 Results

We begin by demonstrating that the five timescales discussed in Sect. 3 reasonably
capture the model dynamics. We plot L , V , T , C , and F , which can be determined
analytically for all time, in Fig. 1. We plot B, A, and I , which required asymptotic
decomposition, in Fig. 2. We simulate both the full model (1) and the reduced model
(6) to demonstrate the negligible effect of ignoring the parameters λF, λC, αL, and
κi . We have chosen αB > αV > αT so that interleukin cessation dynamics can be
observed. To indicate the different timescales described in Sect. 3 we alternate a gray-
white background with the first gray background being the t1 range, the first white
background being the t ∼ O(1) range, the next gray background being the t3 range
etc. We plot the time on a logarithmic axis to capture the full range of dynamics from
O(δ) to O(ε−1). In Fig. 2, for the asymptotic expansion comparison, we use only
the leading order terms that were derived in Sect. 3. The one exception to this is the
t2 = t ∼ O(1) timescale in Sect. 3.2 where a two-term expansion was computed to
show the loss of asymptotic consistency. Therefore, we use the full two-term expansion
for comparison.

We observe excellent agreement between simulation and analytic results in Fig. 1.
Since we have chosen a non-zero initial condition for IFN-γ , in Fig. 2 the initial condi-
tion decays to zero in the t1 timescale before reaching the F = T quasi-steady value as
discussed in Sect. 3.1. Figure2 showcases the role of the autocatalytic timescale t3 dis-
cussed in Sect. 3.3. The plasmaB-cell and antibody response in Fig. 2a, b, respectively,
do not have a substantial region in the t3 timescale where the asymptotic solutions
compare favourably with the numerical ones. Instead, the solution transfers smoothly
from the t ∼ O(1) timescale (discussed in Sect. 3.2) to the t4 timescale (discussed
in Sect. 3.4). However, as seen in Fig. 2c, the interleukin dynamics are highly cap-
tured by the asymptotic solution in the t3 timescale and its maximal concentration is
reached within the t3 region. Interleukin plays an activator-inhibitor role in the sys-
tem. It activates the plasma-B cells to initiate the autocatalytic production but inhibits
itself which ultimately terminates the autocatalytic production. The maximal value of
interleukin represents a shift from the activator to inhibitor role. As observed in Fig. 2c
the maximum occurs quite early in the t3 timescale explaining why B and A quickly
follow the dynamics at the t4 timescale described in Sect. 3.4. We emphasize that the
solutions in each timescale are formally valid for an arbitrary small parameter, ε, for
the regions they are defined. When choosing an actual value for ε, such as ε = 0.01 in
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t1 t2 t3 t4 t5

(a) L (b) V

(c) T (d) C

(e) F

Fig. 1 Comparison of the full model (4), the reduced model (6), and the analytic approximations to L , V ,
T , C , and F given by (7) and (10) respectively with parameters ε = δ = κF = κI = 0.01, αL = αT =
αC = αI = λi = 1, αV = 2, and αB = 3 on a logarithmic non-dimensional time series. For all simulations
the initial conditions are L(0) = A(0) = F(0) = I (0) = 1 and V (0) = T (0) = B(0) = C(0) = 0. We
alternate the plot with gray and white patches to indicate the regions where each timescale is valid. Since
we have taken ε = 0.01 then the start of each time interval is t1 = 0.01, t2 = t = 1, t3 = 4.64, t4 = 100,
and t5 = 921.03 which are non-dimensional times. For F we note the red-dashed curve represents that
quasi-steady limit F = T derived for all timescales beyond t1 as detailed in Sect. 3
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t1 t2 t3 t4 t5

(a) B (b) A

(c) I-late

Fig. 2 Comparison of the full model (4), the reduced model (6), and the asymptotic approximations to B,
A, and I described in Sect. 3 with parameters ε = δ = κF = κI = 0.01, αL = αT = αC = αI = λi = 1,
αV = 2, and αB = 3 on a logarithmic non-dimensional time series. For all simulations the initial conditions
are L(0) = A(0) = F(0) = I (0) = 1 and V (0) = T (0) = B(0) = C(0) = 0. We alternate the plot with
gray and white patches to indicate the regions where each timescale is valid. Since we have taken ε = 0.01
then the start of each time interval is t1 = 0.01, t2 = 1, t3 = 4.64, t4 = 100, and t5 = 921.03

Fig. 2 then the asymptotic structure can breakdown numerically. This is particularly
important for the autocatalytic region described in Sect. 3.3 which occurs at an order
ε−1/3. Formally, ε−1/3 � 1, however, if ε = 0.01, for example then ε−1/3 = 4.6
which is not particularly large. In this timescale we have I ∼ O(ε−2/3) ≈ 21 when
ε = 0.01. As can be seen in Fig. 2c and is detailed in Sect. 4.1, interleukin transitions
through its maximum throughout the t3 timescale and so very quickly I returns to
O(1) practically entering the t4 regime. Thus, numerical realizations of ε may cause
the solutions in timescales t2, t3, and t4 to be appear to be valid longer (or shorter) than
theoretically predicted in the analysis. We could improve the asymptotic agreement
by considering the composite solution which is the sum of the different asymptotic
solutions with their overlapping contributions removed, but omit the details here.
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4.1 Maximal concentrations

The asymptotic solution for interleukin and plasma B-cells at the t3 timescale provides
us a mechanism to determine the maximal interleukin concentration. At the maximal
concentration, I3t3 = 0, and thus from (23) that B3t3 = λ−1

I (λI + λB)t3 to leading
order. Substituting this into the differential equation for B30 (25) yields,

t̂3 + λ2I

λB
B̂3

2 − λI(λI + λB)

2λB
t̂3
2
B̂3 = 0, (43)

where t̂3 is the time at which the maximal interleukin concentration occurs and we
define B̂3 = B3(t̂3). Solving (43) for the plasma B-cell concentration yields,

B̂3 = (λI + λB)t̂3
2

4

(
1 +

√
1 − 16λB

(λI + λB)2 t̂3
3

)
. (44)

This expression only has a solution so long as t̂3 is large enough, namely

t̂3 >

(
16λB

(λI + λB)2

)1/3

= t̂3
∗
. (45)

Prior to this time, B3 cannot grow fast enough to generate an optimal value for the
interleukin concentration. Therefore, while (45) does not provide any insight into the
value for t̂3, it does provide an estimate for the minimum time before interleukin
begins inhibiting antibody production which is useful information for understanding
the dynamics of the immune response. To actually estimate the value for t̂3, it is more
useful to solve (43) for t̂3. This yields,

t̂3 = λB +
√

λ2B + 2λ3I (λI + λB)B̂3
3

λI(λI + λB)B̂3
. (46)

Using (45) as an initial guess, we can compute B̂3 from (26). Substituting this value
into (46), we update t̂3.We then iterate until we converge to a desired tolerance. For the
parameters in Fig. 2c, we have that t̂3 = 1.714 and I3(t̂3) = 0.8035. Taking scales into
account, these correspond to non-dimensional time tImax = 7.953 and concentration
IImax = 17.31 and are comparable to the maximal values numerically obtained from
simulating the full model (4), t simImax

= 9.227 and I simImax
= 17.25 respectively.

The maximum for plasma B-cells occurs in the t4 timescale. From (30), the maxi-
mum B concentration to leading order occurs when

(
1 + λB

λI

)
T40 = αBB40 . (47)
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From (27) and (31) this happens when t4 = t̂4B , occurring when

1 − (α̂k − α̂i )α̂ j

(α̂k − α̂ j )α̂i
e−(α̂ j−α̂i )t̂4B + (α̂ j − α̂i )α̂k

(α̂k − α̂ j )α̂i
e−(α̂k−α̂i )t̂4B = 0. (48)

Recall that αV, αT, and αB are ordered such that α̂i < α̂ j < α̂k . The expression

(48) is a polynomial equation in e−α̂i t̂4B and thus can be solved in a straight for-
ward way. From the parameters in Fig. 2a we have that (48) gives t̂4B = log(3) and
B4(t̂4B) = 4

27 . Accounting for scaling, these correspond to non-dimensional time
tBmax = log(3)ε−1 = 109.9 and concentration BBmax = 4

27ε2
= 1.483 × 103 and

compare favourably to the numerical values from the simulation of the full model
(4) given by t simBmax

= 111.3 and Bsim
Bmax

= 1.467 × 103. Interestingly, we find that the
leading order maximal time given by (48) is independent of the parameters λB and λI,
depending only on the decay parameters.

Themaximum for IgG antibody also occurs in the t4 timescale and from (6e) occurs
at a time t̂4A when A4 = B4 (with A4 given by (33) and B4 given by (31)). Due to
the integration in the solution for A4, this may not be an exponential polynomial
(such as is the case with the parameters in Fig. 2). However, it can still be solved
with a straightforward root-finding process. This yields the time of the maximum
antibody concentration for the parameters in Fig. 2b as t̂4A = 1.973with concentration
A4(t̂4A) = 0.1031. Accounting for scales, these values are tAmax = 197.3 and AAmax =
1.031 × 103 for non-dimensional time and concentration, which compare well to
the numerical maximal values from simulating the full model (4), t simAmax

= 198.6

and Asim
Amax

= 1.021 × 103. Since the antibody is determined as an integral of the
plasmaB-cells, its time ofmaximum concentration also does not depend on the growth
parameters λB and λI.

4.2 Comparison to data

Parameter fits to the full model (1) for 22 different data sets were performed by
Korosec et al. (2022) using mixed-effects modelling software Monolix. The data
available was for IgG antibodies, interleukin, and IFN-γ from patients receiving two
doses of SARS-CoV-2 vaccine produced by Pfizer-BioNTech (BNT162b2) or Mod-
erna (mRNA-1273). Each data point refers to a time point measurement of either
antibody, IFN-γ , or interleukin for a given patient. Since each study has multiple
patients, some studies have multiple measurements at a given time. Patients are dis-
tinct between studies, but within each study,patients are followed chronologically
through time taking additional measurements at different time points. However, these
individual patient trajectories cannot be identified from the aggregate data. Therefore,
for the purpose of parameter fitting in Korosec et al. (2022), “individual” refers to all
of the data in a single data set and “population” refers to the collection of 22 data sets.
For all details about parameter estimates including inferred parameter distributions
see Korosec et al. (2022) and the supplementary material therein.

Using the fit dimensional parameters from Korosec et al. (2022), we compute the
equivalent non-dimensional parameters in Table 2 where we also include the average

123



Determination of significant immunological timescales… Page 21 of 41 86

values for each of the two vaccines considered. We bold values in Table 2 that violate
the model assumption of parameters beingO(1) or smaller. The scales for each of the
vaccine model compartments given by (3) as well as the non-dimensional non-zero
initial values A0 and I0 are computed in Table 3 for each of the parameter sets (an
initial condition F = 0 was taken for all data). We compute the timescales discussed
in Sect. 3 for each of the data sets in Table 4 along with the number of data points
that occur within each timescale. The number of data points is important because it
provides a measure of data resolution and the ability to capture all the dynamics of
the immune response.

The number of data points in Table 4 is slightly misleading. Many data sets have
multiple patients and therefore much of the data is taken at a single time point for
multiple people rather than as a time series for a single person. Secondly, the number
of data points in 0 ≤ t < t1 (first column of bold values) are all initial values taken just
after vaccination (day 0) and do not actually capture any of the fast IFN-γ dynamics
discussed inSect. 3.2. Themodel analysis predicts that themajority of antibody activity
occurs within the t3 and t4 timescales and this is precisely where the majority of data
points are collected. Furthermore, we remark the onset of the t4 timescale which is the
timescale over which antibody concentrations peak and decay aligns remarkably well
with the timing of the second dosage given as the last column of Table 4.

Table 5 calculates an estimation of the maximal concentration and times they occur
for interleukin, plasma B-cells, and IgG antibody following the discussion in Sect. 4.1.
The sequence of timescales discussed in Sect. 3 indicates that interleukin reaches
maximal value first (in the t3 timescale) which triggers the inhibition process of plasma
B-cells leading to its maximal value (in the t4 timescale) and then themaximal value of
antibody followed shortly. Thus, generally we suspect an ordering of tImax < tBmax <

tAmax which holds in Table 5 except for data sets 8 and 10 from Bergamaschi et al.
(2021). These values have been indicated in bold in Table 5.

We plot the data of each reference data set, along with the full simulated model
(4) and each of the asymptotic approximations, in Fig. 3 for antibody data and Fig. 3
for IFN-γ and interleukin data. As with Figs. 1 and 2, we alternate gray–white back-
grounds to showcase the different timescales. We plot the asymptotic solutions in each
of the regions they are valid, but only include the time regions up to the terminal data
point in each study. Based on the discussion surrounding Fig. 2c about practical asymp-
totic consistency, we extend the asymptotic solutions for t2 and t4 into the t3 regime
because the practical validity can be different than what is theoretically predicted. In
Fig. 3c, e, we do not include the t4 asymptotic solution in the t3 region because it is
outside the plotting window. In Figs. 3 and 4 we also plot three vertical dashed lines
which correspond to the maximal times (in chronological order) for each of the con-
centrations I , B, and A given in Table 5. If less than three lines are present it means
that the predicted optima occur outside the time window where data was available.

4.3 Multiple doses

We note that the original model (1) as posed does not allow for multiple doses which
is seemingly problematic as all patient data used in Sect. 4.2 does include a second
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(a) 1. Goel et al (2021) (b) 2. Goel et al (2021)

(c) 3. Stankov et al (2021) (d) 4. Bergamaschi et al (2021)

(e) 5. Lozano-Ojalvo et al (2021) (f) 11. Widge et al (2021)

t1 t2 t3 t4 t5

(g) 12. Widge et al (2021) (h) 13. Widge et al (2021)

Fig. 3 Comparison of the full model (4), the analytic approximations described in Sect. 3 and data from
the cited reference for IgG antibody A. Parameters and initial values are listed in Table 2 and Table 3
respectively (with corresponding number entry). The alternating patches are the timescale windows in
Table 4. The vertical dashed lines are the times for the maximal concentrations in interleukin (pink), plasma
B-cells (orange), and antibody (teal) from Table 5 ordered chronologically. We note the scales on the
axes are different for some sub figures. Continued from previous page. Comparison of the full model (4),
the analytic approximations described in Sect. 3 and data from the cited reference for IgG antibody A.
Parameters and initial values are listed in Tables 2 and 3 respectively (with corresponding number entry).
The alternating patches are the timescale windows in Table 4. The vertical dashed lines are the times for
the maximal concentrations in interleukin (pink), plasma B-cells (orange), and antibody (teal) from Table 5
ordered chronologically. We note the scales on the axes are different for some sub figures
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(i) 15. Wang et al (2021) (j) 16. Wang et al (2021)

(k) 17. Wang et al (2021) (l) 18. Wang et al (2021)

t2 t3 t4

(m) 19. Suthar et al (2022) (n) 20. Suthar et al (2022)

Fig. 3 continued

dose with second dosage times given in Table 3. Mathematically, it is straight-forward
to account for additional doses in the model by including impulse terms to the LNP
compartment of the model. However, when we compare the model with one and two
doses to the data we seem to get a paradoxical conclusion that the one-dose model fits
better despite the patient having received two doses (see Fig. 5 for an example). One
possible explanation is that the parameters fit in Korosec et al. (2022) have accounted
for a second dose through fitting. Furthermore, the second dosage time is in the t4
timescale where the peak of antibody occurs, thus creating a potential resolution issue.
However, since the second dose does not affect the immune response timescales, nor
the general analysis completed here, we save any further discussion of multiple doses
for future work.

5 Discussion

During the model formulation in Sect. 2.1 we identified parameters λF, λC, and αL as
likely being unidentifiable due to very small pre-factors and hence neglected them in
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(a) 6. Bergamaschi et al (2021) (b) 7. Lozano-Ojalvo et al (2021)

(c) 8. Bergamaschi et al (2021) (d) 9. Bergamaschi et al (2021)

t1 t2 t3

(e) 10. Bergamaschi et al (2021) (f) 14. Bergamaschi et al (2021)

Fig. 4 Comparison of the full model (4), the analytic approximations described in Sect. 3 and data from
the cited reference for IFN-γ (F) and interleukin (I ). Parameters and initial values are listed in Tables 2
and 3 respectively (with corresponding number entry). The alternating patches are the timescale windows
in Table 4. The vertical dashed lines are the times for the maximal concentrations in interleukin, plasma
B-cells, and antibody from Table 5 ordered chronologically. We note the scales on the axes are different for
some sub figures
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Fig. 5 Comparison of data from Wang et al. (2021) to the full model (4) with 1 or 2 doses using the
parameters of data set 18 in Tables 2, 3 and second dosage time in Table 4. The alternating patches are the
timescale windows in Table 4

the reducedmodel (6). Table 2 confirms this hypothesis as each of these parameters are
very small based on fit data. We further set each of the saturation parameters to zero
under the notion that wewould not be over-saturated in plasmaB-cells and interleukin.
These parameters are indeed generally small in Table 2 justifying the assumption.

A further assumption in the non-dimensional model (4) was that the parameters
are O(1) or smaller so that the model is sensibly scaled. We note that this is mostly
true in Table 2 with exceptions to this noted in bold. Data set 14 from Bergamaschi
et al. (2021) has an anomalous value for αB. From Fig. 4f we observe that most of
the data is concentrated around the peak with some later data corresponding to the
second dose time. Since αB is a decay parameter it will have the most significant
contribution on interleukin after the peak value. Furthermore, from Sect. 3.4 the quasi-
steady interleukin concentration (37) depends linearly on αB, however there is very
little data in this region to inform the parameter. Therefore, the value of αB in data set
14 may be a consequence of poor data fidelity.

The more interesting anomalous parameters are those for λB (data sets 11, 12,
and 13) and κI (data sets 12 and 13) as these all belong to data collected by Widge
et al. (2021) for the mRNA-1273 vaccine. The data in this paper measured antibody
response for various ages. Data set 11 is for ages 18–55, data set 12 ages 56–70, and
data set 13 ages 70 and over. We see a dramatic difference between those under and
over the age of 55. While age effects on response were discussed by Korosec et al.
(2022), the parameter contrast was not as apparent in the dimensional form. λB and
κI are associated with the autocatalytic production of plasma-B cells and ultimately
antibodies. A higher value leads to more rapid production which due to the inhibiting
effects on interleukin can also lead to quicker decay.

We note in Table 4 that the t3 timescale representing the onset of autocatalytic
production starts several days later in the older-patient data sets of Widge et al. (2021)
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than the younger-patient data set, but the t4 timescale representing peak antibody starts
a few days sooner. Therefore, overall, the time window over which antibody levels are
high is much narrower for ages 56 and greater compared to those below this age. We
also note that the youngest age group has αB as the slowest decay parameter compared
to the two older data sets and thus does not have predicted interleukin cessation. There
is no confirmation for this in the data set because interleukin data was not recorded
for these cohorts.

Interestingly, the predicted maximal antibody concentrations from Table 5 are
higher for the two older-age data sets of Widge et al. (2021) compared to the data
set for those under 56 with the highest maximum concentration predicted in the 56–70
data set. However, the decay rates αB and αT also increase, as observed in Table 2 and
therefore a high concentration will also experience rapid decay, potentially explaining
this counter intuitive result and providing insight into the body’s immunosenescence.
We find that λB and λI seem to be age-dependent. These parameters dictate how well
the body transitions from vaccine priming (the adapted immunity response) to self-
production of antibody precursors (the innate immune response) and therefore provide
detail on the immunogenicity of the vaccine. Overall, the analysis indicates the exis-
tence of, and possible mechanism for, an age dependent vaccine and natural immune
response. A reduced vaccine efficacy with age has been reported in studies such as by
Menni et al. (2022).

The anomalous bold values in Table 2 also skew the mean values for the mRNA-
1273 vaccine making it appear as if there is discernible difference between that and
the BNT162b2 vaccine. However, if data sets 12 and 13 of Widge et al. (2021) are
removed then the new mean for vaccine mRNA-1273 (Mean M* in Table 2) is much
more comparable with the mean for BNT162b2, indicating that there is no appreciable
difference between the vaccines in terms of immune response parameters. It may
appear in Table 5 that there are discernible differences in peak antibody levels between
the two vaccines as computing the means for the two vaccines shows a nearly 20 fold
difference between the two. However, this comparison cannot be made because the
antibody concentrations that are reported are in arbitrary units and may be different
for each study. While it is omitted here, redoing the analysis on the maximal antibody
concentration in dimensionless units shows approximately a two-fold differencewhich
makes them more comparable.

The data sets of Suthar et al. (2022) separated antibody response by sex with data
set 19 being male and data set 20 being female. We see, both from the parameters in
Table 2 and timescales in table 4, that there is no discernible difference between sexes
in the vaccine response.

Interestingly, aside from the two over-55 groups of Widge et al. (2021), none of
the mRNA-1273 studies considered here have interleukin cessation, whereas all of the
BNT162b2 studies do with the exception of those by Suthar et al. (2022). However, it
is worth noting that the studies by Suthar et al. (2022) also have data at the latest time
points of all of the studies considered. Overall, the late-time study of interleukin con-
centration in each of themRNA-1273 andBNT162b2 vaccines would be an interesting
exploration.

Non-anomalous λB values in Table 2 are almost allO(1). The three smallest values
are of order O(10−2) and belong to IFN-γ data set 6 and interleukin data sets 8 and
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10. It is not surprising that IFN-γ parameter fitting may not capture a representative
value of λB as the profile entirely mimics that of the CD4+ T-cell population whose
dynamics do not depend on λB. As for the interleukin data sets, observing Fig. 4c, e,
we note that the graphs indeed look strange. Unlike the other interleukin data, there
is no early peak, likely due to influence from the later data when the second dose
is administered. Figure4d, f where λB ∼ O(1) do have early peaks in the model
simulation. While we do not plot it here, changing the value of λB for data sets 8 and
10 to be of O(1) indeed introduces a peak into the model consistent with the other
data sets. Another indication that the fitting to data sets 8 and 10 is problematic is
observed in Table 5 where for those particular data sets we have the anomalous result
that tBmax < tImax counter to the other data sets and overall model analysis. Overall,
the scaling analysis allows us to interrogate parameters far from the mean and analyze
their validity.

Unlike the parameter λB, the values of λI are much smaller than O(1) generally,
except for the anomalous data sets 12 and 13 previously discussed. Even though
the analysis assumed λI ∼ O(1) the fact that λI � 1 does not impact the overall
immune response, it just creates some additional complexity between timescales t3
and t4. Specifically, if λB ∼ O(1) and λI � 1 then when the t3 timescale begins,
the plasma B-cell concentration is very high but the interleukin concentration remains
small because of the weak non-linear decay. As such, the plasma B-cell concentra-
tions grow explosively during which a new timescale t∗3 will emerge. This timescale
separates from t3 similar to the interleukin cessation scale, and the concentration of
plasma B-cells will become large enough that the weak interleukin inhibition becomes
dominant. Overall, the interleukin activator-inhibitor dynamics proceed sequentially
from activation to inhibition rather than concurrently as was presented here. Since the
overall behaviour is captured by the limit we have chosen here, we omit details of the
more general case.

Many of the insights discussed on data fidelity and parameter estimates are due to
the explicit analytic expressions obtained. These expressions also provide biological
insight. For example, through (45) we understand the minimum time for interleukin
to begin inhibiting antibody production and that it depends on two dimensionless
groupings, λB and λI. We discussed that the peak antibody response seems to highly
correlate with age and the result of (45) provides a reduced set of parameters to
investigate agedependence in.Our study also showed thedelicate relationship that each
of the decay parameters have to long-term immune behaviour. If B-cells decay quickest
so that αB is the largest decay parameter then quasi-steady interleukin concentrations
can persist for a long time. Otherwise, interleukin decays quickly. This means that
interleukin concentration data at long time points after vaccination can provide insight
into the whether the system is dominated by T-cell or B-cell decay.

5.1 Conclusions and future work

Overall, we have presented a model for LNP delivered mRNA vaccines originally
derived in Korosec et al. (2022). Through non-dimensionalisation we were able to
reduce the model and identify five distinct timescales where different parts of the
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immune response dominated. Comparing our model to data we were able to identify
data sets with different immune response, namely those associated with age, and also
identify parameter sets which significantly differ from the mean.

Identifying important timescales of the immune response dynamics provides a
framework for clinical data collection. The timescales are determined from two param-
eters, the rate of vaccine conversion in cells,μLV, and the decay rate of IgG antibodies,
γA. If those can be measured independently then timescales can be estimated and clin-
icians have windowswith which to collect data. This avoids unnecessary sampling and
missing important dynamics. Furthermore, it increases the likelihood of capturing data
related to peak concentrations which can lead to stronger parameter estimation and
thus stronger model prediction. If estimates of μLV and γA are not available because
of novel or emerging diseases, we recommend a two-stage trial. The first will create
coarse window estimates based on parameters from comparative diseases. Parameter
estimationwill be done on these windows to refine estimates of the timescales at which
point the refined trials discussed above can be conducted.
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Appendix A Plasma B-cell concentration in the t3 Timescale

The autocatatlyic problem is given by (20) in Sect. 3.3 with timescale t = ε−1/3t3. We
pose an expansion B3 ∼ B30 + ε1/3B31 where the leading order problem is given by
(25) in Sect. 3.3,

dB30

dt3
= t3 + (λI + λB)

2
t3
2B30 − λIB3

2
0. (A1)
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As this is a non-linear Riccati equation we can simplify using the transformation
B30 = ut3

λIu
which allows us to write (A1) as

u′′ − (λI + λB)

2
t3
2u′ − λIt3u = 0, (A2)

where prime indicates differentiation with respect to t3. Further transforming u =
t3w(z) with z = (λI+λB)t33

6 yields,

z
d2w

dz2
+

(
4

3
− z

)
dw

dz
− bw = 0; b = 3λI + λB

3(λI + λB)
, (A3)

which is Kummer’s differential equation and has as solutions Kummer’s functions
M(x, y, z) and U(x, y, z) (see Kummer 1837; Tricomi 1947; Slater 1960; Polyanin
and Zaitsev 2017),

w = CMM

(
b,

4

3
, z

)
+ CUU

(
b,

4

3
, z

)
, (A4)

for arbitrary constants CM and CU . Therefore, B30 has solution,

B30 = u′

λIu
= w + 3z dw

dz

λIt3w
= (λB + λI)

1/3

61/3λIz1/3

[
1 + 3z

w

dw

dz

]
, (A5)

which from (15a) must satisfy B30 ∼ t32

2 = 62/3

2(λI+λB)2/3
z2/3 for z � 1. Substituting

(A4) into (A5) and expanding for z � 1 yields

[
1 + 3z

w

dw

dz

]
∼

√
3	

( 2
3

)
	 (b)

2πCU	
(
b − 1

3

)
(
CM	

(
b − 1

3

)
− 3CU	 (2/3)

)
z1/3, (A6)

to leading order where 	(z) is the usual Gamma function (see for example Polyanin
and Zaitsev 2017). (A6) does not match the required form of B3 for z � 1 and
therefore we must choose CU so that this term is zero,

CU = 	
(
b − 1

3

)
3	

( 2
3

) CM . (A7)

Returning to the expansion (A6) the next order term is

[
1 + 3z

w

dw

dz

]
∼

(
9

2
b − 3

2

)
z + O(z4/3) = 3λIz

λB + λI
, (A8)
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where we have used the definition of b from (A3). Substituting this into (A5) we get
that to leading order B30 satisfies,

B30
z�1∼

(
(λB + λI)

1/3

61/3λIz1/3

) (
3λIz

λB + λI

)
= 62/3

2(λI + λB)2/3
z2/3, (A9)

which satisfies the correct matching condition for all CM . Therefore, without loss of
generality we can take CM=1. Overall then, the solution for B30 satisfies

B30 = 1

λIt3
[1+

3b

⎛
⎜⎜⎜⎜⎝
M

(
b + 1, 4

3 ,
(λB+λI)

6 t33
)

+ 	
(
b− 1

3

)(
b− 1

3

)

3	
(
2
3

) U
(
b + 1, 4

3 ,
(λB+λI)

6 t33
)

M
(
b, 4

3 ,
(λB+λI)

6 t33
)

+ 	
(
b− 1

3

)

3	
(
2
3

) U
(
b, 4

3 ,
(λB+λI)

6 t33
) − 1

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ .

(A10)

No loss of asymptotic consistency

The next order problem of (20) is

dB31

dt3
= − 1 + λB(I31B30 + I30B31), (A11a)

d I31
dt3

= − 1 − λI(I31B30 + I30B31), (A11b)

where once again multiplying (A11a) by λI and (A11b) by λB and adding produces a
reduced equation

λB I31 = −(λI + λB)t − λIB31. (A12)

Substituting this into (A11a) and recognizing from (22) that B30 = d A30
dt3

yields an
equation for B31,

B31t3
+ (2λIA0t − 3ct2)B31 = −1 − 6ct B30, c = λI + λB

6
(A13)

which is linear and has solution,

B31 = −e−H(t3)
∫ t3

0
(1 + 6csB30)e

H(s)ds, H(s) = 2λI(A30(s) − A) − cs3.

(A14)

We already know from the solution for the CD4+ T-cells in the t3 timescale given by
(19) that an important timescale emerges when t3 ∼ O(ε−2/3) (t ∼ ε−1). However,
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in Sect. 3.2 the solution for B, A, and I broke down sooner thus introducing the t3
timescale. It is therefore important to investigate any additional timescales that may
emerge between t ∼ O(1) and t ∼ O(ε−1). To do so we investigate B30 and B31 for
t3 � 1.

The asymptotic expansions of the Kummer functions for large argument are (see
for example Abramowitz and Stegun 1983; Andrews et al. 1999; Polyanin and Zaitsev
2017),

M

(
b,

4

3
, z

)
∼	

( 4
3

)
	(b)

ez zb−4/3, z � 1 (A15a)

U

(
b,

4

3
, z

)
∼z−b, z � 1, (A15b)

and so from (26) for t3 � 1 we have that

B30
t3�1∼ 1

λIt3

[
1 + 3b

(
	(b)(λI + λB)

6	(b + 1)
t3
3 − 1

)]
∼ 3ct32

λI
, (A16)

and also from (22) that,

A0 − A =
∫ t3

0
B30ds ∼ ct33

λI
. (A17)

With these asymptotic expansions then, from (A14), we have that,

H(t3) ∼ ct3
3, t3 � 1, (A18)

and also that

B31 ∼
(
1 − 6c

λI

)
G(t3)e

−ct33 − 6c

λI
t3, G(t) =

∫ t

0
ecs

3
ds. (A19)

G(t) can be written in terms of an incomplete Gamma function (see Polyanin and
Zaitsev 2017) and thus the first term in (A19) vanishes for t3 � 1. Thus, overall we
have that

B3
t3�1∼ 3c

λI

(
t3
2 − ε1/32t3

)
, (A20)

and B3 does not lose asymptotic consistency at least up to O(ε1/3) since t3 < t32

for t3 � 1. Similarly from (21b) and (A11b) we have the expressions for interleukin
under t3 � 1 satisfy I30 = I31 = 0 and therefore

I3 ∼ O(ε2/3). (A21)
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Thus, interleukin also does not lose asymptotic consistency up to the order considered.
Finally from (8), since A is bounded from above by the integral of B then since B
does not lose asymptotic consistency then neither does A.

Therefore, there are no additional intermediate timescales between t ∼ O(ε−1/3)

and t ∼ O(ε−1) for new dynamics to occur.

Appendix B Equal decay parameters

Here we consider the case when the parameters αi are not unique. For simplicity we
will consider the casewhen they are all equal to each other, i.e.αi = α recognizing that
sub cases mixing equality and inequality will result in a combination of this analysis
and that presented in Sect. 3. The reduced model from (6) is

L̇ = − L (B22a)

V̇ =L − εαV , (B22b)

Ṫ =V − εαT , (B22c)

Ḃ =T + ελB I B − εαB, (B22d)

Ȧ =ε(B − A), (B22e)

İ =T − ελI I B − εα I , (B22f)

subject to initial conditions V (0) = T (0) = B(0) = 0, L(0) = 1, A(0) = A, and
I (0) = I. We note that we have removed the equation for F as it is unchanged from
Sects. 3.1 and 3.2 where F ∼ T . We have also removed the equation for C since when
αT = αC = α then C = T As with (6) we can solve directly for L , V , and T ,

L(t) =e−t (B23a)

V (t) =e−εαt − e−t

1 − εα
(B23b)

T (t) = ((1 − εα)t − 1)e−εαt + e−t

(1 − εα)2
, (B23c)

and if we knew B then the antibodies would still be given by (8). Thus we need only to
solve for B and I in (B22) which are analyzed through each of the timescale regimes
in Sect. 3.

We begin following Sect. 3.2 where t ∼ O(1). The original expansion of T when
αV �= αT given by (13) is not impacted by the singularity structure of αV = αT. As
such the solution when the parameters are equal is the same as that in Sect. 3.2 when
αV = αT = α. Since the loss of asymptotic consistency was not related to the αi

parameters we still have breakdown when t ∼ O(ε−1/3), and for the t3 timescale in
Sect. 3.3, once again the singularity structure does not play a role when expanding
T . Furthermore, since we only considered the leading order behaviour which did not
depend on αV or αT then the solutions for B and I are the same to leading order, (26)
and (24) respectively.

123



86 Page 38 of 41 I. R. Moyles et al.

The t4 timescale of Sect. 3.4, where peak and decay of antibody occurs, is where
the αi parameters have a dominant role and the singularity structure appears in (27) for
example. When the parameters are the same then substituting t = ε−1t4 into (B23c)
and expanding for ε � 1 yields

T ∼ t4e−αt4

ε
+ 2αt4e

−αt4 = ε−1(T̂40 + εT̂41 + O(ε2)). (B24)

From here, the setup follows that of Sect. 3.4 with the equations to solve given by (28)
leading to interleukin quasi-steady state (29) and differential equation for the plasma
B-cells given by (30) with the change in all three that T40 is replaced by T̂40 . The
plasma B-cell solution becomes

B̂40(t4) = t24 (λB + λI)e−αt4

2λI
, (B25)

which we observe still satisfies the required (32) for t4 � 1. From (33) we obtain the
antibody concentration

Â40(t4) = λB + λI

2λI(α − 1)3

[
2e−t4 − ((α − 1)2t24 + 2(α − 1)t4 + 2)e−αt4

]
, (B26)

which itself has a singularity issue if α = 1. In this particular case the solution reduces
to

Â40(t4) = (λB + λI)t34 e
−t4

6λI
. (B27)

When all of the parameters are equal then min(αV, αT, αB) = min(αV, αT) =
α and so the interleukin cessation timescale described in Sect. 3.5 should occur as
the exponential decay rates for both CD4+ T-cells and plasma B-cells are identical.
However, the identical decay rates also introduces algebraic terms and so the quasi-
steady interleukin concentration (29) becomes

I40 = 2t−1

λB + λI
. (B28)

We observe the interesting result that when the parameters are equal the interleukin
concentration still decays to zero, butwith a power lawdecay rather than an exponential
one.

The reduction of the solution in the t4 timescale allows an easy analysis of the max-
imal plasma B-cell concentration where, from (B25), we conclude that the maximal
concentration of plasma B-cells occurs when t4 = 2α−1 with maximal B-cell con-
centration B40 = 2α−2λ−1

I (λB + λI)e−2. For general α the maximal concentration of
antibody does not have a clean analytic form because of the mixture of polynomial and
exponential terms in (B26). However, when α = 1 then the antibody concentration is
given by (B27) and has a single exponential term. Upon differentiating, the maximum
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concentration occurs at t4 = 3 for all λB and λI with maximal concentration given by
A40 = 9/2λ−1

I (λB +λI)e−3. The independence of the maximal concentration time on
λB and λI is discussed in Sect. 4.
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