|
Caroline E Wagner Person1 #679762 Caroline Wagner is an Assistant Professor in the Department of the Bioengineering at McGill University. | Research Interests - Population-level models for infectious disease dynamics
- Within-host disease models informed by host physicochemistry and pathogen/biofluid interactions
- Characterization of mucus/pathogen transport and interactions
- Design and development of bio-inspired mucin mimetic material
|
+Citations (4) - CitationsAdd new citationList by: CiterankMapLink[2] The role of mucosal barriers in disease progression and transmission
Author: Nicole A. Bustos, Katharina Ribbeck, Caroline E. Wagner Publication date: 12 August 2023 Publication info: Advanced Drug Delivery Reviews, Volume 200, 2023,
115008, ISSN 0169-409X Cited by: David Price 6:20 PM 15 November 2023 GMT Citerank: (2) 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 715325Pathogens859FDEF6 URL: DOI: https://doi.org/10.1016/j.addr.2023.115008
| Excerpt / Summary [Advanced Drug Delivery Reviews, 12 August 2023.]
Mucus is a biological hydrogel that coats and protects all non-keratinized wet epithelial surfaces. Mucins, the primary structural components of mucus, are critical components of the gel layer that protect against invading pathogens. For communicable diseases, pathogen-mucin interactions contribute to the pathogen’s fate and the potential for disease progression in-host, as well as the potential for onward transmission. We begin by reviewing in-host mucus filtering mechanisms, including size filtering and interaction filtering, which regulate the permeability of mucus barriers to all molecules including pathogens. Next, we discuss the role of mucins in communicable diseases at the point of transmission (i.e. how the encapsulation of pathogens in emitted mucosal droplets externally to hosts may modulate pathogen infectivity and viability). Overall, mucosal barriers modulate both host susceptibility as well as the dynamics of population-level disease transmission. The study of mucins and their use in models and experimental systems are therefore crucial for understanding the mechanistic biophysical principles underlying disease transmission and the early stages of host infection. |
Link[3] Medium-term scenarios of COVID-19 as a function of immune uncertainties and chronic disease
Author: Chadi M. Saad-Roy, Sinead E. Morris, Rachel E. Baker, Jeremy Farrar, Andrea L. Graham, Simon A. Levin, Caroline E. Wagner, C. Jessica. E. Metcalf, Bryan T. Grenfell Publication date: 30 August 2023 Publication info: J. R. Soc. Interface.202023024720230247 Cited by: David Price 0:18 AM 28 November 2023 GMT Citerank: (4) 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 704036Immunology859FDEF6, 704045Covid-19859FDEF6, 728545Long COVIDPost-acute sequelae of COVID-19 (PASC).859FDEF6 URL: DOI: https://doi.org/10.1098/rsif.2023.0247
| Excerpt / Summary [Journal of the Royal Society of Interface, 30 August 2023]
As the SARS-CoV-2 trajectory continues, the longer-term immuno-epidemiology of COVID-19, the dynamics of Long COVID, and the impact of escape variants are important outstanding questions. We examine these remaining uncertainties with a simple modelling framework that accounts for multiple (antigenic) exposures via infection or vaccination. If immunity (to infection or Long COVID) accumulates rapidly with the valency of exposure, we find that infection levels and the burden of Long COVID are markedly reduced in the medium term. More pessimistic assumptions on host adaptive immune responses illustrate that the longer-term burden of COVID-19 may be elevated for years to come. However, we also find that these outcomes could be mitigated by the eventual introduction of a vaccine eliciting robust (i.e. durable, transmission-blocking and/or ‘evolution-proof’) immunity. Overall, our work stresses the wide range of future scenarios that still remain, the importance of collecting real-world epidemiological data to identify likely outcomes, and the crucial need for the development of a highly effective transmission-blocking, durable and broadly protective vaccine. |
Link[4] Impact of waning immunity against SARS-CoV-2 severity exacerbated by vaccine hesitancy
Author: Chadi M. Saad-Roy, Sinead E. Morris, Mike Boots, Rachel E. Baker, Bryan L. Lewis, Jeremy Farrar, Madhav V. Marathe, Andrea L. Graham, Simon A. Levin, Caroline E. Wagner, C. Jessica E. Metcalf, Bryan T. Grenfell Publication date: 5 August 2024 Publication info: PLoS Comput Biol 20(8): e1012211 Cited by: David Price 11:13 PM 8 December 2024 GMT Citerank: (3) 704036Immunology859FDEF6, 704041Vaccination859FDEF6, 704045Covid-19859FDEF6 URL: DOI: https://doi.org/10.1371/journal.pcbi.1012211
| Excerpt / Summary [PLoS Computational Biololgy, 5 August 2024]
The SARS-CoV-2 pandemic has generated a considerable number of infections and associated morbidity and mortality across the world. Recovery from these infections, combined with the onset of large-scale vaccination, have led to rapidly-changing population-level immunological landscapes. In turn, these complexities have highlighted a number of important unknowns related to the breadth and strength of immunity following recovery or vaccination. Using simple mathematical models, we investigate the medium-term impacts of waning immunity against severe disease on immuno-epidemiological dynamics. We find that uncertainties in the duration of severity-blocking immunity (imparted by either infection or vaccination) can lead to a large range of medium-term population-level outcomes (i.e. infection characteristics and immune landscapes). Furthermore, we show that epidemiological dynamics are sensitive to the strength and duration of underlying host immune responses; this implies that determining infection levels from hospitalizations requires accurate estimates of these immune parameters. More durable vaccines both reduce these uncertainties and alleviate the burden of SARS-CoV-2 in pessimistic outcomes. However, heterogeneity in vaccine uptake drastically changes immune landscapes toward larger fractions of individuals with waned severity-blocking immunity. In particular, if hesitancy is substantial, more robust vaccines have almost no effects on population-level immuno-epidemiology, even if vaccination rates are compensatorily high among vaccine-adopters. This pessimistic scenario for vaccination heterogeneity arises because those few individuals that are vaccine-adopters are so readily re-vaccinated that the duration of vaccinal immunity has no appreciable consequences on their immune status. Furthermore, we find that this effect is heightened if vaccine-hesitants have increased transmissibility (e.g. due to riskier behavior). Overall, our results illustrate the necessity to characterize both transmission-blocking and severity-blocking immune time scales. Our findings also underline the importance of developing robust next-generation vaccines with equitable mass vaccine deployment. |
|
|