|
Add to map
|
Post message
|
Move element
|
Cross-relate
|
Cite
|
New map
|
|
|
CitationsAdd new citationList by: CiterankMap Link[2] COVID-19 endgame: From pandemic to endemic? Vaccination, reopening and evolution in low- and high-vaccinated populations
Author: Elisha B. Are, Yexuan Song, Jessica E. Stockdale, Paul Tupper, Caroline Colijn Publication date: 20 December 2022 Publication info: Journal of Theoretical Biology, Volume 559, 2023, 111368, ISSN 0022-5193, Cited by: David Price 9:05 PM 26 November 2023 GMT Citerank: (3) 679862Paul TupperProfessor in the Department of Mathematics at Simon Fraser University.10019D3ABAB, 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 704041Vaccination859FDEF6 URL: DOI: https://doi.org/10.1016/j.jtbi.2022.111368
| Excerpt / Summary [Journal of Theoretical Biology, 20 December 2022]
COVID-19 remains a major public health concern, with large resurgences even where there has been widespread uptake of vaccines. Waning immunity and the emergence of new variants will shape the long-term burden and dynamics of COVID-19. We explore the transition to the endemic state, and the endemic incidence in British Columbia (BC), Canada and South Africa (SA), to compare low and high vaccination coverage settings with differing public health policies, using a combination of modelling approaches. We compare reopening (relaxation of public health measures) gradually and rapidly as well as at different vaccination levels. We examine how the eventual endemic state depends on the duration of immunity, the rate of importations, the efficacy of vaccines and the transmissibility. These depend on the evolution of the virus, which continues to undergo selection. Slower reopening leads to a lower peak level of incidence and fewer overall infections in the wave following reopening: as much as a 60% lower peak and a 10% lower total in some illustrative simulations; under realistic parameters, reopening when 70% of the population is vaccinated leads to a large resurgence in cases. The long-term endemic behaviour may stabilize as late as January 2023, with further waves of high incidence occurring depending on the transmissibility of the prevalent variant, duration of immunity, and antigenic drift. We find that long term endemic levels are not necessarily lower than current pandemic levels: in a population of 100,000 with representative parameter settings (Reproduction number 5, 1-year duration of immunity, vaccine efficacy at 80% and importations at 3 cases per 100K per day) there are over 100 daily incident cases in the model. Predicted prevalence at endemicity has increased more than twofold after the emergence and spread of Omicron. The consequent burden on health care systems depends on the severity of infection in immunized or previously infected individuals. |
Link[3] COVID-19 cluster size and transmission rates in schools from crowdsourced case reports
Author: Paul Tupper, Shraddha Pai, COVID Schools Canada, Caroline Colijn Publication date: 30 November 2022 Publication info: eLife, 30 November 2022 Cited by: David Price 10:29 PM 27 November 2023 GMT Citerank: (3) 679862Paul TupperProfessor in the Department of Mathematics at Simon Fraser University.10019D3ABAB, 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 715617Schools859FDEF6 URL: DOI: https://doi.org/10.7554/eLife.76174
| Excerpt / Summary [eLife, 30 November 2022]
The role of schools in the spread of SARS-CoV-2 is controversial, with some claiming they are an important driver of the pandemic and others arguing that transmission in schools is negligible. School cluster reports that have been collected in various jurisdictions are a source of data about transmission in schools. These reports consist of the name of a school, a date, and the number of students known to be infected. We provide a simple model for the frequency and size of clusters in this data, based on random arrivals of index cases at schools who then infect their classmates with a highly variable rate, fitting the overdispersion evident in the data. We fit our model to reports from four Canadian provinces, providing estimates of mean and dispersion for cluster size, as well as the distribution of the instantaneous transmission parameter β, whilst factoring in imperfect ascertainment. According to our model with parameters estimated from the data, in all four provinces (i) more than 65% of non-index cases occur in the 20% largest clusters, and (ii) reducing instantaneous transmission rate and the number of contacts a student has at any given time are effective in reducing the total number of cases, whereas strict bubbling (keeping contacts consistent over time) does not contribute much to reduce cluster sizes. We predict strict bubbling to be more valuable in scenarios with substantially higher transmission rates. |
Link[4] Cov2clusters: genomic clustering of SARS-CoV-2 sequences
Author: Benjamin Sobkowiak, Kimia Kamelian, James E. A. Zlosnik, John Tyson, Anders Gonçalves da Silva, Linda M. N. Hoang, Natalie Prystajecky, Caroline Colijn Publication date: 19 October 2022 Publication info: BMC Genomics volume 23, Article number: 710 (2022) Cited by: David Price 10:44 PM 27 November 2023 GMT Citerank: (3) 679854Natalie Anne PrystajeckyNatalie Prystajecky is the program head for the Environmental Microbiology program at the BCCDC Public Health Laboratory. She is also a clinical associate professor in the Department of Pathology & Laboratory Medicine at UBC.10019D3ABAB, 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 708734Genomics859FDEF6 URL: DOI: https://doi.org/10.1186/s12864-022-08936-4
| Excerpt / Summary [BMC Genomics, 19 October 2022]
Background: The COVID-19 pandemic remains a global public health concern. Advances in sequencing technologies has allowed for high numbers of SARS-CoV-2 whole genome sequence (WGS) data and rapid sharing of sequences through global repositories to enable almost real-time genomic analysis of the pathogen. WGS data has been used previously to group genetically similar viral pathogens to reveal evidence of transmission, including methods that identify distinct clusters on a phylogenetic tree. Identifying clusters of linked cases can aid in the regional surveillance and management of the disease. In this study, we present a novel method for producing stable genomic clusters of SARS-CoV-2 cases, cov2clusters, and compare the accuracy and stability of our approach to previous methods used for phylogenetic clustering using real-world SARS-CoV-2 sequence data obtained from British Columbia, Canada.
Results: We found that cov2clusters produced more stable clusters than previously used phylogenetic clustering methods when adding sequence data through time, mimicking an increase in sequence data through the pandemic. Our method also showed high accuracy when predicting epidemiologically informed clusters from sequence data.
Conclusions: Our new approach allows for the identification of stable clusters of SARS-CoV-2 from WGS data. Producing high-resolution SARS-CoV-2 clusters from sequence data alone can a challenge and, where possible, both genomic and epidemiological data should be used in combination. |
Link[5] Protocol for a living evidence synthesis on variants of concern and COVID-19 vaccine effectiveness
Author: Nicole Shaver, Melanie Katz, Julian Little, et al. - Gideon Darko Asamoah, Lori-Ann Linkins, Wael Abdelkader, Andrew Beck, Alexandria Bennett, Sarah E Hughes, Maureen Smith, Mpho Begin, Doug Coyle, Thomas Piggott, Benjamin M. Kagina, Vivian Welch, Caroline Colijn, David J.D. Earn, Khaled El Emam, Jane Heffernan, Sheila F. O'Brien, Kumanan Wilson, Erin Collins, Tamara Navarro, Joseph Beyene, Isabelle Boutron, Dawn Bowdish, Curtis Cooper, Andrew Costa, Janet Curran, Lauren Griffith, Amy Hsu, Jeremy Grimshaw, Marc-André Langlois, Xiaoguang Li, Anne Pham-Huy, Parminder Raina, Michele Rubini, Lehana Thabane, Hui Wang, Lan Xu, Melissa Brouwers, Tanya Horsley, John Lavis, Alfonso Iorio Publication date: 16 September 2023 Publication info: Vaccine, Volume 41, Issue 43, 2023, Pages 6411-6418, ISSN 0264-410X. Cited by: David Price 0:07 AM 28 November 2023 GMT Citerank: (4) 679776David EarnProfessor of Mathematics and Faculty of Science Research Chair in Mathematical Epidemiology at McMaster University.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 704041Vaccination859FDEF6 URL: DOI: https://doi.org/10.1016/j.vaccine.2023.09.012
| Excerpt / Summary [Vaccine, 16 September 2023]
Background: It is evident that COVID-19 will remain a public health concern in the coming years, largely driven by variants of concern (VOC). It is critical to continuously monitor vaccine effectiveness as new variants emerge and new vaccines and/or boosters are developed. Systematic surveillance of the scientific evidence base is necessary to inform public health action and identify key uncertainties. Evidence syntheses may also be used to populate models to fill in research gaps and help to prepare for future public health crises. This protocol outlines the rationale and methods for a living evidence synthesis of the effectiveness of COVID-19 vaccines in reducing the morbidity and mortality associated with, and transmission of, VOC of SARS-CoV-2.
Methods: Living evidence syntheses of vaccine effectiveness will be carried out over one year for (1) a range of potential outcomes in the index individual associated with VOC (pathogenesis); and (2) transmission of VOC. The literature search will be conducted up to May 2023. Observational and database-linkage primary studies will be included, as well as RCTs. Information sources include electronic databases (MEDLINE; Embase; Cochrane, L*OVE; the CNKI and Wangfang platforms), pre-print servers (medRxiv, BiorXiv), and online repositories of grey literature. Title and abstract and full-text screening will be performed by two reviewers using a liberal accelerated method. Data extraction and risk of bias assessment will be completed by one reviewer with verification of the assessment by a second reviewer. Results from included studies will be pooled via random effects meta-analysis when appropriate, or otherwise summarized narratively.
Discussion: Evidence generated from our living evidence synthesis will be used to inform policy making, modelling, and prioritization of future research on the effectiveness of COVID-19 vaccines against VOC. |
|
|