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A B S T R A C T

The serial interval of an infectious disease is an important variable in epidemiology. It is defined as the period
of time between the symptom onset times of the infector and infectee in a direct transmission pair. Under
partially sampled data, purported infector–infectee pairs may actually be separated by one or more unsampled
cases in between. Misunderstanding such pairs as direct transmissions will result in overestimating the length
of serial intervals. On the other hand, two cases that are infected by an unseen third case (known as coprimary
transmission) may be classified as a direct transmission pair, leading to an underestimation of the serial
interval. Here, we introduce a method to jointly estimate the distribution of serial intervals factoring in these
two sources of error. We simultaneously estimate the distribution of the number of unsampled intermediate
cases between purported infector–infectee pairs, as well as the fraction of such pairs that are coprimary. We also
extend our method to situations where each infectee has multiple possible infectors, and show how to factor
this additional source of uncertainty into our estimates. We assess our method’s performance on simulated
data sets and find that our method provides consistent and robust estimates. We also apply our method to
data from real-life outbreaks of four infectious diseases and compare our results with published results. With
similar accuracy, our method of estimating serial interval distribution provides unique advantages, allowing
its application in settings of low sampling rates and large population sizes, such as widespread community
transmission tracked by routine public health surveillance.
1. Introduction

The serial interval is an important variable in characterizing the
spread of an infectious disease. It is defined as the time interval
between symptom onsets of two successive cases in a transmission
chain (Porta et al., 2014; Fine, 2003). The interval is important in the
interpretation of infectious disease surveillance data, in understanding
the mechanics of disease transmission, and in constructing models of
disease transmission in a population, which may be used for forecasting
or exploratory analysis.

The direct measurement of serial intervals requires the identifica-
tion of infector–infectee pairs. (Although methods that do not require
such information have been developed, they assume a fully sampled
population (Forsberg White and Pagano, 2008; Wu and Riley, 2016).)
Since the interval is defined in terms of direct transmission, sufficient
data must be collected in order to identify multiple infector–infectee
pairs. A common approach for achieving this goal is to monitor con-
firmed index cases and keep track of their contacts (Cowling et al.,
2009); such approaches require rigorous observation, which is labo-
rious and time-consuming. As a result, most studies of serial inter-
vals are usually concerned with transmission in small populations,
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such as households, which may not represent serial intervals in a
broader setting. On the other hand, with the increasing popularity
of pathogen sequencing, it is now feasible to use genomic data to
determine infector–infectee pairs with some confidence without contact
tracing data (Jombart et al., 2011; Hall et al., 2015; Maio et al., 2016;
Klinkenberg et al., 2017; Campbell et al., 2018; Didelot et al., 2021).
However, when not all cases are sampled, the linked cases in the
reconstructed transmission tree may not represent direct transmissions
between primary and secondary cases.

With partially sampled data, a putative infector–infectee pair may
represent a type of transmission in which both cases were infected
by another (unsampled) individual resulting in a serial interval that
is too short (referred to as coprimary transmission), or an indirect
transmission in which they are separated by one or more cases in
between resulting in a serial interval that is too long (referred to
as non-coprimary transmission). Mistaking such transmission paths as
direct transmissions will result in biases in estimating the serial interval
distribution. Vink et al. (2014) introduced a method that takes into
account both these kinds of non-direct transmissions. Their approach
vailable online 2 December 2023
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estimates the mean and standard deviation of the serial interval, from
the distribution of the symptom onset intervals between index (pri-
mary) cases and all their successive cases (known as index-case-to-case
or ICC interval), allowing up to two unsampled intermediates, as well
as taking into account coprimary transmission. However, the limitation
of the number of unsampled cases means that the approach is most
suited to a small and closed population, such as households. In this
work, we relax Vink’s limitation and allow an unrestricted number
of unsampled intermediate cases. We assume that in a transmission
chain, each successive case is sampled with a constant probability, and
this probability is estimated along with the distribution of the serial
interval. As well, we estimate the proportion of pairs that are actually
coprimary transmissions. Hence, we will estimate four parameters: the
mean and standard deviation of the serial interval, the probability of
sampling successive cases in a transmission chain, and the proportion of
coprimary transmission; together with their respective 95% confidence
intervals.

This paper is the formalization of our previous work (Stockdale
et al., 2023), which focuses on the utilization of genomic data in
order to estimate the parameters of serial interval distribution. Here,
in contrast, we focus on the methodology to estimate the parameters
when prior information is not available. We also investigate the extent
to which our estimates deteriorate as contributions from coprimary and
non-coprimary pathways become gradually unbalanced. In this paper,
we discuss in more detail how to factor in an additional source of
uncertainty into our estimates when, in some situations, we have insuf-
ficient data to determine who infected whom and there is ambiguity in
identifying the infectors in the transmissions. These purported infectors
may not be the direct source of infection, raising the plausibility of
multiple potential infectors. For example, when transmission clusters
occur in public areas, such as parks, malls, etc. in which a person may
have been exposed to more than one infected individual. Finally, to
measure our method’s performance, we assess it on simulated data sets
and some real-life infectious disease outbreaks.

2. Methods

The method below (refer to Sections 2.1 to 2.3) has been introduced
in our previous work in Supplementary Material S1 of Stockdale et al.
(2023). Here we expand on the details of the method.

2.1. Serial interval distribution

We assume that we have a collection of putative infector–infectee
pairs with symptom onset times for each case; we call such cases
linked. Because of unsampled cases and coprimary transmission, the
symptom onset interval between linked cases is not a sample from
the true serial interval distribution. Hence, we distinguish between the
true serial interval and the observed serial interval. The former term is
efined as the difference in symptom onset times between a primary
ase and a secondary case, whereas the latter term is defined as the
ifference in symptom onset times between a pair of linked cases. For
xample, suppose that case 𝑖 and case 𝑗 are linked (with it not yet being

known if it is direct transmission, indirect transmission, or coprimary
transmission), and the symptom onset of case 𝑖 occurred before case
𝑗, then case 𝑖 and case 𝑗 are assumed as the infector and the infectee
respectively, and the difference in symptom onset times between those
cases is the observed serial interval.

The true serial interval and the observed serial interval have differ-
ent distributions. The idea of this work is to estimate the true serial
interval distribution through samples of the observed serial interval
distribution. We model the observed serial interval distribution as a
mixture of two other distributions; (i) a non-coprimary transmission
component where either the pair is linked by direct transmission or
a number of unseen intermediate cases, (ii) coprimary transmission,
where the two cases were both directly infected by an unseen third
case; see Fig. 1. We neglect the situation where both cases were infected
by a third case but through intermediaries. We discuss these two
2

components of this distribution in turn.
2.1.1. Coprimary transmission
Suppose we identify case 𝑖 and case 𝑗 as linked and 𝑖 developed

ymptoms before 𝑗, denoted by 𝑖 → 𝑗. If 𝑖 directly infected 𝑗, then
he difference between the symptom onset times of the two cases is
odeled by Gamma distribution with density

(𝑡) ≡ 𝑔(𝑡|𝜇, 𝜎), 𝑡 > 0 (1)

here 𝜇 is the mean and 𝜎 is the standard deviation of a Gamma-
istributed random variable.

In the case of coprimary transmission, both 𝑖 and 𝑗 were infected
y an unseen third case 𝑥. If 𝑈 and 𝑉 are random variables that
epresent the true serial interval of 𝑥 → 𝑖 and 𝑥 → 𝑗 respectively,
hen |𝑈 − 𝑉 | is the observed serial interval between 𝑖 and 𝑗. Assuming
he transmission events are independent, 𝑈 − 𝑉 is a random variable
hat follows a distribution called a Gamma Difference Distribution (GDD),
aving support in 𝑡 ∈ (−∞,∞) (Klar, 2015). Thus, its probability density
unction can be expressed as the convolution of Gamma densities and
he density of the negative of a Gamma random variable, which is
implified as follows

𝑈−𝑉 (𝑡) = ∫

∞

max(0,𝑡)
𝑔(𝑠) ⋅ 𝑔(𝑠 − 𝑡) 𝑑𝑠, −∞ < 𝑡 < ∞. (2)

Since 𝑈 and 𝑉 are independent and identically distributed random
ariables, 𝑈 − 𝑉 has a symmetric distribution about 0.

Taking the absolute value of 𝑈 − 𝑉 , we obtain a new distribution
hich we call the Folded Gamma Difference (FGD). Using the fact that
− 𝑉 is symmetric, the density of |𝑈 − 𝑉 | is, for 𝑡 ≥ 0,

𝑐 (𝑡) = 𝑓
|𝑈−𝑉 |

(𝑡) = 2𝑓𝑈−𝑉 (𝑡)

= 2∫

∞

𝑡
𝑔(𝑠) ⋅ 𝑔(𝑠 − 𝑡) 𝑑𝑠. (3)

Function (3) is the probability density function of the observed
erial interval distribution under the coprimary transmission path, and
s described by two parameters: 𝜇 and 𝜎, which are the mean and
he standard deviation of the true serial interval distribution. Fig. 2
ompares the probability densities of the Folded Gamma Difference
FGD), GDD, and Gamma distributions with 𝜇 = 4 days and 𝜎 =
, 4, 7 days; when 𝜇 = 𝜎 FGD coincides with the Exponential distribution
ith rate parameter 𝜆 = 1∕𝜇 (a special case of the Gamma distribution).

.1.2. Non-coprimary transmission
Suppose we sample a primary case 𝑖 and secondary case 𝑗, in which

he transmission path 𝑖 → 𝑗 is separated by 𝑀 ≥ 0 unknown interme-
iate cases. If 𝑀 = 0, 𝑖 → 𝑗 is a direct transmission and hence, the
bserved serial interval is equal to the true serial interval. Otherwise,
he observed serial interval is the sum over all true serial intervals
n the transmission path between 𝑖 and 𝑗. We refer to such trans-
ission paths as non-coprimary transmissions, which reflects either
irect primary–secondary transmissions or indirect primary–secondary
ransmissions.

Assuming the true serial intervals in the chain are identically dis-
ributed and independent, let 𝑈 be the observed serial interval between
and 𝑗. Given 𝑀 = 𝑚, 𝑈 follows a Gamma distribution with mean
𝑚 = (𝑚 + 1)𝜇 and variance 𝜎2𝑚 = (𝑚 + 1)𝜎2, having pdf as follows

(𝑡|𝑚) ≡ 𝑔(𝑡|𝜇𝑚, 𝜎𝑚), 𝑡 > 0. (4)

In general, 𝑀 is unknown. It represents how many times cases in the
ransmission chain after 𝑖 were not sampled before finally sampling case
. We model 𝑀 with a geometric distribution with success probability
∈ (0, 1] having mass function as follows

𝑚 = 𝑃𝑟(𝑀 = 𝑚|𝜋) = (1 − 𝜋)𝑚𝜋, 𝑚 = 0, 1,… (5)

Summing over 𝑚, the pdf of 𝑈 is

𝑛𝑐 (𝑡) =
∞
∑

𝑔(𝑡|𝑚) ⋅ 𝑝𝑚, 𝑡 > 0. (6)

𝑚=0
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Fig. 1. An illustration of the possible transmission paths between two linked cases.
Fig. 2. Illustrative probability density functions of Folded Gamma Difference (FGD), Gamma Difference Distribution (GDD), and Gamma distributions, given mean 𝜇 = 4
days and standard deviation 𝜎 = 1, 4, 7 days.
We refer the distribution having density in (6) as a Compound
Geometric Gamma (CGG) having parameters (𝜇, 𝜎, 𝜋). If 𝑇 denotes a CGG
distributed random variable, then the expected value and variance of
𝑇 are respectively,

E(𝑇 ) = E
(

E(𝑇 |𝑀 = 𝑚)
)

=
𝜇
𝜋
,

V(𝑇 ) = E
(

V(𝑇 |𝑀 = 𝑚)
)

+ V
(

E(𝑇 |𝑀 = 𝑚)
)

= 𝜎2

𝜋
+

𝜇2(1 − 𝜋)
𝜋2

.

Illustrative examples of CGG distributions with fixed 𝜇 and 𝜎, and
various values of 𝜋 are shown in Fig. 3. Multimodal densities appear
for 𝜋 ≤ 0.9 portraying the mixture of conditional Gamma densities
given 𝑚. When 𝜋 approaches 1, 𝑝0 approaches 1, which means that CGG
converges to a Gamma distribution (𝜇, 𝜎).

2.2. Mixture model

The observed serial interval distribution depends on the transmis-
sion path type; if the path is coprimary, it is FGD-distributed, otherwise,
3

if the path is non-coprimary, it is CGG-distributed. In practice, the
type is, however, unknown for any pair of linked cases. We model the
distribution of the observed serial interval by making the transmission
path type a latent variable that we do not observe, leading to a mixture
model.

For a given pair of linked cases 𝑖 and 𝑗, let 𝑍 be a latent variable
that takes a value in {0, 1}, where

𝑍 =

{

0, if transmission is non-coprimary,
1, if transmission is coprimary.

The probability density of the observed serial intervals can be ex-
pressed in terms of the mixture model, where each mixture component
represents the probability density of the observed serial interval distri-
butions under a transmission path type (coprimary or non-coprimary).
We can express the density as follows

𝑓 (𝑡) = 𝑃 (𝑍 = 0) ⋅ 𝑓𝑛𝑐 (𝑡) + 𝑃 (𝑍 = 1) ⋅ 𝑓𝑐 (𝑡), 𝑡 ≥ 0

= 𝑤 ⋅ 𝑓𝑛𝑐 (𝑡) + (1 −𝑤) ⋅ 𝑓𝑐 (𝑡). (7)
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Fig. 3. The probability densities (left) and their corresponding cumulative distributions (right) of the Compound Geometric Gamma (CGG) distributions (solid lines),
compared to the Gamma distribution (dashed line), given 𝜇 = 6, 𝜎 = 1, and various values of 𝜋; CGG are colored based on the values of 𝜋. For 𝜋 = 1, the CGG coincides with
the Gamma distribution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Here, 𝑤 is called the mixture proportion. In particular, it represents
the probability that an observed serial interval is non-coprimary, and
(1 − 𝑤) is the probability that it is coprimary. Thus, given a set of
observed serial intervals , the log-likelihood of a set of parameters
𝜽 = {𝜇, 𝜎, 𝜋,𝑤} is

𝓁(𝜽|) =
∑

𝑡∈
log 𝑓 (𝑡) =

∑

𝑡∈
log

[

𝑤 ⋅ 𝑓𝑛𝑐 (𝑡) + (1 −𝑤) ⋅ 𝑓𝑐 (𝑡)
]

. (8)

The maximum likelihood estimator (MLE) of 𝜽, denoted by �̂�, is
obtained by solving the following constrained optimization problem

max 𝓁(𝜽|)

subject to 𝜇, 𝜎 > 0;

0 < 𝜋 ≤ 1;

0 ≤ 𝑤 ≤ 1.

We use a function called nmkb from the R package dfoptim to
solve the above problem. The function implements the Nelder–Mead
algorithm for derivative-free optimization. It allows us to place bounds
on each parameter, in which the bounds are enforced by a parameter
transformation to handle the constraints. The transformation is embed-
ded inside the function and the simplex method is performed to obtain
the parameter estimates.

The variance–covariance matrix of �̂�, denoted by V(�̂�), is estimated
by the observed Fisher information evaluated at �̂� (a good approxi-
mation of the expected Fisher information as sample size increases;
see Givens and Hoeting (2012, pg. 10)). From a computational point
of view, we need to solve an optimization problem that corresponds
to the minimization of −𝓁(𝜽|). In the maximum likelihood estimation
method, the Hessian matrix (the matrix of the second-order derivative
of the objective function) is used to determine whether the minimum
of the objective function, −𝓁(𝜽|), is achieved by the solution �̂�. If
this is the case, then �̂� is the maximum likelihood estimates of 𝜽 and
the asymptotic covariance matrix of �̂� is given by the inverse of the
negative of the Hessian matrix evaluated at �̂�, which is the same as
the observed Fisher information evaluated at �̂�; see Murphy (2012,
pg. 193), Pawitan (2013, pg. 216, 226), Gejadze et al. (2018), and
Soffritti (2021). In particular, for 𝜃 ∈ 𝜽, the estimated standard error,
denoted by 𝑠𝑒(�̂�), is the positive square root of the diagonal value of
V(�̂�).

Since �̂� ∈ �̂� is the maximum likelihood estimator, �̂� is asymptotically
normally distributed as the sample size goes to infinity (notice that
small sample size causes large uncertainty in the estimates resulting
in wider confidence intervals that may have low probability coverage).
4

Thus, we can determine the confidence interval of �̂� at confidence level
𝑎 as follows

�̂� ± 𝑧𝑎∕2 ⋅ 𝑠𝑒(�̂�), (9)

where 𝑧𝑎 is the (1 − 𝑎)-th quantile of the standard normal distribution.

2.3. Multiple potential infectors for a given infectee

The model in Section 2.2 can be used to estimate the parameters of
interest from symptom onset times when we have a list of linked cases,
which are our best guess of who infected whom. However, sometimes
we may be uncertain about which cases are truly linked. For a given
case, there may be multiple other cases that may have infected them.
For example, if there is sufficient evidence that a susceptible individual
has been exposed to more than one infectious case, the particular indi-
vidual may be linked to several plausible infectors, indicating multiple
plausible transmission paths. Examples of such situations are shown in
Fig. 5. Following our previous work (Stockdale et al., 2023), we refer
to a set of all plausibly linked pairs as a transmission cloud.

To handle this extra source of uncertainty, given a transmission
cloud, we generate a collection of transmission trees consistent with
it. In our previous work (Stockdale et al., 2023), each sampled trans-
mission tree is generated by, for each infectee, selecting its infector at
random with a probability depending on the genomic and symptom
onset differences between the linked cases. Here, we assume that we
have minimum information on who infected whom, and thereby each
infector is sampled uniformly at random from their list of plausible
infectors. This is analogous to sampling a unique transmission path
for each infectee from the transmission cloud. For each such generated
transmission tree, we generate estimates of the parameters using the
method above. We obtain our final estimate by taking the average of
the parameters over all generated transmission trees.

Let 1,2,… ,𝑁 be the collections of observed serial intervals
from the 𝑁 generated transmission trees. Let �̂�𝑛 be the maximum
likelihood estimator of 𝜃 ∈ 𝜽 given observed serial intervals in 𝑛. The
point estimate of 𝜃 is then as follows

�̂�⋆ = E
(

E(�̂�|𝑛)
)

≈ 1
𝑁

𝑁
∑

𝑛=1
�̂�𝑛, as 𝑁 → ∞. (10)

The variance of �̂�⋆ can be computed by the law of total variance as
follows

V(�̂�⋆) = E
(

𝑠𝑒(�̂�| )2
)

+ V
(

E(�̂�| )
)

𝑛 𝑛
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1
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∑

𝑛=1
(�̂�𝑛 − �̂�⋆)2, as 𝑁 → ∞ (11)

here 𝑠𝑒(�̂�|𝑛) is the standard error of �̂� given 𝑛, which is estimated
n the same way as in Section 2.2. For large 𝑁 , V(�̂�⋆) is approximately
he sum of the estimate’s variation within and between the sampled
ransmission trees; the first term measures the expected value of the
oise of the estimate around its mean in a given tree, whereas the
econd term measures the variation of the estimate around its pooled
global) mean over all sampled trees. Furthermore, �̂�⋆ has an asymp-
otic Normal distribution as 𝑁 is large by the Central Limit Theorem.
herefore, the confidence interval of �̂�⋆ at level 𝑎 is given as follows

̂⋆ ± 𝑧𝑎∕2 ⋅
√

V(�̂�⋆), (12)

where 𝑧𝑎 is the (1 − 𝑎)-th quantile of the standard Normal distribution.
Our method for handling uncertainty in the transmission tree can be
compared to multiple imputation for missing data, and our method
for combining estimates from different possible transmission trees is
similar to Rubin’s rules for parameter estimation (Little and Rubin,
2019, pg. 232).

2.4. Simulations and data

2.4.1. Simulation from the mixture model
We perform a simulation study to assess the ability of our method

to jointly estimate the parameters of interest: 𝜇, 𝜎, 𝜋, and 𝑤. Here we
consider the case where we simulate differences between symptom-
onset times directly from the mixture model. (We simulate using a more
realistic model of an outbreak in Section 2.4.2). The study seeks to
answer the following questions:

1. Do the estimates converge to the true parameters as the sample
size increases?

2. How does the accuracy of the estimates deteriorate as 𝑤 → 0 or
𝑤 → 1?

The first question aims to address whether the estimates are consistent.
We expect that the distributions of the estimates from multiple simu-
lated data sets will concentrate near the true parameters as the sample
size increases. The second question addresses the robustness of our
estimates when the distribution is close to having only one component
of the mixture. The question is to investigate whether the parameters
are identifiable when the proportion of coprimary transmission and
non-coprimary transmission is heavily unbalanced. For example, if 𝑤 =
0, there will only be coprimary transmission, which in our model means
that we will not be able to estimate 𝜋, the parameter that controls the
number of unseen cases in a transmission chain. Therefore, we wish to
investigate the extent to which our estimates deteriorate as 𝑤 → 0 (and

→ 1).
Given 𝜇, 𝜎, 𝜋, and 𝑤, we generate a collection of observed symptom

nset intervals with pdf given by 𝑓 as in (7). The following generates
independent samples.
1. Sample 𝑛 ∼ Binomial(𝑁,𝑤).
2. For 𝑖 = 1, 2,… , 𝑛, generate 𝑡𝑖 from 𝐶𝐺𝐺(𝜇, 𝜎) by:

(a) Sample 𝑚𝑖 ∼ Geometric(𝜋)
(b) Given 𝑚𝑖, sample 𝑡𝑖 ∼ Gamma

(

[𝑚𝑖 + 1]𝜇,
√

𝑚𝑖 + 1𝜎
)

.

3. For 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑁 , generate 𝑡𝑖 from 𝐹𝐺𝐷(𝜇, 𝜎) by:
(a) Sample 𝑢𝑖, 𝑣𝑖 ∼ Gamma(𝜇, 𝜎)
(b) Given 𝑢𝑖 and 𝑣𝑖, compute 𝑡𝑖 = |𝑢𝑖 − 𝑣𝑖|.

We construct two numerical experiments to answer the questions
bove. In the first experiment, we generate 100 data sets of each size

= 100; 500; 1000; 5000, with 𝑤 held fixed at 70%. In the second
experiment, we also generate 100 data sets of size 𝑁 = 5000 for each
𝑤 = 1%, 5%, 10%, 30%, 50%, 70%, 90%, 95%, 99%.

For each experiment, we hold 𝜎 fixed at 1.5 days and consider three
alues of 𝜇: short interval (𝜇 = 2 days), mid-length interval (𝜇 = 6
ays), and long interval (𝜇 = 10 days). As well, we vary the values
5

t

Table 1
Parameters to generate an SIR outbreak.

Parameter Value

Population size 1000
Initial infected cases 1
Reproduction number 2
Generation interval (in days)a 𝜇 = 4.5, 𝜎 = 2
Importation rate (per day) 0.01
Transversion rateb 5 × 10−5

Transition ratec 10−4

a Assumed to be Gamma distributed with mean 𝜇 and std.
deviation 𝜎.
b Substitution rate between purine (A, G) and pyrimidine (C,
T), or vice versa.
c Substitution rate between purine and purine or pyrimidine
and pyrimidine.

of 𝜋 to be low-sampling (𝜋 = 0.3), moderate-sampling (𝜋 = 0.6), and
high-sampling (𝜋 = 0.9). Hence we consider nine scenarios for each
experiment. In total, we generate 3600 (4 𝑁 ’s × 9 scenarios × 100
each) independent data sets for the first experiment and 8100 (9 𝑤’s × 9
scenarios × 100 each) independent data sets for the second experiment.

2.4.2. Outbreak simulation with down-sampling
In Section 2.4.1, we tested the quality of our estimates to see if

they are consistent and robust by sampling data directly from the CGG
and GDD. Here, we verify our method on a simulated outbreak. The
difference between this experiment and the one performed before is
that, in Section 2.4.1, we set 𝜋 and 𝑤 independently, but in reality,
both of these parameters emerge from incomplete sampling and con-
tribute together in explaining the incompleteness of the data. Here, we
generate an outbreak where transmissions occur randomly and then we
sample the infected cases with a proportion 𝑝 randomly. We mimic a
real situation in which we do not know the true transmission tree, and
then estimate each parameter of interest.

We generate an influenza-like outbreak using the R package out-
breaker (Jombart et al., 2014). The package generates an SIR outbreak
together with, for every infected case, the DNA sequences and epidemi-
ological data (who infected whom, time of infection and recovery). The
parameters used to generate the outbreak are shown in Table 1. We
use the serial interval (generation interval) distribution to represent
the average infectiousness profile every day after infectiousness begins.
In this case, we assume that the incubation period of the disease
is constant, so the serial interval is the same as the time between
successive infections, i.e. the distribution of the serial interval aligns
with that of the generation interval. For this procedure, we discretize
the serial interval distribution using function discr_si from R package
EpiEstim (Cori et al., 2013). For instance, suppose that we study an
epidemic for 𝑡 > 0 days. Then, the infectiousness at day 0, 1, 2,… , 𝑡
s described by the discretized serial interval distribution evaluated at
ay 𝑠 = 0, 1, 2,… , 𝑡. Given a fixed basic reproduction number, 𝑅0, and
single infected individual at time 0, the probability for a susceptible

ndividual in a population of 𝑛 susceptible hosts to become infected by
random infected individual on day 𝑠 ≤ 𝑡 is

− exp

(

−
𝑠
∑

𝑖=0

𝑅0
𝑛
𝑔(𝑠 − 𝑖)

)

,

where 𝑔 is the discretized serial interval distribution. The true infector
of an infectee at time 𝑖 is sampled from a multinomial distribution with
probabilities

𝑔(𝑠 − 𝑖)
∑𝑠

𝑖=0 𝑔(𝑠 − 𝑖)
.

From the generated outbreak above, we obtain an epidemic of 763
ases within the 100 days of the simulation period; there were 238
usceptibles, 2 infected cases, and 761 recovered cases at the end of
he study. See Fig. 4 for the epidemic dynamics.
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Fig. 4. The number of susceptibles, infected cases, and recovered cases per day in the simulated influenza-like outbreak of final size 763.
We then sample the 763 infected cases with proportion 𝑝 = 0.9,
… , 0.1. If the infector of an infectee is sampled, we will assume that the
infector is correctly identified as the source of the infection, for exam-
ple, by contact tracing. Otherwise, we will consider a potential infector
to be any case among the sampled infected cases whose symptom onset
time is no later than the infectee’s and the genomic distance between a
potential infector and the infectee is within some threshold 𝜀. We adjust
the value of 𝜀, ranging from 11 to 47 SNPs, according to the choice of
sampling proportion 𝑝; if 𝑝 is lower, we increase the threshold 𝜀, to ac-
count for the larger expected genomic distance between sampled pairs.
We choose 𝜀 such that the resulting transmission cloud contains many
plausible transmission paths for some infectees, to mimic an outbreak
situation described in Section 2.3; given this setup, the transmission
cloud may consist of coprimary transmissions with some unsampled
intermediate cases. Note that, in practice, finding potential infectors
can be done by interviewing the patients, matching the pathogen’s DNA
samples with other patients, utilizing other clinical/demographic data,
mapping the exposure areas around the patient’s residential/working
location, etc. Since our simulated outbreak generates DNA sequences
for each infected case, we use those data to determine the potential
infectors. With these conditions, an infectee (with unsampled infector)
may have at least one potential infector or no infector at all. If it is the
latter, we will discard the case from the analysis.

For each 𝑝, a transmission cloud is generated by the procedure
explained above. We then sample 100 transmission trees from the
transmission cloud. We provide a summary, such as the chosen 𝜀,
number of sampled cases, and number of plausible transmission paths
of the resulting transmission cloud for each 𝑝 in Supplementary Material
S3.

2.4.3. Epidemiological outbreak data
We implement our method on data from four real-life infectious

diseases: COVID-19, measles, MERS, and swine flu (subtype H1N1).
To assess our method’s performance, we compare our estimations with
other works that study the same disease using the same data sets; see
Table 2.

For some data sets, for example, the COVID-19 outbreaks in Sin-
gapore and Tianjin, and the MERS outbreak in South Korea, there
are some infectees with non-unique suspected infectors, see Fig. 5. To
analyze these data sets, we use the method in Section 2.3. For each
data set, we sample one infector for each infectee from the transmission
cloud, generating 1000 transmission trees. We then estimate the param-
eters of interest as well as their 95% confidence intervals according to
Section 2.3.
6

2.5. Software

We make our method available through an R package called sies-
tim, which is a direct implementation of the method introduced here.
The package is available at https://github.com/ksusvita92/siestim. The
analysis scripts and figures in the study are accessible in a different
repository, which can be accessed in github.com/ksusvita92/Serial-
Interval-Estimation.

3. Results

3.1. Consistency and robustness of the estimates: simulation directly from
the mixture model

We performed two experiments on data generated directly from the
mixture model to measure the performance of our method. In the first
experiment, we generated a collection of data sets with various sample
sizes to investigate the consistency of our estimates. Fig. 6 shows the
results from our first numerical experiment for each scenario over
several independent simulated data sets of size 𝑁 = 100, 500, 1000, 5000.
We find that the sample medians (as well as the sample means) of the
estimates are near the true parameter values, and appear to converge
to it as 𝑁 increases; see Supplementary Material S2 for greater detail.
Likewise, the interquartile range converges to zero as 𝑁 increases,
suggesting the consistency of our method. Another way of showing this
is in Fig. 7 in which the densities of the observed serial interval (as
well as the true serial interval) evaluated at the parameter estimates
are plotted along with the actual densities (results for other scenarios
are provided in Supplementary Material S1 as they are similar; see
Figure S1 and S2). With several scenarios considered and all showing
consistent results, this indicates that our method provides consistent
estimates.

In the second experiment, we investigate the robustness of our
method by estimating the parameters of interest when 𝑤 takes values
near its limits as well as when it is at some moderate values. Fig. 8
shows the distributions of the difference between the estimates and
the parameters’ true values for each scenario and each value of 𝑤
over 100 data sets. As 𝑤 approaches zero, the data mostly contain
intervals from the coprimary transmissions and so the simulated data
lack information to estimate 𝜋, a parameter introduced in the non-
coprimary transmissions. As we anticipated, �̂� has a large error when
𝑤 is closer to zero, as does �̂� when 𝜇 = 6 and 10 days. When 𝑤 is at
moderate values (in this case, taking values at 30%, 50%, and 70%), the
data contain sufficient information for the method to estimate all pa-
rameters. The method performs fairly well in all scenarios, and though
some parameters in scenarios involving 𝜇 = 2 have wider inter-quartile

https://github.com/ksusvita92/siestim
https://github.com/ksusvita92/Serial-Interval-Estimation
https://github.com/ksusvita92/Serial-Interval-Estimation
https://github.com/ksusvita92/Serial-Interval-Estimation
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Fig. 5. Transmission clouds among cases with identified links of the COVID-19 outbreaks in Singapore (A) and Tianjin, China (B) (Tindale et al., 2020), and the MERS
outbreak across 16 hospitals in South Korea (C) (Korea Centers for Disease Control and Prevention, 2015). Each infected case (portrayed by a node in the graphs) is colored
by the locations or from whom it got infected (for the COVID-19 data), and the patient’s status at the time of infection (for the MERS data). Each edge represents a contact (or
plausible transmission path) which is scaled by the symptom onset difference between the connected cases.
ranges, the differences between the estimates and the parameters are
concentrated around zero, as we can see in the figure. The same results
are shown when 𝑤 approaches one. In this case, the data contain
mostly intervals from the non-coprimary transmissions which indicates
that the mixture model is mainly dominated by the non-coprimary
component. We provide more detailed results in Supplementary Material
S2.

In Fig. 8, some scenarios involving 𝜇 = 2 days show larger errors in
estimating some parameters when 𝑤 is at moderate values compared
to other scenarios, despite using data with a large sample size. Given
short 𝜇 and 𝜎, the symptom onset difference between linked cases is
short regardless of its transmission path. The intervals coming from
7

coprimary and non-coprimary transmissions are difficult to distinguish
which may lead to an identifiability problem for the mixture model;
both distributions have high densities at the points near zero. This is
shown by a large error in estimating 𝑤 in Fig. 8. An illustrative example
of this phenomenon is shown in Figure S3a in which we take the more
extreme values 𝜇 = 1, 𝜎 = 1.5, with 𝜋 = 0.3 and 𝑤 = 0.5. Since our
method searches for the best estimates to optimize the log-likelihood of
the mixture model, the mean estimated density fits the true density of
the mixture model well with a narrow confidence band. However, when
we observe how well our estimates fit the true density of each mixture
component, we find much larger errors. The confidence bands of the
estimated densities are also wider. In this case, we do not estimate
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Table 2
The outbreak data sets used in the study.

Disease Year Location #Linka Reference

COVID-19 2020 Singapore 38 Tindale et al. (2020)Tianjin, CN 56
(Omicron) 2021 South Korea 19 Song et al. (2022)

Measles
2017 Japan 40 Kobayashi and Nishiura (2022)

1861 Hagelloch, DE 184 Groendyke et al. (2012),
Cori et al. (2013)

MERS 2015 South Korea 174 Korea CDC (Korea Centers for Disease Control and Prevention, 2015)

Swine flu 2009
South Africa 29 Archer et al. (2012)
Texas, US 36 Morgan et al. (2010)
Quebec, CA 48 Papenburg et al. (2010)

a Number of observed serial intervals per generated transmission tree.
Fig. 6. Parameter estimates from the first experiment, in which we simulate directly from the mixture model under varying sample size, 𝑁 . The boxplots represent the
distributions of the difference between the estimates and the true parameter values for all nine scenarios. Each box is colored according to the values of 𝑁 .
the parameters in the model accurately. To mitigate this problem, we
can include some prior distributions on 𝜋 and 𝑤 into the likelihood
model in (8) and the resulting estimates are obtained by maximizing
the posterior likelihood; see Stockdale et al. (2023). As a comparison,
for scenarios involving 𝜇 = 6, 10 days, the mixture components are
identifiable and the estimated densities perfectly fit the model (see
Figure S3b)), which results in good estimates, as shown in Fig. 8.
8

We also provide the coverage probability of our estimated confi-
dence intervals for both experiments in Figs. 9(a) and 9(b). We obtain
fairly good coverage (≥ 90%) of all parameters and as we increase the
sample size, our coverage increases to at least 95% in each scenario,
except for some scenarios related to short-mean serial intervals and
for 𝜇 and 𝜋 when 𝑤 → 0, for reasons which are already explained
above. For other scenarios and for 𝑤 > 0.5, our estimated confidence
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Fig. 7. Estimates of the observed and true serial interval distributions from the first experiment, in which we simulate directly from the mixture model under varying
sample size, 𝑁 . Results from the scenario: 𝜇 = 6, 𝜎 = 1.5, 𝜋 = .6, and 𝑤 = .7 are displayed. Each panel shows a pair of observed serial interval density and true serial interval
density; 100 densities are drawn using parameters that are estimated by our method (portrayed by the gray lines) before the true density which is evaluated at the true parameter
values (portrayed by the black lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
intervals contain the true values of each parameter. Together with
the accuracies shown in Figs. 6 and 8, this indicates that our method
provides good estimates with fairly good coverage confidence intervals.
See Supplementary Material S2 for detailed results of the first and second
experiment and the coverage probabilities.

3.2. Validation with a simulated outbreak

We validate our method’s performance on a simulated SIR outbreak.
Here, we sample the infected cases by proportion 𝑝 = 0.9,… , 0.1. Fig. 10
illustrates the true transmission tree with 𝑝 = 0.6.

To obtain the reference values of 𝜇 and 𝜎, we use pairs from the true
transmission tree that is generated by our simulation. We obtain a mean
of 4.2 days and a standard deviation of 1.8 days for the serial interval
distribution; see Supplementary Material S3 for the data containing the
true transmission tree. To compute the reference value of 𝜋 for each 𝑝,
we record the true number of intermediaries for every non-coprimary
transmission chain in a sampled transmission tree. By our assumption in
Section 2.1.2, they are geometrically distributed with parameter 𝜋. We
estimate 𝜋 using the maximum likelihood estimation method and then
average the values over all sampled transmission trees. The resulting
value is the reference that we use to compare with our method’s
estimation of 𝜋 given 𝑝. We also do the same procedure to parameter 𝑤,
in which we estimate the reference value of 𝑤 by taking the proportion
of true non-coprimary transmissions in a sampled transmission tree,
and then averaging over all sampled transmission trees; see Fig. 11 for
the illustration of this procedure.

Given 𝑝, we generate a transmission cloud from the sampled cases
which is summarized in Table 3 and Supplementary Material S3. For
every generated transmission cloud, we sample 100 transmission trees
consistent with it and then apply our method. Point estimates and 95%
confidence intervals are obtained using Eqs. (10) and (11). Fig. 12
shows the results of our simulation.

From Fig. 12, we find that our method estimates the parameters
fairly well for all sampling proportions 𝑝. The confidence intervals
also contain the reference values of the parameters; see Supplementary
Material S3 for detailed results. As 𝑝 gets larger, the confidence intervals
get narrower. As well, increasing the sample size will also increase the
accuracy of our estimates as shown in Section 3.1. We also find that
the confidence intervals for 𝜇, 𝜎, 𝜋, and 𝑤 are wider for 𝑝 ≤ 0.4. This
9

Table 3
Number of transmission types in a generated transmission cloud for each sam-
pling proportion 𝑝 from the simulated SIR outbreak. Column ‘‘Neither’’ represents
transmission types that are not modeled by our method, e.g. coprimary transmission
with intermediaries.
𝑝 Coprimary Non-coprimary Neither

0.1 8 (2.06%) 32 (8.25%) 348 (89.69%)
0.2 20 (1.56%) 162 (12.68%) 1096 (85.76%)
0.3 38 (1.88%) 293 (14.50%) 1690 (83.62%)
0.4 55 (3.85%) 435 (30.48%) 937 (65.66%)
0.5 67 (6.65%) 481 (47.72%) 460 (45.63%)
0.6 74 (8.76%) 509 (60.24%) 262 (31.01%)
0.7 72 (8.13%) 589 (66.48%) 225 (25.40%)
0.8 44 (6.28%) 574 (81.88%) 83 (11.84%)
0.9 17 (2.44%) 657 (94.26%) 23 (3.30%)

is because the choices of 𝜀 are larger for 𝑝 = 0.1,… , 0.4, compared
to other scenarios, leading to the higher variation between sampled
transmission trees. Note that when 𝑝 is small, the genomic distance be-
tween two sampled cases is longer, on average. Therefore, we increase
the value of threshold 𝜀 so that we get enough pairs to sample from
the resulting transmission cloud to compensate. As a consequence, our
estimates have wider variance due to the higher variability between
sampled transmission trees. For 𝑝 = 0.5,… , 0.9, our estimations are
closely matched with the reference values.

The estimate of 𝑤 is higher than the reference value of 𝑤, especially
for 𝑝 ≤ 0.5 (see the lower right panel of Fig. 12). This is because we most
frequently sample pairs that are neither coprimary transmission nor
non-coprimary transmission from the transmission cloud; a significant
proportion of coprimary transmissions with intermediate cases are
found in the transmission cloud with lower 𝑝 (see Table 3). Since our
approach does not consider this type of transmission, it mistakenly
identifies those pairs as non-coprimary transmissions, resulting in a
higher estimate of 𝑤. As 𝑝 increases, the proportion of coprimary
transmission with intermediaries decreases, so we are less likely to
sample those pairs. As a result, we find that our estimate of 𝑤 is
closely matched with the reference value. We also provide additional
analysis when we ignore pairs that are coprimary transmissions with
intermediaries. Figure S4 shows the point estimate, 95% confidence
interval, and the reference value of each parameter given 𝑝. With these
transmissions omitted from the transmission cloud, we obtain greater
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Fig. 8. Parameter estimates from the second experiment, in which we simulate directly from the mixture model under varying probability of non-coprimary transmission,
𝑤. The boxplots represent the distributions of the difference between the estimates and the true parameters for all scenarios. Each box is colored according to the values of 𝑤.
accuracy on parameter 𝑤, with narrower confidence bands, as well as
on other parameters as 𝑝 increases; see Supplementary Material S3 for
more detailed results.

As seen in Fig. 12, the estimates of 𝜋 and 𝑤 (as well as the reference
values) are higher than the respective 𝑝. Although 𝜋 and 𝑤 are related
to 𝑝, their exact relationship cannot be easily stated. For example, if
we have 𝑝 = 0.1, we may expect the true values of 𝜋 and 𝑤 to be
low, maybe near 0.1. However, this is generally not true because the
choice of 𝜀 also matters. If we choose a stringent value of 𝜀 (although
we may not be able to sample many pairs from the transmission cloud),
we will obtain pairs that are genomically close. Those pairs are most
10
likely either coprimary transmissions or non-coprimary transmissions
but with fewer unsampled intermediate cases. As a result, we will
obtain a higher estimation of 𝜋 and 𝑤 despite having a lower value of
𝑝. Furthermore, in reality, when we have genomic data, for example, it
is logical to choose a stringent 𝜀 to narrow down the choice of potential
infectors or the transmission tree space in order to reduce the variation
between sampled transmission trees.

Despite some biases in our point estimations for each 𝑝, we obtain
good estimates as 𝑝 increases. As well, our confidence intervals contain
the reference values of the parameters for each 𝑝, and they are getting
narrower as 𝑝 increases. This indicates that our method works very
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Fig. 9. The coverage probability of each parameter in each scenario, in which we simulate directly from the mixture model under varying sample size, 𝑁 (a) and
probability of non-coprimary transmission, 𝑤 (b). The values are computed by averaging the coverage probability over all 100 independent data sets. Two straight lines are
drawn in every panel as indicators of probability 0.95 (red) and 0.90 (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 10. Illustration of the true transmission tree for the simulated influenza-like outbreak with final size of 763 infected cases. The 𝑥-axis denotes the time of infection
for every case, where the first infected case is recorded at time 0 portraying the start of the study. 60% of infected cases are sampled, portrayed by the yellow dots, and the rest
are unsampled, portrayed by the black dots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. An illustrative schema of the procedure to estimate the reference values of 𝜋 and 𝑤 given sampling proportion 𝑝 in the simulated outbreak. 𝑛 denotes an index
of the sampled transmission trees, having values from 1 to 100. To obtain the transmission type of a pair (coprimary, non-coprimary, or neither), we use the true transmission tree
as a reference. For example, if the true infector is one of the cases in the pair, then the pair is non-coprimary transmission; if the true infector is none of the cases in the pair and
both cases were infected directly by the same infector, then the pair is coprimary transmission; otherwise, the pair is labeled as ‘‘neither’’. For every non-coprimary transmission
pair, we record the number of unsampled intermediate cases in between to estimate the reference value of 𝜋. As well, we estimate the reference value of 𝑤 by the proportion of
non-coprimary transmissions in the sampled transmission trees.

Fig. 12. Parameter estimation results for the simulated SIR outbreak under varying sampling proportion 𝑝. The point estimation of each estimate is portrayed by (×) and
its 95% confidence interval is shown by the orange errorbar. The reference values are shown by (◦).
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Table 4
The point estimates and their 95% confidence intervals of the parameters of interest compared to the estimates from
the reference for each data set. 𝜋 and 𝑤 are uniquely introduced by our method, thereby no comparisons are made of these
parameters; �̂� and �̂� represent estimates by our method.
Disease Location Estimate of 𝜇 (95% CI)

Reference’s Our Method

COVID-19 Singapore 4.17 (2.44, 5.89) 4.50 (2.74, 6.26)
Tianjin, CN 4.31 (2.91, 5.72) 4.07 (2.57, 5.57)

(Omicron) South Korea 2.90 2.89 (2.18, 3.61)

Measles
Japan 14.8 (14.2, 15.4) 14.76 (13.85, 15.66)

Hagelloch, DE 14.9 10.39 (10.15, 10.63)10.32a

MERS South Korea 12.6 12.80 (11.96, 13.63)

Swine flu

South Africa 2.30 2.69 (2.11, 3.26)
Texas, US 4.00 3.50 (1.29, 5.70)

Quebec, CA 3.90 1.94 (0.69, 3.18)
3.46b 3.46b (2.69, 4.22)

Disease Location Estimate of 𝜎 (95% CI)

Reference’s Our Method

COVID-19 Singapore 1.06 (0, 2.11) 1.45 (0.32, 2.59)
Tianjin, CN 1.00 (0.40, 1.60) 1.58 (0.27, 2.89)

(Omicron) South Korea 1.60 1.56 (0.94, 2.17)

Measles
Japan 3.02 (2.59, 3.59) 2.86 (2.16, 3.55)

Hagelloch, DE 3.90 1.66 (1.49, 1.83)1.57a

MERS South Korea – 3.97 (3.03, 4.90)

Swine flu

South Africa 1.30 1.54 (1.04, 2.04)
Texas, USA – 1.84 (0.00, 3.68)

Quebec, CA 3.10 1.00 (0.00, 2.10)
2.26b 2.23b (1.54, 2.93)

Disease Location Estimate of 𝜋 (95% CI) Estimate of 𝑤 (95% CI)

COVID-19 Singapore 0.75 (0.53, 0.96) 0.61 (0.25, 0.97)
Tianjin, CN 0.72 (0.47, 0.98) 0.86 (0.67, 1.00)

(Omicron) South Korea 1.00 (0.88, 1.00] 1.00 (0.89, 1.00]

Measles Japan 1.00 (0.97, 1.00] 0.97 (0.91, 1.00)
Hagelloch, DE 1.00 (0.98, 1.00] 1.00 (0.98, 1.00)

MERS South Korea 0.99 (0.95, 1.00) 0.95 (0.89, 1.00)

Swine flu

South Africa 1.00 (0.90, 1.00] 1.00 (0.91, 1.00]
Texas, US 0.74 (0.27, 1.00) 1.00 (0.92, 1.00]

Quebec, CA 0.49 (0.19, 0.79) 1.00 (0.95, 1.00]
1.00b (0.76, 1.00] 1.00b (0.90, 1.00]

a Estimates by using the ICC interval method (Vink et al., 2014).
b Estimates by excluding outliers in the data.
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ell for higher values of 𝑝 and it can capture the uncertainty even in a
imulated outbreak.

.3. Application to real outbreaks

We implement our method on data from real-life outbreaks of four
iseases. Table 4 shows the estimates by our method for each dataset,
ompared to the estimates from the corresponding reference (refer to
able 2).

For most of the data sets, our estimates of 𝜇 and 𝜎 are consistent
ith the references. We are able to compare the confidence intervals
nly for the data on COVID-19 outbreaks in Singapore and Tianjin, and
he measles outbreak in Japan (since other references did not state con-
idence intervals), and we find that the confidence intervals of our es-
imates are closely matched with these other sources. On the data from
OVID-19 outbreaks in Singapore and Tianjin, Tindale et al. (2020)
se the ICC interval method (Vink et al., 2014) which is similar to our
ethod. Though the point estimates are close, the confidence intervals

n their estimates are slightly tighter. We believe that the difference
14

m

ies in how we handle the uncertainty due to non-unique potential in-
ectors; Tindale et al. (2020) measure the uncertainty of their estimates
y bootstrapping, whereas we measure it by the total deviance arising
ithin and between generated transmission trees. For the measles
utbreak in Hagelloch, our estimate on 𝜇 and 𝜎 are about five days
nd two days shorter than Cori et al. (2013). We believe the difference
s due to Cori et al. computing the serial interval distribution indirectly
s a convolution of the latent period and infectious period distributions
see Supplementary Material of Cori et al. (2013) Section 13.1). This
ay lead to additional sources of error not present in our method. To

onfirm our results, we implement the ICC interval method (Vink et al.,
014) as a comparison, and we find that the results closely agree with
ur estimates; see Figure S5 and Table S1. For the swine flu outbreak
n Quebec, we find that our estimates of 𝜇 and 𝜎 are about two days
horter than Papenburg et al. (2010). In this data, we find two samples
aving long serial intervals; see Figure S6. The data is reported from
n observational study of household transmissions, in which all sam-
les are identified as laboratory-confirmed secondary cases (or direct
ransmissions) (Papenburg et al., 2010). Including these two cases, our

ethod estimates 𝜋 to be quite low (0.49 [0.19, 0.79]) because it
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Fig. 13. Histogram of the observed serial interval distributions for each outbreak fitted by the mixture densities evaluated at the MLEs. The green and blue lines portray
the mixture component densities (non-coprimary and coprimary, respectively) weighted by the mixture proportion 𝑤 for the non-coprimary component and 1−𝑤 for the coprimary
component. The sum of both weighted mixture component densities is the mixture density (refer to Eq. (7)) which is portrayed by the red line. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
estimates (incorrectly) that there are many missing cases between these
two cases in the transmission chain. This then in turn leads to a short
𝜇. When we exclude these two cases as outliers and reanalyze the data,
our new estimates closely agree with the reference; see Table S2.

For most of the data sets, we estimate 𝜋 to be close to 100%, except
for the COVID-19 outbreaks in Singapore and Tianjin, and the swine
flu outbreak in Texas. For parameter 𝑤, we estimate it to be higher
than 80% for most data sets, except for the COVID-19 outbreaks in
Singapore; see Table 4. These results are not surprising since most
of the data sets (COVID-19 in South Korea, measles in Japan and
Hagelloch, and swine flu in South Africa, Texas, and Quebec) are
studies of household transmission and therefore would be expected to
have high levels of case detection. Since both parameters are intro-
duced uniquely by our method, we cannot provide a comparison to a
reference. However, we learn from Tindale et al. (2020) that several
cases in the COVID-19 outbreak in Singapore and Tianjin data were
excluded from the analysis due to not showing symptoms before being
diagnosed at a quarantine center, and from Archer et al. (2012), about
half of the transmissions on the swine flu outbreak in South Africa
data are suspected between primary and secondary cases, and the rest
are suspected to be either indirect primary–secondary transmission or
coprimary transmission (see Figure 1 in Archer et al. (2012)), providing
support for our lower estimates of 𝜋 and 𝑤 in those datasets. The
confidence intervals are not centered around the point estimates due
to the constraints on 𝜋 and 𝑤, however they are useful in providing
the uncertainty of our estimates.

Fig. 13 shows the distribution of the observed serial interval for
each outbreak, fitted by the mixture density (7) evaluated at the MLEs;
we exclude the two cases that have long intervals in the swine flu
outbreak in Quebec. For the outbreaks with multiple plausible sources
of infection for various infectees, for example, the COVID-19 outbreaks
in Singapore and Tianjin and the MERS outbreak in South Korea, the
histograms depict the densities over all generated transmission trees.
15
4. Discussion

There is a growing demand to estimate the serial interval distri-
bution of infectious diseases, as it is key to understanding a disease’s
transmission. For example, if two diseases have similar reproduction
numbers, but one has a shorter mean serial interval, then it will have
shorter doubling times. Serial intervals are used in estimating the basic
reproduction number 𝑅0, and not having high-quality serial interval
estimates undermines its estimation and analyses that depend on it,
including most modeling analyses. However, most methods assume
fully sampled data, meaning that we can only estimate the serial
interval using data from small populations with a high sampling rate.
This places severe constraints on estimating this key parameter. Here,
we introduced a method to estimate the serial interval distribution with
partially sampled data, and still obtain estimates that are consistent and
robust.

Our method jointly estimates the serial interval distribution and
the probability to sample successive secondary cases in a transmission
chain, as well as the proportion of coprimary transmissions within
the data set. Our study underlines the fact that the distribution of
symptom onset time differences depends on the transmission paths
between purported infector–infectee pairs, and thereby on the propor-
tion of cases that are sampled. We also account for situations when
there is more than one possible infector for each infectee leading to
multiple transmission paths for one infectee. Here, we have extended
our method to consider such possibilities, capturing the variability due
to having to estimate the actual pairs. These are key advantages of our
work, as it allows us to use a broader range of data sources in order to
estimate key parameters of an infectious disease.

We have shown that our method provides estimates that are con-
sistent, which means that the estimates will converge to the true
parameter value as the sample size increases. We also demonstrated
the performance of our method with different values of the proportion
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of non-coprimary transmissions 𝑤 (see Section 2.2), finding that it is
robust to a wide range of such values. Although our estimates are
centered around the true mean when the sample size is small, we see a
significant improvement in accuracy when over 500 cases are sampled.
We find our method is best suited to outbreaks in which the proportion
of coprimary transmission pairs is less than 90%; we might expect the
proportion coprimary to exceed this, for example, when transmission
is very highly over-dispersed and an unsampled super-spreader infects
many people. We implemented our method on data from outbreaks of
four infectious diseases. For the estimation of mean, 𝜇, and standard
deviation, 𝜎, we obtained results that are consistent with other pub-
lished results, except for the measles outbreak data in Hagelloch (see
Results). Our confidence intervals on the estimates are quite large for
some data sets that have uncertainty on who infected whom, because
they incorporate the uncertainty that arises from there being multiple
plausible transmission trees. We further verified our method’s perfor-
mance with a simulated outbreak, in which we sampled a proportion
of 𝑝 infected cases. We mimicked a real situation, in which we masked
the true transmission tree. In that case, the choice of 𝑝 will determine
both 𝜋 and 𝑤, and as a consequence, they are not independent. With
these added stochastic uncertainties, our method still performs quite
well. The estimates converge as the sampling proportion 𝑝 increases.

Our method has three advantages over direct methods that as-
sume a knowledge of who infected whom. Firstly, given a purported
infector–infectee pair, we are able to estimate whether it is a case of
coprimary transmission or not. If it is coprimary, then the symptom
onset times of the pair contribute to our estimates of the parameters
in the serial interval distribution. Although coprimary transmissions
are usually identified by short symptom onset intervals and then disre-
garded throughout the study, capturing this variability can help us to
understand the transmission dynamics in the population and potential
areas of under-sampling. Secondly, for cases that we determine to be
non-coprimary, we are able to estimate the number of intermediate
cases of direct transmission between them. The previous study by Vink
et al. (2014) considers up to two intermediate cases which makes it
most suitable to be implemented in a small population or a population
with a higher sampling proportion. Our method allows an unrestricted
number of intermediaries between purported infector–infectee pairs
and we thereby estimate this proportion of unsampled intermediates.
In both the cases of coprimary transmission and unseen intermediate
cases, by not discarding the pair we are able to use the data in
improving our estimates of the mean and standard deviation of the true
serial interval distribution. Finally, by allowing there to be multiple
potential infectors, our method can capture the variability of the serial
interval arising from uncertainty in the true transmission tree. These
advantages allow our method to estimate the serial interval distribution
in a population with low-case detection.

Our work has several limitations. The most fundamental limitation
is the assumption that the serial interval has constant parameters
throughout the course of the epidemic. In practice, many factors can
contribute to the acceleration of the disease spread in a population,
resulting in, for example, the contraction of serial intervals. This phe-
nomenon represents a reduction in the time it takes for an infected
individual to transmit the disease to a susceptible. Kenah et al. (2008)
address this issue and highlight that local competition among potential
infectors increases the hazard of infection resulting in a shortened
serial interval. When a susceptible is exposed to many infected cases,
as described in Section 2.3, the serial interval contracts. As a con-
sequence, the model described in Section 2.2 may underestimate the
transmission rate (or the force of infection), leading to an underes-
timation of the serial interval parameters. Serial interval contraction
presents challenges in predicting the future trajectory of an outbreak
and can be difficult to recognize, especially in incomplete data with a
low sampling proportion. This limitation is shared by the majority of
methods for estimation of serial and generation intervals. To mitigate
this, we can split the population into homogeneous sub-populations.
For instance, we can define clusters as representations of these sub-
16

populations where cases that belong to the same cluster share, for
example, exposure area, contacts, residence location, etc. We then
perform cluster-specific serial interval distribution estimation indepen-
dently; see our previous work in Stockdale et al. (2023) for reference.
Secondly, some studies have pointed out that generation intervals and
incubation periods are correlated (Hart et al., 2021; Lehtinen et al.,
2021; Park et al., 2021), adding further complexities to modeling
the serial interval distribution, especially under incomplete sampling.
Our focus is to estimate the serial interval distribution in a setting
with somewhat lower case detection, where we allow uncertainty to
determine the true infectors. Thirdly, although the mean serial interval
must be positive, individual serial intervals can be negative. For ex-
ample, there is evidence of negative serial intervals for COVID-19 (Du
et al., 2020), or, for instance, for a disease where transmission can
happen without symptoms and when symptom onset is very late for
the infector and very early for the infectee. Because we use the Gamma
distribution, our serial intervals are strictly non-negative (though this
does not preclude presymptomatic transmission). Our method could use
a different underlying distribution in order to overcome this restriction,
although building the mixture model components may become more
complex. The fourth limitation, that would also lead to a more complex
mixture model formulation if remedied, is the possibility of an indirect
coprimary transmission path between infector–infectee pairs, where the
transmission between the common infector and both cases is separated
by at least one intermediary. The last limitation is the assumption of
constant 𝜋. In reality, sampling proportion may change throughout the
study period. This, of course, will affect the parameter estimation in
general. This limitation can be countered by splitting the data based
on the sample collection and analyzing each segment independently.

Despite these limitations, our method of estimating the serial inter-
val distribution provides unique advantages, allowing its application
in incompletely sampled settings and large population sizes, such as
widespread community transmission tracked by routine public health
surveillance, rather than requiring detailed household studies. Esti-
mation of the serial interval distribution remains a significant tool
in characterizing the spread of an infectious disease. Knowledge of
the distribution also helps in guiding control strategies. Our work
establishes a framework for estimating the serial interval distribution
from the observed symptom onset times, factoring in unseen cases. This
makes our method potentially useful in research and public health.
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