
Infection, Genetics and Evolution 113 (2023) 105484

Available online 31 July 2023
1567-1348/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

The utility of SARS-CoV-2 genomic data for informative clustering under 
different epidemiological scenarios and sampling 

Benjamin Sobkowiak a,*,1, Pouya Haghmaram a, Natalie Prystajecky b,c, James E.A. Zlosnik b, 
John Tyson b, Linda M.N. Hoang b,c, Caroline Colijn a 

a Department of Mathematics, Simon Fraser University, Burnaby, Canada 
b BC Centre for Disease Control Public Health Laboratory, BC Centre for Disease Control, Vancouver, Canada 
c Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Canada   

A R T I C L E  I N F O   

Keywords: 
Bioinformatics 
Epidemiology 
SARS-CoV-2 
Phylogenetics 
Mathematical modelling 
Infectious diseases 

A B S T R A C T   

Objectives: Clustering pathogen sequence data is a common practice in epidemiology to gain insights into the 
genetic diversity and evolutionary relationships among pathogens. We can find groups of cases with a shared 
transmission history and common origin, as well as identifying transmission hotspots. Motivated by the expe-
rience of clustering SARS-CoV-2 cases using whole genome sequence data during the COVID-19 pandemic to aid 
with public health investigation, we investigated how differences in epidemiology and sampling can influence 
the composition of clusters that are identified. 
Methods: We performed genomic clustering on simulated SARS-CoV-2 outbreaks produced with different trans-
mission rates and levels of genomic diversity, along with varying the proportion of cases sampled. 
Results: In single outbreaks with a low transmission rate, decreasing the sampling fraction resulted in multiple, 
separate clusters being identified where intermediate cases in transmission chains are missed. Outbreaks simu-
lated with a high transmission rate were more robust to changes in the sampling fraction and largely resulted in a 
single cluster that included all sampled outbreak cases. When considering multiple outbreaks in a sampled 
jurisdiction seeded by different introductions, low genomic diversity between introduced cases caused outbreaks 
to be merged into large clusters. If the transmission and sampling fraction, and diversity between introductions 
was low, a combination of the spurious break-up of outbreaks and the linking of closely related cases in different 
outbreaks resulted in clusters that may appear informative, but these did not reflect the true underlying popu-
lation structure. Conversely, genomic clusters matched the true population structure when there was relatively 
high diversity between introductions and a high transmission rate. 
Conclusion: Differences in epidemiology and sampling can impact our ability to identify genomic clusters that 
describe the underlying population structure. These findings can help to guide recommendations for the use of 
pathogen clustering in public health investigations.   

1. Introduction 

The evaluation of pathogens for genomic similarities, or clusters, to 
identify common origins and patterns of transmission can be an 
important step in the surveillance and investigation of disease out-
breaks. Whole genome sequence (WGS) data is a valuable tool in com-
plement with classical epidemiological data sources for clustering and 
has been increasingly used to link cases by the distance between 
genomic sequences, notably during the COVID-19 pandemic (Seemann 

et al., 2020; Geoghegan et al., 2020). The definition of a ‘cluster’ can 
vary depending on the setting and purpose of the investigation. In 
outbreak investigations, clusters of closely related pathogens can indi-
cate recent transmission between hosts (Campbell et al., 2018). When 
coupled with epidemiological information, genomic clusters can also 
indicate transmission hotspots within a particular setting to guide public 
health investigation (Poon et al., 2016). In practice, clustering serves to 
connect cases with a shared transmission history that are distinct from 
other samples or groups of infections in a population. 
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All hosts infected with a pathogen that spread only through person- 
to-person transmission are descended from an infected host. Therefore, 
if transmission is occurring locally and all infected individuals are 
sampled then, in truth, there will be a single network connecting all 
cases. We often identify genomic clusters based on linking cases under a 
given genomic or phylogenetic distance threshold (Stimson et al., 2019). 
With these methods, the complete transmission network may delineate 
into smaller groups when disease and epidemiological characteristics 
result in heterogeneity in the genomic distance between hosts in trans-
mission events. For example, this can occur in pathogens with variable 
periods of disease latency or where multiple, rapid transmission events 
can descend from a host through superspreading. 

However, clustering may be erroneous when true transmission net-
works are fragmented or multiple, distinct networks are joined together 
in a single cluster. One or more transmission links may be missed where 
sampling, and by extension sequencing, is incomplete, causing true 
clusters to break up into smaller groups of sampled cases (Glynn et al., 
1999). This phenomenon has been explored in other pathogens, 
including HIV (Grabowski et al., 2018). The fraction of hosts that can be 
sequenced will be driven by the local sampling approaches and 
sequencing capacity, the proportion of subclinical infection, and 
movement of individuals between settings. Furthermore, transmission 
can occur both locally and from infected individuals that are introduced 
from outside sources, which may seed outbreaks inside a sampled 
jurisdiction. Whether all cases in these separate outbreaks are identified 
as distinct clusters will depend on the genomic divergence of the 
introduced cases, as well as the diversity within the local disease pop-
ulation. These factors can be influenced by the rate of introduction and 
the transmission rate within the sampled population. 

Genomic clustering of SARS-CoV-2 sequences during the COVID-19 
pandemic presented a challenge due to rapid and extensive trans-
mission across multiple jurisdictions of strains with limited genomic 
diversity. Additionally, there were varying levels of strain diversity 
throughout the pandemic due to the emergence of different variants, 
which resulted in periods where multiple distinct strains were co- 
circulating (Stefanelli et al., 2022), along with very few periods where 
cases were almost exclusively caused by a single SARS-CoV-2 variant 
(Davies et al., 2021). These factors complicated the ability to identify a 
consistent but useful method for clustering SARS-CoV-2 cases and 
limited the utility of sequence-based genomic clustering (Bendall et al., 
2022). 

Here, we describe the utility and limitations of genomic clustering 
using sequence data under different epidemiological scenarios in path-
ogen outbreaks characterised by rapid transmission and relatively short 
infection time, such as COVID-19. Motivated by our experience of 
identifying clusters for public health surveillance during the COVID-19 
pandemic, we describe the diversity and structure of clusters found in 
SARS-CoV-2 WGS strains collected in British Columbia, Canada, using 
our recently developed method for genomic clustering, cov2clusters 
(Sobkowiak et al., 2022). We compare cov2clusters to standard SNP- 
based methods, with reference to simulated benchmarking data. 
Finally, we use simulated SARS-CoV-2 outbreaks to determine how 
clustering is shaped by the transmission rate and sampling fraction, 
including scenarios where outbreaks are seeded from introductions from 
outside pathogen populations with different levels of diversity at vary-
ing rates. The principles established through this work can be used to 
guide clustering methods and interpretation for surveillance and 
outbreak investigation for pathogens of public health importance. 

2. Methods 

2.1. SARS-CoV-2 whole genome sequence data 

Whole genome sequence data were obtained from SARS-CoV-2 
samples from 31,115 individuals in British Columbia, Canada 
collected between 15th March 2021 and 13th August 2021. These 

sequences are available through the GISAID database (Shu and 
McCauley, 2017). Full details of the DNA extraction, genomic 
sequencing and sequencing data analysis can be found in (Sobkowiak 
et al., 2022). Lineage calling was performed using the Pangolin lineage 
assignment tool (v.4.1.2) (Rambaut et al., 2020). 

2.2. The outbreak simulation model 

We used a stochastic susceptible-infectious-removed (SIR) model to 
simulate pathogen outbreaks based on the ‘simulateoutbreak’ function 
in the SEEDY package (v.1.3) (Worby and Read, 2015). This original 
function, written in R, simulates a complete outbreak in a single popu-
lation, beginning with one or more infected individuals introduced into 
a fully susceptible population. In the context, ‘outbreak’ refers to all 
cases in the population that arise from the initial infection, rather than 
other definitions such as a high concentration of cases over a given time. 
The user defines the size of the initial susceptible population (init.sus), 
the transmission rate in units of the average number of susceptible in-
dividuals infected per day (inf.rate), and recovery rate in units of the 
average number of infected individuals recovered per day (rem.rate). 
The outbreak will finish when no further individuals are infected. A 
minimum final outbreak size can be specified a priori, and the simula-
tion will repeat until this size is reached. The resulting output from the 
simulations includes a matrix identifying all infected individuals with 
their source of infection and a vector of nucleotide changes in the 
pathogen sequences of infected hosts. These outputs can be used to 
construct the full transmission tree and calculate pairwise SNP distances 
between infected hosts. 

We extended the functionality of this simulation tool to explore more 
epidemiological scenarios and to describe SARS-CoV-2 diversification. 
We modified the original source code of ‘simulateoutbreak’ to imple-
ment the following changes: 

We have two populations, named ‘inside’ and ‘outside’, to simulate 
transmission in multiple jurisdictions with different epidemiology. After 
the disease starts transmitting in the ‘outside’ population, infected cases 
can enter the ‘inside’ jurisdiction at a given rate. These cases can now 
transmit within the ‘inside’ population to seed new outbreaks. The pa-
rameters for this feature are 

- init.sus.in: the initial number of susceptible individuals inside. 
- min.cases.in: the desired minimum final size of the inside outbreak. 
- intr.rate: the probability of a new introduction at each time point. 
- inf.rate.in and inf.rate.out: the infection rate in the inside and 

outside populations, replacing the original parameter ‘inf.rate’. 
- mut.prob.site.in and mut.prob.site.out: the mutation probability 

per site per day of infected hosts in the inside and outside populations. 
- time.lag.outside: a specified time lag in the outside population 

before new introductions can enter the inside population. 
- min.perc.outside.inf: the minimum percentage of the outside 

population that must have been infected before new introductions can 
enter the inside population.  

1. We have a parameter to simulate diversity between the initially 
infected individuals when the number of initial infected individuals 
(init.inf) is >1. min.init.dist and max.init.dist require integer value 
for the SNP distance between an initially infected individual and the 
reference sequence (default = 0). If min.init.dist equals max.init.dist 
then this is a fixed value, otherwise the distance is randomly sampled 
between the minimum and maximum value.  

2. We have included two mutation rate parameters, mut.rate.in and 
mut.rate.out to allow for different rates in the inside and outside 
populations. This value represents the mutation rate in units of SNPs 
per site per day. Multiple SNPs can evolve between source and 
infection sequences at each transmission event. There is no within- 
host variation, and the pathogen genome is fixed in the host after 
infection. 
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3. When a susceptible individual passes to the infected compartment at 
time t, its source case is chosen at random from a pool of hosts in the 
infected compartment at time t - 1 that do not recover at time t and 
whose infection dates correspond to the date sampled from a gamma 
probability distribution, with user-defined shape (a) (shape.infect) 
and rate (l) (rate.infect) parameters. This parameter simulates a 
generation time distribution. In contrast, the original ‘simulateout-
break’ function in SEEDY chose the source case from all hosts in the 
infected compartment at time t uniformly at random. 

The function ‘simulate_outbreak’ and associated documentation can 
be found at github.com/bensobkowiak/Clustering_simulations. 

2.3. Genomic clustering of SARS-CoV-2 outbreaks 

Motivated in part by the need to refine very large clusters using 
additional information, we developed a clustering approach (‘cov2-
clusters’) that incorporates the genetic distance between two viral iso-
lates as well as the difference in collection times. The approach, based on 
a logit model, readily incorporates additional data if needed (these could 
include geographic location, known contact, exposure site or other 
variables). 

We used cov2clusters to produce genomic clusters from sequence 
data in both the real-world and simulated outbreaks (Sobkowiak et al., 
2022). This tool incorporates genomic distance and sampling times to 
estimate the probability of cases belonging to the same cluster using a 
logit model. We used the same genomic distance and date coefficients as 
used previously for SARS-CoV-2 clustering (β1 = 0.66, β2 = 0.075). We 
validated clustering using this model in simulated outbreaks against a 
logit model with the same genomic distance but no date information, 
and clusters produced using only pairwise SNP distance thresholds of 1, 
2, and 3 SNPs. All analysis was conducted in R (scripts available at gi 
thub.com/bensobkowiak/Clustering_simulations) and network plots 
illustrating genomic clusters in outbreaks were produced using ‘igraph’ 
(Csardi and Nepusz, 2006). 

2.4. Simulated SARS-CoV-2 outbreaks 

We used our pathogen outbreak simulation model to generate SARS- 
CoV-2 outbreaks under different epidemiological scenarios with varying 
sampling fractions and infection rates. Outbreaks were simulated with 
initial susceptible population sizes (init.sus) that produced final out-
breaks of 200 to 300 infected individuals. 

To validate the ability of cov2clusters to correctly cluster known 
sequences that are linked in transmission networks, outbreaks were 
simulated as single outbreaks in the ‘outside’ population, with varying 
infection and mutation rates, and sampling fractions. To simulate single 
‘outside’ outbreaks, the introduction rate and minimum inside outbreak 
size (intr.rate and min.cases.in) were set to 0. The infection rate (inf.rate. 
out) parameter was set to 0.6 and 0.25 with the same removal rate (rem. 
rate) of 0.2, equal to a reproduction number (R) of 3 and 1.25. We tested 
two values for the mutation rate (mut.rate.out) parameter of 1 × 10− 6 

and 5 × 10− 6 substitutions per site per day, which correspond to upper 
and lower estimates in SARS-CoV-2 (Li et al., 2022). Sampling fractions 
were changed by varying the probability of sampling an infected in-
dividuals using the binomial distribution, testing the sampling fractions 
of 0.1, 0.25, 0.5, and 1. 

Next, to assess the utility of genomic clustering to reflect the true 
underlying population structure under different outbreak scenarios, we 
first simulated single outbreaks, varying the infection rate and sampling 
fraction as before. We used a single mutation probability of 3 × 10− 6 

substitutions per site per day in both the inside and outside populations, 
which corresponds to the previously reported mutation rate of SARS- 
CoV-2 (Li et al., 2022). Genomic clustering was performed using a 

logit probability threshold of 0.8 and 100 simulated outbreaks per 
epidemiological scenario were used to calculate the clustering proper-
ties (the proportion of un-clustered sequences, the proportion of se-
quences in the largest cluster, and the number of proposed clusters). 

Finally, we tested simulations with both ‘inside’ and ‘outside’ pop-
ulations, where one or more infected cases circulating in the ‘outside’ 
population may give rise to an outbreak in the ‘inside’ population 
through introduction events. We looked at the impact of genomic clus-
tering in outbreaks within the ‘inside’ population at high and low 
infection rates (inf.rate.in = 0.6 and 0.25) and different levels of genomic 
diversity in the ‘outside’ population. To achieve varying levels of di-
versity in the ‘outside’ population, we initiated simulations with 20 
initially infected cases separated by either 0 SNPs for low diversity 
settings or with a pairwise divergence of between 15 and 25 SNPs for 
high diversity settings. We fixed the infection rate outside at 0.4 and ran 
the ‘outside’ simulation allowing for introduction events to the ‘inside’ 
population after 20% of outside susceptible individuals had been 
infected. We also investigated varying the rate of introduction of 
infected cases from the ‘outside’ population to the ‘inside’ (intr.rate =
0.5 and 0.1). Initial population sizes (init.sus and init.sus.in) were spec-
ified to produce outbreaks of between 200 and 300 infected individuals 
‘inside’, and between 150 and 250 infected individuals in the ‘outside’ 
population. We again explored clustering under different sampling 
probabilities of 0.1, 0.25, 0.5, and 1 and repeated all simulations for 100 
replicates to calculate cluster statistics. All scripts to produce simulated 
outbreaks are written in R and can be found at github.com/bensobkowi 
ak/Clustering_simulations. 

3. Results 

Fig. 1 illustrates the changing epidemiology over the study period, 
with rises and falls in reported COVID-19 cases, and commensurate rises 
and falls in the number of sequenced cases. The sequencing fraction (the 
proportion of confirmed cases for which there were sequence data) was 
relatively high, particularly in the summer of 2021 where there were 
sequences for most confirmed cases (Fig. 1A). Seroprevalence data also 
suggests that the ascertainment fraction (the number of cases reported 
vs true number of infections) was also likely to be high in BC during the 
study period (COVID-19 Immunity Task Force, 2021). In the first third of 
the time period, both B.1.1.7 (the Alpha variant) and P.1 (Gamma) were 
rising in BC. Following the introduction of public health restrictions 
(non-pharmaceutical interventions) including limiting social interaction 
to households only and a ban on non-essential travel within the prov-
ince, the number of cases began to fall. Even with the easing of some of 
the toughest restrictions (Government of British Columbia, 2021), this 
decline lasted until the introduction and rapid rise of the Delta variant 
(B.1.617.2 and AY.25) in the late summer of 2021. Both Gamma and 
Delta exhibited rapid rises in BC, with the rises of both Gamma and Delta 
AY.25 occurring shortly in BC after their first identification globally. In 
contrast, when Delta's B.1.617.2 sub-lineage rose in BC, this was several 
months after its dramatic rise in India in February 2021 (Kirola, 2021). 
This was similar in Alpha, which emerged globally months before its 
substantial rise in BC (Murall et al., 2021). 

The global diversity of each variant, and the epidemiology in BC as it 
arose, combined to shape the variants' SNP distance and clustering 
patterns. Fig. 1C shows the pairwise SNP distances among samples of 
each variant in each week. The Alpha variant had a relatively high 
pairwise SNP distance at the beginning of 2021, as did the B.1.617.2 
Delta types. In contrast, both P.1 (Gamma) and AY.25 (Delta) had very 
low pairwise SNP diversity in BC, consistent with very recent emergence 
globally at the relevant time. This difference is reflected in the clustering 
experience (Fig. 1D), with P.1 and AY.25 having high fractions of the 
sequences in one large cluster (the largest). Naturally, if a large part of 
the utility of sequencing is to group cases into small, well-distinguished 
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and meaningful clusters to guide public health action, having a high 
fraction of cases in one very large cluster is not informative. 

Next, we compare cov2clusters and SNP thresholds' ability to classify 
whether a direct transmission pair in a simulated outbreak is linked. 
Clustering with both SNP thresholds and cov2clusters work with pairs as 
their operational unit, first asking whether a pair of individuals should 
be linked (based on virus sequences and timing, or based only on se-
quences, respectively), and then creating clusters using connected 
components of the graph in which edges are created among all pairs that 
meet the criteria for being linked. Fig. 2 shows the results; in particular, 
we find that logit clustering achieves a higher model performance than 
SNP thresholds under all conditions (AUC 0.84–0.92 compared to the 
best performing SNP threshold of 1 SNP with AUC 0.55–0.83; Supple-
mentary Table 1). This performance is good in the context of correctly 
clustering transmission pairs in a pathogen characterised by low levels 
of diversity and incomplete sampling. 

The higher model performance of logit clustering compared to using 
only SNP distance is in part due to the discrete nature of SNP thresholds 
(1, 2, or 3 SNPs rather than a continuous distance), as well as to the 
inclusion of date information. Date information helps the most when the 
mutation rate is low (columns 1 and 3, compare the solid and dotted red 
lines), regardless of R. This is because under a low mutation rate, more 
sequences are genetically very similar, and adding date information 
reduces false positives (classifying a pair as a transmission pair when it is 
not). In contrast, when the mutation rate is higher, fewer sequences are 
very similar and true transmission links are likely to be the (rarer) pairs 

with very small genetic distance. We found that the sampling fraction 
does not have much effect on either methods' performance: under lower 
sampling there are fewer pairs overall, and so fewer false and true 
positives. 

We simulated outbreaks under different assumptions about sampling 
and the rate of growth and determined how this impacts the cluster 
structure. This helps to interpret the clustering patterns. We fixed a set 
mutation rate that corresponded to a realistic amount of genomic di-
versity over time in SARS-CoV-2 outbreaks of around 2 SNPs per month 
(Supplementary Fig. 1). Fig. 3 shows the results arising from single 
outbreaks simulated in one jurisdiction (or one importation event per 
outbreak). In this context, the “truth” is that there is one large cluster: 
every case (except the index) results from transmission from another 
individual in the jurisdiction, who could have been sampled. We find 
that a lower sampling fraction gives rise to apparent cluster structure in 
the data, due to missing intermediate cases (Fig. 3A). Thus, while the 
truth is that all the cases are linked (and there are no subpopulations 
with shared exposure sites, high-risk settings, households, workplaces 
and so on), cases appear to be grouped into small clusters. This effect is 
particularly pronounced at lower values of R, when transmission chains 
are more chain-like (one person to the next to the next) and is less 
pronounced when R is higher (individuals infect three others on 
average). We note that we simulated until we reached a fixed outbreak 
size range, so the outbreak durations differ. The spurious break-up of the 
one true cluster is summarized in the measures shown in Figs. 3B-E. The 
portion of cases not in a cluster is significantly higher at lower R than 

Fig. 1. BC SARS-CoV-2 sequence data for samples collected between 3rd March 2021 and 13th August 2021. A) Daily cases reported, and the daily number of 
sequences collected over the study period. B) The daily number of sequenced cases by the four major variants of concern (VOCs). C) The weekly pairwise SNP 
distance by VOC. D) The proportion of sequences in the largest VOC cluster by week, identified by cov2clusters. 

B. Sobkowiak et al.                                                                                                                                                                                                                             



Infection, Genetics and Evolution 113 (2023) 105484

5

higher R at all sampling fractions except 0.5 (Fig. 3B; two sample t-test P 
< 0.05), and the proportion of sequences in the largest cluster is lower at 
lower R at all sampling fractions (Fig. 3B; two sample t-test P < 0.05). 
We also find more instances where clustering predicts two or more 
clusters in simulations with a low R than higher R (Fig. 3E). 

The size and membership of clusters was sensitive to changes in the 
logit probability threshold to link cases (Supplementary Fig. 2). As 
would be expected, the true cluster broke up into a higher number of 
smaller genomic clusters and an increased number of unclustered cases 
when we used a higher probability threshold (0.9). Notably, outbreaks 
simulated with a lower R were more sensitive to changes in the proba-
bility threshold than outbreaks simulated at higher R, with a far greater 
difference in the proportion of unclustered cases and cases in the largest 
cluster when the probability threshold changed from 0.5 to 0.9. The 
differences in clustering at higher and lower thresholds were also most 
pronounced at lower sampling fractions, with far fewer cases assigned to 
the largest genomic cluster when using a high probability threshold 
compared to a low threshold at lower sampling fractions. This suggests 
that the fragility of clustering patterns to the choice of threshold may be 
informative as to whether cluster structure is at least in part an artefact 
of incomplete sampling. 

Finally, we carried out simulations of outbreaks that co-occur inside 
a sampled jurisdiction, after being seeded by introduced cases from an 
outside circulating pathogen population. Fig. 4 shows the impact of 
varying R in the sampled jurisdiction, the genomic diversity in the 
outside population, and the sampling fraction, in different scenarios 
with multiple introductions. When genomic diversity is high in the 
population from which cases are being introduced into the sampled 
population, we identified a high number of distinct genomic clusters 

from separate introductions with complete sampling, irrespective of R. 
In this context, clustering has high utility for distinguishing among 
chains of transmission; the Alpha variant in 2021 is an example (Fig. 1): 
whether cases were rising or falling, high diversity in Canada and 
internationally would give discriminating power to clustering tools. This 
scenario also reflects a scenario in which sampling is done primarily in 
high-risk settings within a jurisdiction, for example, high diversity of a 
virus in the general community (“outside”; rarely sampled) with out-
breaks in high-risk settings (“inside”; well-sampled). 

Both high transmission and low diversity in the global pool from 
which cases are introduced lead to the challenge that sometimes, many 
or even most cases are grouped into one very large cluster. In British 
Columbia, this occurred in the P.1 (Gamma) and AY.25 (Delta) out-
breaks, which had low global diversity at the time and were highly 
transmissible. In this context, there is truth in the “one very large clus-
ter” - with rapid transmission of an obligate human pathogen, and high 
sampling, many cases may genuinely be linked, via rapid (and poten-
tially long) transmission chains in the jurisdiction. There is also likely 
some spurious grouping of distinct introductions, due to low global di-
versity. Reducing sampling or changing the clustering threshold did not 
separate the isolates into well-resolved smaller clusters, likely due to the 
lack of genuine cluster structure in the population. 

The scenario in the top row of Fig. 4B, with high “outside” diversity 
and high transmission, depicts the context for SARS-CoV-2 clustering 
since the pandemic has moved towards an endemic phase. Sampling is 
taking place primarily in high-risk settings (a high transmission “inside” 
jurisdiction), while both globally and in the community (which is much 
less sampled), diversity is high. Accordingly, outbreaks are well- 
separated, and clustering performs well. In contrast, when introduced 

Fig. 2. Validation of the cov2clusters tool. ROC curves for clustering in simulated outbreaks, comparing logit clustering with only genomic distance, genomic 
distance and dates, and clustering by pairwise SNP distance at 1, 2, and 3 SNP thresholds. High and low R and mutation rate was tested, and the sampling fraction 
increased from 0.1, 0.25, 0.50, to 1. The first 2 columns are from simulations with low R (1.25), with low (1st column) and high (2nd column) mutation probability 
per site. In the rightmost two columns, R was high (3), with low (3rd column) and high (4th column) mutation probability per site. 
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cases were closely related, some outbreaks seeded from different in-
troductions were still classed as the same genomic cluster. Lowering the 
sampling fraction had a greater impact on the number and completeness 
of clusters when R was low, with a greater increase in the proportion of 
cases classified as un-clustered at the lower sampling fraction with both 
high and low outside diversity (Fig. 4C). This is in line with the results 
shown in Fig. 3, where transmission networks are more chain-like in low 
R so not sampling some intermediate cases can give rise to spurious 
cluster structure. We have summarized the clustering patterns under our 
scenarios, along with suggestions for appropriate actions, in Table 1. 

Overall, the same clustering patterns were found when the rate of 
introduced cases into the sampled jurisdiction was lowered from a 

probability of 0.5 to 0.1 introductions per day, though with a lower 
proportion of unclustered cases and a higher majority of cases in one, 
large cluster (Supplementary Fig. 3). With fewer introductions, trans-
mission is more likely to occur from infected cases in existing outbreaks 
than by new introductions or cases from new outbreaks. The biggest 
difference observed with a lower introduction rate was that a higher 
number of clusters were identified at low R than high R when the 
sampling fraction was low. This was due to a greater effect of not sam-
pling the intermediate cases in chain-like outbreaks (supplementary 
Fig. 4C). 

Fig. 3. Simulated single outbreaks of infected individuals at low and high R, with 100 replicates per R to calculate clustering properties. A) Graph plots of example 
simulated outbreaks at low (1.25) and high (3) R and varying sampling fraction. Nodes are coloured by genomic clusters, with nodes belonging to the largest cluster 
coloured red and non-clustered nodes coloured light blue. All other colours represent smaller clusters. Unsampled cases are small, grey nodes. B) The mean pro-
portion of sequences that were assigned as un-clustered, C) the mean proportion of sequences assigned to the largest cluster, and D) the number of clusters predicted, 
in 100 replicate outbreaks. Final outbreaks are simulated to be between 200 and 300 infected individuals. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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4. Discussion 

Here we used simulations to explore clustering using pathogen whole 
genome sequence data under various epidemiological and sampling 
scenarios in the context of SARS-CoV-2. The behaviour and apparent 
utility of clustering as a tool in genomic epidemiology depends on the 
contextual factors we have explored: the epidemiology of the pathogen, 
its genomic diversity, the sampling level, and the relationship between 
the jurisdiction in which sampling and analysis is done and the rest of 
the world. These exhibit a complex interplay that acts to shape the di-
versity, cluster sizes, and the extent to which the apparent cluster 
structure mirrors the true population structure. 

For genomic clustering to be of most use for epidemiological inves-
tigation, cluster sizes would be small to intermediate, and each cluster 
would not represent a high portion of the total number of sequences, 
unless the number of sequences is small. Additionally, predicted clusters 
should reflect the true population structure, with clusters delineated into 
outbreaks or transmission clusters seeded from different index cases or 
that are significantly different in time and geography. We have found 
that the underlying epidemiology and evolution of the pathogen, along 
with the proportion of cases that were sampled and sequenced, can 
impact whether the clusters we identify are reflective of the disease 
population. Several mechanisms lead to clustering that does not reflect 

the population structure; spurious break-up of clusters due to missing 
intermediate cases (affecting lower-transmission contexts most) and 
spuriously joined clusters (significant in high-transmission contexts, 
especially when global diversity is low). In addition, it can be the case 
that there is no underlying clustering structure to find and there genu-
inely is one very large cluster. 

The key phenomena that we observed in British Columbia during the 
COVID-19 pandemic are mirrored here: rapid transmission, particularly 
of a new variant such as P1 (Gamma), resulted in low genetic diversity 
per transmission event, and therefore, very large clusters. These large 
clusters likely include multiple true outbreaks comprising different 
introduction events and transmission settings. This complicated the 
ability to identify clusters at a resolution that would be helpful for 
epidemiological investigation. The “one very large cluster” problem may 
be worse than it appears, because with incomplete sampling, some links 
to a cluster are lost, and clusters can be spuriously broken up. 
Conversely, seemingly more useful, smaller clusters can be found in 
contexts when they do not reflect the true population structure. In this 
case, it may not be appropriate to use clusters and their membership as a 
basis for onward actions. In Table 1, we present some recommendations 
for when clustering may be useful under different epidemiological and 
sampling scenarios. 

Fig. 4. Graph plots of clustering in example simulated outbreaks ‘inside’ a sampled jurisdiction seeded from introduced infected cases from an ‘outside’ population 
with high and low genomic diversity and a high introduction rate of 0.5. Simulations were run with A) low and B) high infection rate ‘inside’ (R = 1.25 and R = 3), 
and clustering at sampling fraction of 1 and 0.25 was compared to true outbreaks. Nodes are coloured by genomic clusters, with nodes belonging to the largest cluster 
coloured red and non-clustered nodes coloured light blue. All other colours represent smaller clusters. Unsampled cases are small, grey nodes. C) The mean pro-
portion of sequences that were assigned as un-clustered, D) the mean proportion of sequences assigned to the largest cluster, and E) the number of clusters predicted 
per introduced outbreak (cases introduced into the inside population that transmitted to at least one susceptible individual), in 100 replicate outbreaks. Final 
outbreaks are simulated to be between 200 and 300 infected individuals. Final outbreaks are simulated to be between 200 and 300 infected individuals in the ‘inside’ 
population, and 100 replicates per outbreak scenario to calculate clustering properties. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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In our simulations we consider differences in R and sampling but 
keep a fixed mutation rate across our population through time, which 
may not be reflective of the true evolutionary dynamics. There is some 
evidence of variation in the non-synonymous mutation rate through 
time (Neher, 2022), though the overall SARS-CoV-2 mutation rate is 
similar between VOCs (Markov et al., 2023). Clustering patterns may be 
affected by mutation rate differences between strains (e.g., differences in 
mutation rates between TB lineages (Ford et al., 2013)) or where there 
may be heterogeneity in the mutation rate (e.g., adaptive response to 
environmental pressure (Matic, 2019). As genomic clustering requires 
either a distance or probability threshold, differences in mutation rate 
across the tested population may necessitate some informed decision on 
how to set appropriate thresholds in these scenarios or the testing of 
multiple thresholds. A limitation of our model is that we set a single 
value for R and sampling fraction throughout the outbreak simulations, 
which is not reflective of the true epidemiology and sampling through 
the COVID-19 pandemic. Future work to extend the model and inves-
tigate dynamic scenarios would allow for further exploration of clus-
tering in different epidemiological contexts, including periods where R 
is lower than 1 and the disease is declining. 

While we have simulated outbreaks based on the epidemiology of 
SARS-CoV-2, the findings presented here could be interpreted in respect 
to outbreaks of other pathogens that primarily spread through human- 
to-human transmission. Clustering from genomic sequence data has 
been used extensively to characterize tuberculosis (TB) outbreaks and 
detect signatures of recent transmission between cases (Nikolayevskyy 
et al., 2019). The long evolutionary history of TB has given rise to 
divergent lineages and sub-lineages (Napier et al., 2020), which can 
result in outbreaks of distinct genomically identical or near-identical 
clusters in periods of high transmission (Casali et al., 2016). This mir-
rors our simulations where inside outbreaks were seeded by diverse 
introductions, which allowed for clustering to capture the true popula-
tion structure. Similarly, some viral pathogens, such as human immu-
nodeficiency virus (HIV), evolve rapidly and so clustering can be used to 
detect periods of elevated transmission where lower diversity clusters 
are detected compared to the expected divergence over time (Chato 
et al., 2022), again reflecting our simulations with high outside diversity 
and high R inside the sampled jurisdiction. In contrast, factors such as a 

low mutation rate and population bottlenecks can reduce the diversity in 
some pathogens (e.g., human herpesviruses (López-Muñoz et al., 2021) 
and mpox (Isidro et al., 2022)). Thus, clustering may not capture the 
true population structure, and spurious clustering may occur where the 
proportion of sampled cases is low. 

Different pathogens will have different molecular clock rates and 
levels of diversity as measured in SNP distances (or SNPs per site in the 
genome); mpox, for example, has low genetic diversity for its genome 
length, and low transmission. For our purposes, “low diversity” has 
meant that two outbreaks that one might wish to distinguish with 
genomic tools are similar enough to each other that there is a reasonable 
probability that they would be grouped together as one cluster. This of 
course depends on the cluster threshold, but also on whether the global - 
local epidemiology is such that multiple outbreaks are drawn from a 
very similar pathogen pool, and on whether the diversification rate and 
bioinformatic ability to detect variation is sufficient. It also depends on 
the level of resolution at which public health investigators need to 
distinguish outbreaks: it may be very feasible to classify an outbreak by 
pathogen lineage or clade, but not feasible to distinguish introductions 
from a nearby jurisdiction where the same lineages are spreading. On a 
similar note, the sampling fraction will vary over time and by pathogen, 
and the number of unknown cases may be uncertain. 

5. Conclusion 

We have shown how epidemiological and evolutionary factors, along 
with the proportion of cases sampled, can influence how representative 
genomic clustering patterns are of the true population structure. Large 
clusters with little utility for informing epidemiological investigation of 
disease outbreaks can result from populations experiencing high trans-
mission rates where pathogen diversity is relatively low, as demon-
strated here with simulations of SARS-CoV-2 transmission clusters. 
Furthermore, the spurious breakup of clusters into smaller groups that 
do not reflect true differences in the underlying population structure can 
occur when the transmission rate is low, and cases are missed from 
incomplete sampling. In contrast, when standing diversity is high, 
distinct outbreaks can be effectively identified using genomic clustering, 
and these clusters are particularly robust to changes in the sampling 

Fig. 4. (continued). 
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fraction and clustering thresholds when the transmission rate is high. 
These findings, along with our recommendations, can provide guide-
lines for carrying out genomic clustering and interpreting the results in 
the context of the true epidemiology under different scenarios. 
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Table 1 
Recommended guidelines and actions given the likely clustering patterns identified under a range of epidemiological and sampling scenarios.  

Transmission inside 
jurisdiction (Example 
figure) 

Outside diversity 
and introductions 

Sampling Clustering properties Does 
clustering 
appear to be 
useful? 

Does the 
clustering reflect 
the true 
population 
structure? 

Action 

Low general transmission 
(Fig. 3A, top row) 

Single jurisdiction 
(one introduction) 

High One large cluster. No: one large 
cluster 

Yes Use methods incorporating data on 
individuals or exposure sites, not just 
clusters. 

Low Multiple distinct clusters of high 
apparent utility. Spurious break- 
up: some apparently unclustered 
cases should be clustered, but 
links are missing. 

Yes No Additional case-finding and 
sampling where warranted. Explore 
impact of cluster thresholds and 
sampling 

High general transmission 
(Fig. 3A, bottom row) 

Single jurisdiction 
(one introduction) 

High Very large clusters No Yes Use methods incorporating data on 
individuals or exposure sites, not just 
clusters. 

Low Large clusters persist due to low 
diversity per transmission event 

No Yes 

Low transmission in 
sampled jurisdiction ( 
Fig. 4A, top row) 

High global pool of 
diversity, multiple 
introductions. 

High Distinct clusters for distinct (and 
diverse) introductions; some 
spurious break-up of clusters 

Yes Yes Proceed with clustering using 
genomic data. 

Low Distinct clusters for distinct 
introductions, more spurious 
break-up 

Yes Mostly Additional case-finding and 
sampling where warranted. Explore 
impact of cluster thresholds and 
sampling 

Low transmission in 
sampled jurisdiction ( 
Fig. 4A, bottom row) 

Low global pool of 
diversity, multiple 
introductions. 

High Large clusters result from 
erroneous merging of distinct 
introductions. Some distinct 
clusters are still detectable. 

Partly Partly Use methods incorporating data on 
individuals or exposure sites, not just 
clusters. 

Low Two things can go wrong: (1) 
large clusters due to erroneous 
merging (low-diversity 
introduction) and (2) spurious 
cluster break-up. 

Yes No Determine whether clusters reflect 
transmission links, or spurious 
joining and breakup in combination: 
combine using additional data with 
additional case-finding and impact 
of cluster thresholds. 

High transmission in 
sampled jurisdiction ( 
Fig. 4B, top row)  

E.g., ongoing 
unsampled community 
transmission, sampling 
in high-transmission 
settings.a 

High global pool of 
diversity, multiple 
introductions. 

High Multiple distinct clusters 
associated with distinct 
introductions. Community level: 
there may be very large clusters 
due to rapid transmission in the 
jurisdiction. 

Yes Yes Proceed with clustering using 
genomic data.Use methods 
incorporating data on individuals or 
exposure sites, not just clusters. 

Low Multiple clusters associated with 
distinct introductions; reduced 
sampling does not sufficiently 
break up large clusters. 

Yes Yes Additional case-finding and 
sampling where warranted. Explore 
impact of cluster thresholds and 
sampling 

High transmission in 
sampled jurisdictionb ( 
Fig. 4B, bottom row) 

Low global pool of 
diversity, multiple 
introductions. 

High Likely to see large clusters. 
Low global diversity can lead to 
erroneous merging of distinct 
introductions 

No No Use methods incorporating data on 
individuals or exposure sites, not just 
clusters. 

Low No No  

a This scenario represents the COVID-19 in British Columbia when the situation has moved towards the endemic phase, with low community sampling, a diverse 
circulating viral pool, and higher sampling in high-transmission, high-risk settings. 

b This scenario reflects the experience with P.1 and AY.25, which had low (local and global) diversity, rapid transmission and very large clusters that were not 
divided under a different choice of threshold. 
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Data availability 

Whole genome sequence data included in this study are deposited in 
the GISAID repository https://www.gisaid.org. All code used in this 
study is available at: https://github.com/bensobkowiak/Clustering_ 
simulations. 
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