|
Alan Diener Person1 #686719 Dr. Diener is the Assistant Director of the Policy Research, Economics and Analytics unit, in the Strategic Policy Branch at Health Canada. Alan received his PhD in economics from McMaster University and he has previously held positions at the University of Nebraska Medical Center, the Public Health Agency of Canada, and the Organisation for Economic Cooperation and Development (OECD) where he was a consultant in the Health Division from 2011 to 2013. | - Alan’s research interests include public health economics, economic evaluation, health expenditures, and financing of the health care system. While at the OECD, Alan contributed to the international guidelines on deriving expenditures by disease age and gender, and he has undertaken extensive work in the field examining methods to provide more valid and reliable estimates. In addition to the aforementioned research interests, Alan is currently engaged in work examining activity-based funding and long-term care.
Tags: Canadian Centre for Health Economics |
+Citations (2) - CitationsAdd new citationList by: CiterankMapLink[2] Assessing the epidemiological and economic impact of alternative vaccination strategies: a modeling study
Author: S. Kim, S. Athar, Y. LI, S. Koumarianos, T. Cheng, L. Amiri, W. Avusuglo, W.A. Woldegerima, A.A. Fall, A. John-Baptiste, A. Diener, J. Wu Publication date: 28 February 2022 Publication info: International Journal of Infectious Diseases, 116, S60–S60, March 2022. Cited by: David Price 7:43 PM 24 November 2023 GMT Citerank: (6) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 701037MfPH – Publications144B5ACA0, 703957Economics859FDEF6, 704041Vaccination859FDEF6, 704045Covid-19859FDEF6, 715767Woldegebriel Assefa WoldegerimaDr. Woldegerima, knows as "Assefa", is an Assistant Professor at the Department of Mathematics and Statistics at York University.10019D3ABAB URL: DOI: https://doi.org/10.1016/j.ijid.2021.12.142
| Excerpt / Summary [International Journal of Infectious Diseases, 28 February 2022]
Purpose: Given limited supplies of vaccines, having information on the costs, and associated health and economic impacts, is important for the development of optimal vaccination strategies. This study explores the epidemiological and economic impact, in terms of the value of lost production, of four vaccination strategies – fixed-dose interval (M1), prioritization of the first dose (M2), screen and forego vaccine for those with COVID-19 infection history (M3), and prioritization of the first dose along with screen and forego vaccine for those with COVID-19 infection history(M4), under constraints limiting the daily vaccine supply.
Methods & Materials: Using mathematical and statistical modelling, we quantified the number quarantined, hospitalization days, vaccine doses saved, and deaths averted, and production losses, for each strategy, in comparison to M1. The model parameters and initial conditions were based on Canadian data, and the simulation ran over 365 days starting from June 1, 2021. Sensitivity analyses explored how each strategy changes with different conditions of daily vaccine supply, the initial proportion recovered from COVID19 infection, and initial coverage of the first dose.
Results: Strategy M2 results in a reduction of 67,130,775 doses of vaccine administered, 20 lives saved, and a reduction of $3.8 billion of lost production in comparison to M1. M3 does not save any vaccine dose administered, but results in 5 lives saved, and a reduction of $575,149 in lost production in comparison to strategy M1. Due to the large proportion of the Canadian population who have already received a first vaccine dose, no screening actually occurs under scenario M3 and the daily vaccine supply was used entirely to provide second doses. While M2 is the dominant strategy under the current Canadian setting, sensitivity analyses revealed that M3 dominates when the vaccine supply increased or when the initial recovered proportion from COVID-19 was large enough.
Conclusion: The findings quantify the potential benefits of alternative vaccination strategies that can save lives and costs. Our study findings can help policymakers identify the optimal COVID19 vaccination strategy and our study framework can be adapted to other settings. |
|
|