|
Huaiping Zhu Person1 #679797 Professor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). | |
+Citations (9) - CitationsAdd new citationList by: CiterankMapLink[2] Assessing the mechanism of citywide test-trace-isolate Zero-COVID policy and exit strategy of COVID-19 pandemic
Author: Pei Yuan, Yi Tan, Liu Yang, Elena Aruffo, Nicholas H. Ogden, Guojing Yang, Haixia Lu, Zhigui Lin, Weichuan Lin, Wenjun Ma, Meng Fan, Kaifa Wang, Jianhe Shen, Tianmu Chen, Huaiping Zhu Publication date: 4 October 2022 Publication info: Infectious Diseases of Poverty, Volume 11, Article number: 104 (2022) Cited by: David Price 1:50 PM 18 November 2023 GMT Citerank: (2) 701222OMNI – Publications144B5ACA0, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB URL: DOI: https://doi.org/10.1186/s40249-022-01030-7
| Excerpt / Summary [Infectious Diseases of Poverty, 4 October 2022]
Background: Countries that aimed for eliminating the cases of COVID-19 with test-trace-isolate policy are found to have lower infections, deaths, and better economic performance, compared with those that opted for other mitigation strategies. However, the continuous evolution of new strains has raised the question of whether COVID-19 eradication is still possible given the limited public health response capacity and fatigue of the epidemic. We aim to investigate the mechanism of the Zero-COVID policy on outbreak containment, and to explore the possibility of eradication of Omicron transmission using the citywide test-trace-isolate (CTTI) strategy.
Methods: We develop a compartmental model incorporating the CTTI Zero-COVID policy to understand how it contributes to the SARS-CoV-2 elimination. We employ our model to mimic the Delta outbreak in Fujian Province, China, from September 10 to October 9, 2021, and the Omicron outbreak in Jilin Province, China for the period from March 1 to April 1, 2022. Projections and sensitivity analyses were conducted using dynamical system and Latin Hypercube Sampling/ Partial Rank Correlation Coefficient (PRCC).
Results: Calibration results of the model estimate the Fujian Delta outbreak can end in 30 (95% confidence interval CI: 28–33) days, after 10 (95% CI: 9–11) rounds of citywide testing. The emerging Jilin Omicron outbreak may achieve zero COVID cases in 50 (95% CI: 41–57) days if supported with sufficient public health resources and population compliance, which shows the effectiveness of the CTTI Zero-COVID policy.
Conclusions: The CTTI policy shows the capacity for the eradication of the Delta outbreaks and also the Omicron outbreaks. Nonetheless, the implementation of radical CTTI is challenging, which requires routine monitoring for early detection, adequate testing capacity, efficient contact tracing, and high isolation compliance, which constrain its benefits in regions with limited resources. Moreover, these challenges become even more acute in the face of more contagious variants with a high proportion of asymptomatic cases. Hence, in regions where CTTI is not possible, personal protection, public health control measures, and vaccination are indispensable for mitigating and exiting the COVID-19 pandemic. |
Link[3] Modeling vaccination and control strategies for outbreaks of monkeypox at gatherings
Author: Pei Yuan, Yi Tan, Liu Yang, Nicholas H. Ogden, Jacques Bélair, Julien Arino, Jane Heffernan, James Watmough, Hélène Carabin, Huaiping Zhu Publication date: 25 November 2022 Publication info: Front. Public Health, 25 November 2022 Cited by: David Price 2:11 PM 18 November 2023 GMT
Citerank: (8) 679793Hélène CarabinCanada Research Chair and Full Professor, Epidemiology and One Health, Université de Montréal10019D3ABAB, 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701222OMNI – Publications144B5ACA0, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB, 715667Monkeypox859FDEF6 URL: DOI: https://doi.org/10.3389/fpubh.2022.1026489
| Excerpt / Summary [Frontiers in Public Health, 25 November 2022]
Background: The monkeypox outbreak in non-endemic countries in recent months has led the World Health Organization (WHO) to declare a public health emergency of international concern (PHEIC). It is thought that festivals, parties, and other gatherings may have contributed to the outbreak.
Methods: We considered a hypothetical metropolitan city and modeled the transmission of the monkeypox virus in humans in a high-risk group (HRG) and a low-risk group (LRG) using a Susceptible-Exposed-Infectious-Recovered (SEIR) model and incorporated gathering events. Model simulations assessed how the vaccination strategies combined with other public health measures can contribute to mitigating or halting outbreaks from mass gathering events.
Results: The risk of a monkeypox outbreak was high when mass gathering events occurred in the absence of public health control measures. However, the outbreaks were controlled by isolating cases and vaccinating their close contacts. Furthermore, contact tracing, vaccinating, and isolating close contacts, if they can be implemented, were more effective for the containment of monkeypox transmission during summer gatherings than a broad vaccination campaign among HRG, when accounting for the low vaccination coverage in the overall population, and the time needed for the development of the immune responses. Reducing the number of attendees and effective contacts during the gathering could also prevent a burgeoning outbreak, as could restricting attendance through vaccination requirements.
Conclusion: Monkeypox outbreaks following mass gatherings can be made less likely with some restrictions on either the number and density of attendees in the gathering or vaccination requirements. The ring vaccination strategy inoculating close contacts of confirmed cases may not be enough to prevent potential outbreaks; however, mass gatherings can be rendered less risky if that strategy is combined with public health measures, including identifying and isolating cases and contact tracing. Compliance with the community and promotion of awareness are also indispensable to containing the outbreak. |
Link[4] Assessing transmission risks and control strategy for monkeypox as an emerging zoonosis in a metropolitan area
Author: Pei Yuan, Yi Tan, Liu Yang, Nicholas H. Ogden, Jacques Bélair, Jane Heffernan, Julien Arino, James Watmough, Hélène Carabin, Huaiping Zhu Publication date: 11 September 2022 Publication info: Journal of Medical Virology, Volume 95, Issue 1 e28137 Cited by: David Price 2:27 PM 18 November 2023 GMT
Citerank: (8) 679793Hélène CarabinCanada Research Chair and Full Professor, Epidemiology and One Health, Université de Montréal10019D3ABAB, 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701222OMNI – Publications144B5ACA0, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB, 715667Monkeypox859FDEF6 URL: DOI: https://doi.org/10.1002/jmv.28137
| Excerpt / Summary [Journal of Medical Virology, 11 September 2022]
To model the spread of monkeypox (MPX) in a metropolitan area for assessing the risk of possible outbreaks, and identifying essential public health measures to contain the virus spread. The animal reservoir is the key element in the modeling of zoonotic disease. Using a One Health approach, we model the spread of the MPX virus in humans considering potential animal hosts such as rodents (e.g., rats, mice, squirrels, chipmunks, etc.) and emphasize their role and transmission of the virus in a high-risk group, including gay and bisexual men-who-have-sex-with-men (gbMSM). From model and sensitivity analysis, we identify key public health factors and present scenarios under different transmission assumptions. We find that the MPX virus may spill over from gbMSM high-risk groups to broader populations if the efficiency of transmission increases in the higher-risk group. However, the risk of outbreak can be greatly reduced if at least 65% of symptomatic cases can be isolated and their contacts traced and quarantined. In addition, infections in an animal reservoir will exacerbate MPX transmission risk in the human population. Regions or communities with a higher proportion of gbMSM individuals need greater public health attention. Tracing and quarantine (or “effective quarantine” by postexposure vaccination) of contacts with MPX cases in high-risk groups would have a significant effect on controlling the spreading. Also, monitoring for animal infections would be prudent. |
Link[5] Community structured model for vaccine strategies to control COVID19 spread: A mathematical study
Author: Elena Aruffo, Pei Yuan, Yi Tan, Evgenia Gatov, Effie Gournis, Sarah Collier, Nick Ogden, Jacques Bélair, Huaiping Zhu Publication date: 27 October 2022 Publication info: PLoS ONE 17(10): e0258648 Cited by: David Price 3:11 PM 19 November 2023 GMT Citerank: (4) 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 701037MfPH – Publications144B5ACA0, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada – April 2023 [1] 2794CAE1, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB URL: DOI: https://doi.org/10.1371/journal.pone.0258648
| Excerpt / Summary [PLoS ONE, 27 October 2022]
Initial efforts to mitigate the COVID-19 pandemic have relied heavily on non-pharmaceutical interventions (NPIs), including physical distancing, hand hygiene, and mask-wearing. However, an effective vaccine is essential to containing the spread of the virus. We developed a compartmental model to examine different vaccine strategies for controlling the spread of COVID-19. Our framework accounts for testing rates, test-turnaround times, and vaccination waning immunity. Using reported case data from the city of Toronto, Canada between Mar-Dec, 2020 we defined epidemic phases of infection using contact rates as well as the probability of transmission upon contact. We investigated the impact of vaccine distribution by comparing different permutations of waning immunity, vaccine coverage and efficacy throughout various stages of NPI’s relaxation in terms of cases and deaths. The basic reproduction number is also studied. We observed that widespread vaccine coverage substantially reduced the number of cases and deaths. Under phases with high transmission, an early or late reopening will result in new resurgence of the infection, even with the highest coverage. On the other hand, under phases with lower transmission, 60% of coverage is enough to prevent new infections. Our analysis of R0 showed that the basic reproduction number is reduced by decreasing the tests turnaround time and transmission in the household. While we found that household transmission can decrease following the introduction of a vaccine, public health efforts to reduce test turnaround times remain important for virus containment. |
Link[6] Mathematical modelling of vaccination rollout and NPIs lifting on COVID-19 transmission with VOC: a case study in Toronto, Canada
Author: Elena Aruffo, Pei Yuan, Yi Tan, Evgenia Gatov, Iain Moyles, Jacques Bélair, James Watmough, Sarah Collier, Julien Arino, Huaiping Zhu Publication date: 15 July 2022 Publication info: BMC Public Health, Volume 22, Article number: 1349 (2022) Cited by: David Price 6:49 PM 20 November 2023 GMT
Citerank: (7) 679799Iain MoylesAssistant Professor in the Department of Mathematics and Statistics at York University. 10019D3ABAB, 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701222OMNI – Publications144B5ACA0, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada – April 2023 [1] 2794CAE1, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6 URL: DOI: https://doi.org/10.1186/s12889-022-13597-9
| Excerpt / Summary [BMC Public Health, 15 July 2022]
Background: Since December 2020, public health agencies have implemented a variety of vaccination strategies to curb the spread of SARS-CoV-2, along with pre-existing Nonpharmaceutical Interventions (NPIs). Initial strategies focused on vaccinating the elderly to prevent hospitalizations and deaths, but with vaccines becoming available to the broader population, it became important to determine the optimal strategy to enable the safe lifting of NPIs while avoiding virus resurgence.
Methods: We extended the classic deterministic SIR compartmental disease-transmission model to simulate the lifting of NPIs under different vaccine rollout scenarios. Using case and vaccination data from Toronto, Canada between December 28, 2020, and May 19, 2021, we estimated transmission throughout past stages of NPI escalation/relaxation to compare the impact of lifting NPIs on different dates on cases, hospitalizations, and deaths, given varying degrees of vaccine coverages by 20-year age groups, accounting for waning immunity.
Results: We found that, once coverage among the elderly is high enough (80% with at least one dose), the main age groups to target are 20–39 and 40–59 years, wherein first-dose coverage of at least 70% by mid-June 2021 is needed to minimize the possibility of resurgence if NPIs are to be lifted in the summer. While a resurgence was observed for every scenario of NPI lifting, we also found that under an optimistic vaccination coverage (70% coverage by mid-June, along with postponing reopening from August 2021 to September 2021) can reduce case counts and severe outcomes by roughly 57% by December 31, 2021.
Conclusions: Our results suggest that focusing the vaccination strategy on the working-age population can curb the spread of SARS-CoV-2. However, even with high vaccination coverage in adults, increasing contacts and easing protective personal behaviours is not advisable since a resurgence is expected to occur, especially with an earlier reopening. |
Link[7] Delayed Model for the Transmission and Control of COVID-19 with Fangcang Shelter Hospitals
Author: Guihong Fan, Juan Li, Jacques Bélair, Huaiping Zhu Publication date: 1 February 2023 Publication info: Siam Journal on Applied Mathematics, 83(1), 276–301 Cited by: David Price 11:56 PM 22 November 2023 GMT Citerank: (2) 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 701037MfPH – Publications144B5ACA0 URL: DOI: https://doi.org/10.1137/21m146154x
| Excerpt / Summary [Siam Journal on Applied Mathematics, February 2023]
The ongoing coronavirus disease 2019 (COVID-19) pandemic poses a huge threat to global public health. Motivated by China’s experience of using Fangcang shelter hospitals (FSHs) to successfully combat the epidemic in its initial stages, we present a two-stage delay model considering the average waiting time of patients’ admission to study the impact of hospital beds and centralized quarantine on mitigating and controlling of the outbreak. We compute the basic reproduction number in terms of the hospital resources and perform a sensitivity analysis of the average waiting times of patients before admission to the hospitals. We conclude that, while designated hospitals save lives in severely infected individuals, the FSHs played a key role in mitigating and eventually curbing the epidemic. We also quantified some key epidemiological indicators, such as the final size of infections and deaths, the peak height and its timing, and the maximum occupation of beds in FSHs. Our study suggests that, for a jurisdiction (region or country) still struggling with COVID-19, when possible, it is essential to increase testing capacity and use a centralized quarantine to massively reduce the severity and magnitude of the epidemic that follows. |
Link[8] The Impact of Quarantine and Medical Resources on the Control of COVID-19 in Wuhan based on a Household Model
Author: Shanshan Feng, Juping Zhang, Juan Li, Xiao-Feng Luo, Huaiping Zhu, Michael Y. Li, Zhen Jin Publication date: 26 February 2022 Publication info: Bulletin of Mathematical Biology, 84(4), 47 Cited by: David Price 0:01 AM 23 November 2023 GMT Citerank: (2) 685387Michael Y LiProfessor of Mathematics in the Department of Mathematical and Statistical Sciences at the University of Alberta, and Director of the Information Research Lab (IRL).10019D3ABAB, 701037MfPH – Publications144B5ACA0 URL: DOI: https://doi.org/10.1007/s11538-021-00989-y
| Excerpt / Summary [Bulletin of Mathematical Biology, 26 February 2022]
In order to understand how Wuhan curbed the COVID-19 outbreak in 2020, we build a network transmission model of 123 dimensions incorporating the impact of quarantine and medical resources as well as household transmission. Using our new model, the final infection size of Wuhan is predicted to be 50,662 (95%CI: 46,234, 55,493), and the epidemic would last until April 25 (95%CI: April 23, April 29), which are consistent with the actual situation. It is shown that quarantining close contacts greatly reduces the final size and shorten the epidemic duration. The opening of Fangcang shelter hospitals reduces the final size by about 17,000. Had the number of hospital beds been sufficient when the lockdown started, the number of deaths would have been reduced by at least 54.26%. We also investigate the distribution of infectious individuals in unquarantined households of different sizes. The high-risk households are those with size from two to four before the peak time, while the households with only one member have the highest risk after the peak time. Our findings provide a reference for the prevention, mitigation and control of COVID-19 in other cities of the world. |
Link[9] Adaptive behaviors and vaccination on curbing COVID-19 transmission: Modeling simulations in eight countries
Author: Zhaowan Li, Jianguo Zhao, Yuhao Zhou, Lina Tian, Qihuai Liu, Huaiping Zhu, Guanghu Zhu Publication date: 14 December 2022 Publication info: Journal of Theoretical Biology, Volume 559, 2023, 111379, ISSN 0022-5193, Cited by: David Price 7:17 PM 26 November 2023 GMT Citerank: (1) 701037MfPH – Publications144B5ACA0 URL: DOI: https://doi.org/10.1016/j.jtbi.2022.111379
| Excerpt / Summary [Journal of Theoretical Biology, 21 February 2023]
Current persistent outbreak of COVID-19 is triggering a series of collective responses to avoid infection. To further clarify the impact mechanism of adaptive protection behavior and vaccination, we developed a new transmission model via a delay differential system, which parameterized the roles of adaptive behaviors and vaccination, and allowed to simulate the dynamic infection process among people. By validating the model with surveillance data during March 2020 and October 2021 in America, India, South Africa, Philippines, Brazil, UK, Spain and Germany, we quantified the protection effect of adaptive behaviors by different forms of activity function. The modeling results indicated that (1) the adaptive activity function can be used as a good indicator for fitting the intervention outcome, which exhibited short-term awareness in these countries, and it could reduce the total human infections by 3.68, 26.16, 15.23, 4.23, 7.26, 1.65, 5.51 and 7.07 times, compared with the reporting; (2) for complete prevention, the average proportions of people with immunity should be larger than 90%, 92%, 86%, 71%, 92%, 84%, 82% and 76% with adaptive protection behaviors, or 91%, 97%, 94%, 77%, 92%, 88%, 85% and 90% without protection behaviors; and (3) the required proportion of humans being vaccinated is a sub-linear decreasing function of vaccine efficiency, with small heterogeneity in different countries. This manuscript was submitted as part of a theme issue on “Modelling COVID-19 and Preparedness for Future Pandemics”. |
|
|