|
Jane Heffernan Person1 #679806 Jane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity. | - Jane was recently elected to the Royal Society of Canadaâs College for New Scholars. Janeâs Modelling Infection and Immunity Lab tackles essential questions in mathematical epidemiology and in-host pathogen dynamics, using mathematical and computational modelling to ascertain key characteristics of pathogens, individual hosts, and populations that allow for disease spread and to determine public health and medical intervention strategies that will be needed to contain or eradicate infectious disease. Her work is funded by NSERC, CIHR, MITACS, NRC, CIRN, and government and industry contracts.
Research keywords - Infectious disease modelling;
- One Health
- Vaccine development
- Public health
- Immunity
Tags: Jane Marie Heffernan |
+Citaten (13) - CitatenVoeg citaat toeList by: CiterankMapLink[2] Determination of significant immunological timescales from mRNA-LNP-based vaccines in humans
Citerend uit: Iain R. Moyles, Chapin S. Korosec, Jane M. Heffernan Publication date: 30 April 2023 Publication info: Journal of Mathematical Biology, Volume 86, Article number: 86 (2023) Geciteerd door: David Price 9:23 PM 16 November 2023 GMT Citerank: (3) 679799Iain MoylesAssistant Professor in the Department of Mathematics and Statistics at York University. 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0 URL: DOI: https://doi.org/10.1007/s00285-023-01919-3
| Fragment- [Journal of Mathematical Biology, 30 April 2023]
A compartment model for an in-host liquid nanoparticle delivered mRNA vaccine is presented. Through non-dimensionalisation, five timescales are identified that dictate the lifetime of the vaccine in-host: decay of interferon gamma, antibody priming, autocatalytic growth, antibody peak and decay, and interleukin cessation. Through asymptotic analysis we are able to obtain semi-analytical solutions in each of the time regimes which allows us to predict maximal concentrations and better understand parameter dependence in the model. We compare our model to 22 data sets for the BNT162b2 and mRNA-1273 mRNA vaccines demonstrating good agreement. Using our analysis, we estimate the values for each of the five timescales in each data set and predict maximal concentrations of plasma B-cells, antibody, and interleukin. Through our comparison, we do not observe any discernible differences between vaccine candidates and sex. However, we do identify an age dependence, specifically that vaccine activation takes longer and that peak antibody occurs sooner in patients aged 55 and greater. |
Link[3] COVID-19 Seroprevalence in Canada Modelling Waning and Boosting COVID-19 Immunity in Canada a Canadian Immunization Research Network Study
Citerend uit: David W. Dick, Lauren Childs, Zhilan Feng, Jing Li, Gergely Röst, David L. Buckeridge, Nick H. Ogden, Jane M. Heffernan Publication date: 23 December 2021 Publication info: Vaccines 2022, 10(1), 17; Geciteerd door: David Price 9:36 PM 16 November 2023 GMT Citerank: (1) 701222OMNI â Publications144B5ACA0 URL: DOI: https://doi.org/10.3390/vaccines10010017
| Fragment- [Vaccines, 23 December 2021]
COVID-19 seroprevalence changes over time, with infection, vaccination, and waning immunity. Seroprevalence estimates are needed to determine when increased COVID-19 vaccination coverage is needed, and when booster doses should be considered, to reduce the spread and disease severity of COVID-19 infection. We use an age-structured model including infection, vaccination and waning immunity to estimate the distribution of immunity to COVID-19 in the Canadian population. This is the first mathematical model to do so. We estimate that 60â80% of the Canadian population has some immunity to COVID-19 by late Summer 2021, depending on specific characteristics of the vaccine and the waning rate of immunity. Models results indicate that increased vaccination uptake in age groups 12â29, and booster doses in age group 50+ are needed to reduce the severity COVID-19 Fall 2021 resurgence. |
Link[4] Modeling vaccination and control strategies for outbreaks of monkeypox at gatherings
Citerend uit: Pei Yuan, Yi Tan, Liu Yang, Nicholas H. Ogden, Jacques BĂ©lair, Julien Arino, Jane Heffernan, James Watmough, HĂ©lĂšne Carabin, Huaiping Zhu Publication date: 25 November 2022 Publication info: Front. Public Health, 25 November 2022 Geciteerd door: David Price 2:18 PM 18 November 2023 GMT
Citerank: (9) 679793HĂ©lĂšne CarabinCanada Research Chair and Full Professor, Epidemiology and One Health, UniversitĂ© de MontrĂ©al10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679803Jacques BĂ©lairProfessor, Department of Mathematics and Statistics, UniversitĂ© de MontrĂ©al10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB, 715667mpox859FDEF6 URL: DOI: https://doi.org/10.3389/fpubh.2022.1026489
| Fragment- [Frontiers in Public Health, 25 November 2022]
Background: The monkeypox outbreak in non-endemic countries in recent months has led the World Health Organization (WHO) to declare a public health emergency of international concern (PHEIC). It is thought that festivals, parties, and other gatherings may have contributed to the outbreak.
Methods: We considered a hypothetical metropolitan city and modeled the transmission of the monkeypox virus in humans in a high-risk group (HRG) and a low-risk group (LRG) using a Susceptible-Exposed-Infectious-Recovered (SEIR) model and incorporated gathering events. Model simulations assessed how the vaccination strategies combined with other public health measures can contribute to mitigating or halting outbreaks from mass gathering events.
Results: The risk of a monkeypox outbreak was high when mass gathering events occurred in the absence of public health control measures. However, the outbreaks were controlled by isolating cases and vaccinating their close contacts. Furthermore, contact tracing, vaccinating, and isolating close contacts, if they can be implemented, were more effective for the containment of monkeypox transmission during summer gatherings than a broad vaccination campaign among HRG, when accounting for the low vaccination coverage in the overall population, and the time needed for the development of the immune responses. Reducing the number of attendees and effective contacts during the gathering could also prevent a burgeoning outbreak, as could restricting attendance through vaccination requirements.
Conclusion: Monkeypox outbreaks following mass gatherings can be made less likely with some restrictions on either the number and density of attendees in the gathering or vaccination requirements. The ring vaccination strategy inoculating close contacts of confirmed cases may not be enough to prevent potential outbreaks; however, mass gatherings can be rendered less risky if that strategy is combined with public health measures, including identifying and isolating cases and contact tracing. Compliance with the community and promotion of awareness are also indispensable to containing the outbreak. |
Link[5] Assessing transmission risks and control strategy for monkeypox as an emerging zoonosis in a metropolitan area
Citerend uit: Pei Yuan, Yi Tan, Liu Yang, Nicholas H. Ogden, Jacques BĂ©lair, Jane Heffernan, Julien Arino, James Watmough, HĂ©lĂšne Carabin, Huaiping Zhu Publication date: 11 September 2022 Publication info: Journal of Medical Virology, Volume 95, Issue 1 e28137 Geciteerd door: David Price 2:28 PM 18 November 2023 GMT
Citerank: (9) 679793HĂ©lĂšne CarabinCanada Research Chair and Full Professor, Epidemiology and One Health, UniversitĂ© de MontrĂ©al10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679803Jacques BĂ©lairProfessor, Department of Mathematics and Statistics, UniversitĂ© de MontrĂ©al10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB, 715667mpox859FDEF6 URL: DOI: https://doi.org/10.1002/jmv.28137
| Fragment- [Journal of Medical Virology, 11 September 2022]
To model the spread of monkeypox (MPX) in a metropolitan area for assessing the risk of possible outbreaks, and identifying essential public health measures to contain the virus spread. The animal reservoir is the key element in the modeling of zoonotic disease. Using a One Health approach, we model the spread of the MPX virus in humans considering potential animal hosts such as rodents (e.g., rats, mice, squirrels, chipmunks, etc.) and emphasize their role and transmission of the virus in a high-risk group, including gay and bisexual men-who-have-sex-with-men (gbMSM). From model and sensitivity analysis, we identify key public health factors and present scenarios under different transmission assumptions. We find that the MPX virus may spill over from gbMSM high-risk groups to broader populations if the efficiency of transmission increases in the higher-risk group. However, the risk of outbreak can be greatly reduced if at least 65% of symptomatic cases can be isolated and their contacts traced and quarantined. In addition, infections in an animal reservoir will exacerbate MPX transmission risk in the human population. Regions or communities with a higher proportion of gbMSM individuals need greater public health attention. Tracing and quarantine (or âeffective quarantineâ by postexposure vaccination) of contacts with MPX cases in high-risk groups would have a significant effect on controlling the spreading. Also, monitoring for animal infections would be prudent. |
Link[6] COVID-19 in Ontario Long-term Care Facilities Project, a manually curated and validated database
Citerend uit: Mahakprit Kaur, Nicola Luigi Bragazzi, Jane Heffernan, Peter Tsasis, Jianhong Wu, Jude Dzevela Kong Publication date: 10 February 2023 Publication info: Frontiers in Public Health, Volume 11, 10 February 2023 Geciteerd door: David Price 7:31 PM 24 November 2023 GMT Citerank: (4) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 704045Covid-19859FDEF6 URL: DOI: https://doi.org/10.3389/fpubh.2023.1133419
| Fragment- [Frontiers in Public Health, 10 February 2023]
In late December 2019, a novel, emerging coronavirus, termed as âSevere Acute Respiratory Syndrome-related Coronavirus Type 2â (SARS-CoV-2) was identified as the infectious agent responsible for the generally mild, but sometimes life-threatening and even fatal âCoronavirus Disease 2019â (COVID-19).
As of December 7, 2021, COVID-19 has imposed a dramatic toll of infections (more than 265 million cases) and deaths (more than 2.5 million deaths).
Long-term care facilities, including nursing homes, residential aged care facilities, retirement homes, skilled nursing facilities and assisted living communities, among others, have represented and still represent healthcare settings particularly vulnerable to the COVID-19 spread (1). For instance, in Canada, residents living in these facilities, being elderly and particularly frail, often with many co-morbidities, have been disproportionately hit by the pandemic, contributing to approximately two thirds (67%) of the entire total toll of deaths (2).
As of December 5, 2021, 11.8% and 7.0% of COVID-19 outbreaks occurred in the Ontario region have affected long-term care facilities and retirement homes, respectively, according to Public Health Ontario (PHO).
A recently published systematic review (3) has identified an array of parameters, including bed size and location in a high SARS-CoV-2 prevalence and mortality area, and number of staff members, as variables predicting COVID-19 related outcomes.
However, in some cases, findings were contrasting, with a number of studies reporting that higher staffing was associated with a higher mortality rate and other investigations obtaining opposite results. Discrepancies in both the direction and magnitude of the effect could be found also for other parameters, such as quality indicators, like star rating, and ownership, or pandemic preparedness indicators, including implementation of public health interventions for controlling and managing prior infections and the number of previous outbreaks occurred in the facility.
Such conflicting findings may depend on the specific nature of the jurisdiction and the setting of each long-term care facility. As such, local data is of paramount importance to inform public health workers, policy- and decision-makers and relevant stakeholders in a data-driven and evidence-based fashion.
Several databases exist, mainly dedicated to (non-pharmaceutical and pharmaceutical) public health interventions (4, 5), underlying biological mechanisms, in terms of pathways and cascades (6), but, to the best of authors' knowledge, no one specifically on long-term care facilities. Specifically, there are websites that provide information for each long-term care home in Ontario such as the location of the home, type of facility, and general statistics pertaining to the care offered. However, the information is limited as the focus of this data is to provide guidance for people looking to send their loved ones to a long-term care home to assist with their daily needs. In contrast, British Columbia has one comprehensive resource curated by Seniors Advocate BC that is sponsored by the province of British Columbia called the Long-Term Care Facilities Quick Facts Directory (7). It contains detailed information regarding the facility, rooms, funding, care offered (e.g., direct care hours), licensing, incidents, resident profiles, and vaccine coverage that is specific to each long-term care home. Since this information is compiled into one reliable resource, it makes it possible for relevant information to be quickly accessed and analyzed. In Ontario, no such counterpart was found. Further, it was difficult to access relevant data that was directly available online. The only publicly available data pertaining to long-term care homes offered by the Ministry of Long-Term Care is data regarding the long-term care home location and data for publicly reported COVID-19 cases (MLTC datasets) (8). The present database was devised and implemented to fill in this gap. |
Link[7] Mitigating co-circulation of seasonal influenza and COVID-19 pandemic in the presence of vaccination: A mathematical modeling approach
Citerend uit: Bushra Majeed, Jummy Funke David, Nicola Luigi Bragazzi, Zack McCarthy, Martin David Grunnill, Jane Heffernan, Jianhong Wu, Woldegebriel Assefa Woldegerima Publication date: 4 January 2023 Publication info: Frontiers in Public Health, 4 January 2023 Geciteerd door: David Price 7:47 PM 26 November 2023 GMT Citerank: (6) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 703974Influenza859FDEF6, 704041Vaccination859FDEF6, 704045Covid-19859FDEF6, 715767Woldegebriel Assefa WoldegerimaDr. Woldegerima, knows as "Assefa", is an Assistant Professor at the Department of Mathematics and Statistics at York University.10019D3ABAB URL: DOI: https://doi.org/10.3389/fpubh.2022.1086849
| Fragment- [Frontiers in Public Health, 4 January 2023]
The co-circulation of two respiratory infections with similar symptoms in a population can significantly overburden a healthcare system by slowing the testing and treatment. The persistent emergence of contagious variants of SARS-CoV-2, along with imperfect vaccines and their waning protections, have increased the likelihood of new COVID-19 outbreaks taking place during a typical flu season. Here, we developed a mathematical model for the co-circulation dynamics of COVID-19 and influenza, under different scenarios of influenza vaccine coverage, COVID-19 vaccine booster coverage and efficacy, and testing capacity. We investigated the required minimal and optimal coverage of COVID-19 booster (third) and fourth doses, in conjunction with the influenza vaccine, to avoid the coincidence of infection peaks for both diseases in a single season. We show that the testing delay brought on by the high number of influenza cases impacts the dynamics of influenza and COVID-19 transmission. The earlier the peak of the flu season and the greater the number of infections with flu-like symptoms, the greater the risk of flu transmission, which slows down COVID-19 testing, resulting in the delay of complete isolation of patients with COVID-19 who have not been isolated before the clinical presentation of symptoms and have been continuing their normal daily activities. Furthermore, our simulations stress the importance of vaccine uptake for preventing infection, severe illness, and hospitalization at the individual level and for disease outbreak control at the population level to avoid putting strain on already weak and overwhelmed healthcare systems. As such, ensuring optimal vaccine coverage for COVID-19 and influenza to reduce the burden of these infections is paramount. We showed that by keeping the influenza vaccine coverage about 35% and increasing the coverage of booster or fourth dose of COVID-19 not only reduces the infections with COVID-19 but also can delay its peak time. If the influenza vaccine coverage is increased to 55%, unexpectedly, it increases the peak size of influenza infections slightly, while it reduces the peak size of COVID-19 as well as significantly delays the peaks of both of these diseases. Mask-wearing coupled with a moderate increase in the vaccine uptake may mitigate COVID-19 and prevent an influenza outbreak. |
Link[8] Quantifying the shift in social contact patterns in response to non-pharmaceutical interventions
Citerend uit: Zachary McCarthy, Yanyu Xiao, Francesca Scarabel, Biao Tang, Nicola Luigi Bragazzi, Kyeongah Nah, Jane M. Heffernan, Ali Asgary, V. Kumar Murty, Nicholas H. Ogden, Jianhong Wu Publication date: 1 December 2020 Publication info: Journal of Mathematics in Industry, Volume 10, Article number: 28 (2020) Geciteerd door: David Price 8:41 PM 27 November 2023 GMT
Citerank: (9) 679750Ali AsgaryAssociate Professor and Associate Director, Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM) in the School of Administrative Studies, and Adjunct Professor in the School of Information Technology, at York University.10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679893Kumar MurtyProfessor Kumar Murty is in the Department of Mathematics at the University of Toronto. His research fields are Analytic Number Theory, Algebraic Number Theory, Arithmetic Algebraic Geometry and Information Security. He is the founder of the GANITA lab, co-founder of Prata Technologies and PerfectCloud. His interest in mathematics ranges from the pure study of the subject to its applications in data and information security.10019D3ABAB, 701037MfPH â Publications144B5ACA0, 704045Covid-19859FDEF6, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada â April 2023 [1] 2794CAE1, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB, 715617Schools859FDEF6 URL: DOI: https://doi.org/10.1186/s13362-020-00096-y
| Fragment- [Journal of Mathematics in Industry, 1 December 2020]
Social contact mixing plays a critical role in influencing the transmission routes of infectious diseases. Moreover, quantifying social contact mixing patterns and their variations in a rapidly evolving pandemic intervened by changing public health measures is key for retroactive evaluation and proactive assessment of the effectiveness of different age- and setting-specific interventions. Contact mixing patterns have been used to inform COVID-19 pandemic public health decision-making; but a rigorously justified methodology to identify setting-specific contact mixing patterns and their variations in a rapidly developing pandemic, which can be informed by readily available data, is in great demand and has not yet been established. Here we fill in this critical gap by developing and utilizing a novel methodology, integrating social contact patterns derived from empirical data with a disease transmission model, that enables the usage of age-stratified incidence data to infer age-specific susceptibility, daily contact mixing patterns in workplace, household, school and community settings; and transmission acquired in these settings under different physical distancing measures. We demonstrated the utility of this methodology by performing an analysis of the COVID-19 epidemic in Ontario, Canada. We quantified the age- and setting (household, workplace, community, and school)-specific mixing patterns and their evolution during the escalation of public health interventions in Ontario, Canada. We estimated a reduction in the average individual contact rate from 12.27 to 6.58 contacts per day, with an increase in household contacts, following the implementation of control measures. We also estimated increasing trends by age in both the susceptibility to infection by SARS-CoV-2 and the proportion of symptomatic individuals diagnosed. Inferring the age- and setting-specific social contact mixing and key age-stratified epidemiological parameters, in the presence of evolving control measures, is critical to inform decision- and policy-making for the current COVID-19 pandemic. |
Link[9] Protocol for a living evidence synthesis on variants of concern and COVID-19 vaccine effectiveness
Citerend uit: Nicole Shaver, Melanie Katz, Julian Little, et al. - Gideon Darko Asamoah, Lori-Ann Linkins, Wael Abdelkader, Andrew Beck, Alexandria Bennett, Sarah E Hughes, Maureen Smith, Mpho Begin, Doug Coyle, Thomas Piggott, Benjamin M. Kagina, Vivian Welch, Caroline Colijn, David J.D. Earn, Khaled El Emam, Jane Heffernan, Sheila F. O'Brien, Kumanan Wilson, Erin Collins, Tamara Navarro, Joseph Beyene, Isabelle Boutron, Dawn Bowdish, Curtis Cooper, Andrew Costa, Janet Curran, Lauren Griffith, Amy Hsu, Jeremy Grimshaw, Marc-AndrĂ© Langlois, Xiaoguang Li, Anne Pham-Huy, Parminder Raina, Michele Rubini, Lehana Thabane, Hui Wang, Lan Xu, Melissa Brouwers, Tanya Horsley, John Lavis, Alfonso Iorio Publication date: 16 September 2023 Publication info: Vaccine, Volume 41, Issue 43, 2023, Pages 6411-6418, ISSN 0264-410X. Geciteerd door: David Price 0:08 AM 28 November 2023 GMT Citerank: (5) 679761Caroline ColijnDr. Caroline Colijn works at the interface of mathematics, evolution, infection and public health, and leads the MAGPIE research group. She joined SFU's Mathematics Department in 2018 as a Canada 150 Research Chair in Mathematics for Infection, Evolution and Public Health. She has broad interests in applications of mathematics to questions in evolution and public health, and was a founding member of Imperial College London's Centre for the Mathematics of Precision Healthcare.10019D3ABAB, 679776David EarnProfessor of Mathematics and Faculty of Science Research Chair in Mathematical Epidemiology at McMaster University.10019D3ABAB, 701020CANMOD â PublicationsPublications by CANMOD Members144B5ACA0, 704041Vaccination859FDEF6, 704045Covid-19859FDEF6 URL: DOI: https://doi.org/10.1016/j.vaccine.2023.09.012
| Fragment- [Vaccine, 16 September 2023]
Background: It is evident that COVID-19 will remain a public health concern in the coming years, largely driven by variants of concern (VOC). It is critical to continuously monitor vaccine effectiveness as new variants emerge and new vaccines and/or boosters are developed. Systematic surveillance of the scientific evidence base is necessary to inform public health action and identify key uncertainties. Evidence syntheses may also be used to populate models to fill in research gaps and help to prepare for future public health crises. This protocol outlines the rationale and methods for a living evidence synthesis of the effectiveness of COVID-19 vaccines in reducing the morbidity and mortality associated with, and transmission of, VOC of SARS-CoV-2.
Methods: Living evidence syntheses of vaccine effectiveness will be carried out over one year for (1) a range of potential outcomes in the index individual associated with VOC (pathogenesis); and (2) transmission of VOC. The literature search will be conducted up to May 2023. Observational and database-linkage primary studies will be included, as well as RCTs. Information sources include electronic databases (MEDLINE; Embase; Cochrane, L*OVE; the CNKI and Wangfang platforms), pre-print servers (medRxiv, BiorXiv), and online repositories of grey literature. Title and abstract and full-text screening will be performed by two reviewers using a liberal accelerated method. Data extraction and risk of bias assessment will be completed by one reviewer with verification of the assessment by a second reviewer. Results from included studies will be pooled via random effects meta-analysis when appropriate, or otherwise summarized narratively.
Discussion: Evidence generated from our living evidence synthesis will be used to inform policy making, modelling, and prioritization of future research on the effectiveness of COVID-19 vaccines against VOC. |
Link[10] The stochasticity in adherence to nonpharmaceutical interventions and booster doses and the mitigation of COVID-19
Citerend uit: Yi Tan, Pei Yuan, Iain Moyles, Jane Heffernan, James Watmough, Sanyi Tang, Huaiping Zhu Publication date: 1 March 2023 Publication info: Discrete and Continuous Dynamical Systems - S, 2023, Volume 16, Issue 3&4: 602-626. Geciteerd door: David Price 11:49 AM 2 December 2023 GMT Citerank: (6) 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679799Iain MoylesAssistant Professor in the Department of Mathematics and Statistics at York University. 10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 701037MfPH â Publications144B5ACA0, 704045Covid-19859FDEF6, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6 URL: DOI: https://doi.org/10.3934/dcdss.2023044
| Fragment- [Discrete and Continuous Dynamical Systems - S, March 2023]
Facing the more contagious COVID-19 variant, Omicron, nonpharmaceutical interventions (NPIs) were still in place and booster doses were proposed to mitigate the epidemic. However, the uncertainty and stochasticity in individuals' behaviours toward the NPIs and booster dose increase, and how this randomness affects the transmission remains poorly understood. We present a model framework to incorporate demographic stochasticity and two kinds of environmental stochasticity (notably variations in adherence to NPIs and booster dose acceptance) to analyze the effects of different forms of stochasticity on transmission. The model is calibrated using the data from December 31, 2021, to March 8, 2022, on daily reported cases and hospitalizations, cumulative cases, deaths and vaccinations for booster doses in Toronto, Canada. An approximate Bayesian computational (ABC) method is used for calibration. We observe that demographic stochasticity could dramatically worsen the outbreak with more incidence compared with the results of the corresponding deterministic model. We found that large variations in adherence to NPIs increase infections. The randomness in booster dose acceptance will not affect the number of reported cases significantly and it is acceptable in the mitigation of COVID-19. The stochasticity in adherence to NPIs needs more attention compared to booster dose hesitancy. |
Link[11] Efficacy of a âstay-at-homeâ policy on SARS-CoV-2 transmission in Toronto, Canada: a mathematical modelling study
Citerend uit: Pei Yuan, Juan Li, Elena Aruffo, Evgenia Gatov, Qi Li, Tingting Zheng, Nicholas H. Ogden, Beate Sander, Jane Heffernan, Sarah Collier, Yi Tan, Jun Li, Julien Arino, Jacques BĂ©lair, James Watmough, Jude Dzevela Kong, Iain Moyles, Huaiping Zhu Publication date: 19 April 2022 Publication info: cmaj OPEN, April 19, 2022 10 (2) E367-E378 Geciteerd door: David Price 4:14 PM 4 December 2023 GMT
Citerank: (10) 679757Beate SanderCanada Research Chair in Economics of Infectious Diseases and Director, Health Modeling & Health Economics and Population Health Economics Research at THETA (Toronto Health Economics and Technology Assessment Collaborative).10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679799Iain MoylesAssistant Professor in the Department of Mathematics and Statistics at York University. 10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701222OMNI â Publications144B5ACA0, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada â April 2023 [1] 2794CAE1, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB URL: DOI: https://doi.org/10.9778/cmajo.20200242
| Fragment- Background: Globally, nonpharmaceutical interventions for COVID-19, including stay-at-home policies, limitations on gatherings and closure of public spaces, are being lifted. We explored the effect of lifting a stay-at-home policy on virus resurgence under different conditions.
Methods: Using confirmed case data from Toronto, Canada, between Feb. 24 and June 24, 2020, we ran a compartmental model with household structure to simulate the impact of the stay-at-home policy considering different levels of compliance. We estimated threshold values for the maximum number of contacts, probability of transmission and testing rates required for the safe reopening of the community.
Results: After the implementation of the stay-at-home policy, the contact rate outside the household fell by 39% (from 11.58 daily contacts to 7.11). The effective reproductive number decreased from 3.56 (95% confidence interval [CI] 3.02â4.14) on Mar. 12 to 0.84 (95% CI 0.79â0.89) on May 6. Strong adherence to stay-at-home policies appeared to prevent SARS-CoV-2 resurgence, but extending the duration of stay-at-home policies beyond 2 months had little added effect on cumulative cases (25 958 for 65 days of a stay-at-home policy and 23 461 for 95 days, by July 2, 2020) and deaths (1404 for 65 days and 1353 for 95 days). To avoid a resurgence, the average number of contacts per person per day should be kept below 9, with strict nonpharmaceutical interventions in place.
Interpretation: Our study demonstrates that the stay-at-home policy implemented in Toronto in March 2020 had a substantial impact on mitigating the spread of SARS-CoV-2. In the context of the early pandemic, before the emergence of variants of concern, reopening schools and workplaces was possible only with other nonpharmaceutical interventions in place.
Nonpharmaceutical interventions for COVID-19, including stay-at-home policies, isolation of cases and contact tracing, as well as physical distancing, handwashing and use of protective equipment such as face masks, are effective mitigation strategies for preventing virus spread.1â4 Many studies investigating SARS-CoV-2 transmission and nonpharmaceutical interventions point to the importance of within- and between-household transmission. 5â8 Although stay-at-home policies can help curb spread of SARS-CoV-2 in the community by reducing contacts outside the household,8 they can increase contacts among family members, leading to higher risk within the household, 9 with secondary infection rates in households shown to be as high as 30%â52.7%.5,10 Furthermore, prolonged periods of stay-at-home policies may not be practical because of the essential operations of society, and may directly or indirectly harm the economy and the physical and mental health of individuals.11,12 Therefore, it is important to assess the optimal length of policy implementation for preventing virus resurgence.
During the epidemic, stay-at-home policies have been used to mitigate virus spread. The proportion of people staying at home is a paramount factor for evaluating the effectiveness of this policy implementation. For example, symptomatic individuals, those who tested positive for SARS-CoV-2 infection, and traced contacts are more likely to remain in the home through self-isolation or quarantine than uninfected or asymptomatic individuals. 13 Hence, rates of testing, diagnosis, isolation of cases, contact tracing and quarantine of contacts, as well as public compliance with stay-at-home policies, are essential factors for determining virus transmission and the likelihood of epidemic resurgence after the lifting of restrictive closures.1 To allow for this level of complexity, we developed a household-based transmission model to capture differences in policy uptake behaviour using confirmed case data from Toronto, Canada.
Throughout the pandemic, Canadian provinces and territories have implemented restrictive closures of businesses, schools, workplaces and public spaces to reduce the number of contacts in the population and prevent further virus spread, with these restrictions lifted and reinstituted at various times.14 On Mar. 17, 2020, Ontario declared a state of emergency, with directives including stay-at-home policies.15
We aimed to evaluate the effect of the stay-at-home policy issued in March 2020 on the transmission of SARS-CoV-2 in Toronto, accounting for average household size, the degree of adherence to the stay-at-home policy, and the length of policy implementation. Additionally, on the basis of the average family size and local epidemic data, we estimated the basic reproduction number (R0) and effective reproduction number (Rt) and investigated potential thresholds for the number of contacts, testing rates and use of nonpharmaceutical interventions that would be optimal for mitigating the epidemic. Hence, we conducted simulations of dynamic population behaviour under different reopening and adherence scenarios, to compare different public health strategies in hopes of adding those evaluations to the scientific literature. |
Link[12] Modelling COVID-19 transmission in a hemodialysis centre using simulation generated contacts matrices
Citerend uit: Mohammadali Tofighi, Ali Asgary, Asad A. Merchant, Mohammad Ali Shafiee, Mahdi M. Najafabadi, Nazanin Nadri, Mehdi Aarabi, Jane Heffernan, Jianhong Wu Publication date: 19 November 2021 Publication info: PLoS ONE 16(11): e0259970. Geciteerd door: David Price 4:45 PM 4 December 2023 GMT
Citerank: (7) 679750Ali AsgaryAssociate Professor and Associate Director, Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM) in the School of Administrative Studies, and Adjunct Professor in the School of Information Technology, at York University.10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 685420Hospitals16289D5D4, 701037MfPH â Publications144B5ACA0, 704045Covid-19859FDEF6, 708812Simulation859FDEF6, 715294Contact tracing859FDEF6 URL: DOI: https://doi.org/10.1371/journal.pone.0259970
| Fragment- [PLoS ONE, 19 November 2021]
The COVID-19 pandemic has been particularly threatening to patients with end-stage kidney disease (ESKD) on intermittent hemodialysis and their care providers. Hemodialysis patients who receive life-sustaining medical therapy in healthcare settings, face unique challenges as they need to be at a dialysis unit three or more times a week, where they are confined to specific settings and tended to by dialysis nurses and staff with physical interaction and in close proximity. Despite the importance and critical situation of the dialysis units, modelling studies of the SARS-CoV-2 spread in these settings are very limited. In this paper, we have used a combination of discrete event and agent-based simulation models, to study the operations of a typical large dialysis unit and generate contact matrices to examine outbreak scenarios. We present the details of the contact matrix generation process and demonstrate how the simulation calculates a micro-scale contact matrix comprising the number and duration of contacts at a micro-scale time step. We have used the contacts matrix in an agent-based model to predict disease transmission under different scenarios. The results show that micro-simulation can be used to estimate contact matrices, which can be used effectively for disease modelling in dialysis and similar settings. |
Link[13] Charting a future for emerging infectious disease modelling in Canada
Citerend uit: Mark A. Lewis, Patrick Brown, Caroline Colijn, Laura Cowen, Christopher Cotton, Troy Day, Rob Deardon, David Earn, Deirdre Haskell, Jane Heffernan, Patrick Leighton, Kumar Murty, Sarah Otto, Ellen Rafferty, Carolyn Hughes Tuohy, Jianhong Wu, Huaiping Zhu Publication date: 26 April 2023 Geciteerd door: David Price 10:21 AM 15 December 2023 GMT
Citerank: (22) 679703EIDM?The Emerging Infectious Diseases Modelling Initiative (EIDM) â by the Public Health Agency of Canada and NSERC â aims to establish multi-disciplinary network(s) of specialists across the country in modelling infectious diseases to be applied to public needs associated with emerging infectious diseases and pandemics such as COVID-19. [1]7F1CEB7, 679761Caroline ColijnDr. Caroline Colijn works at the interface of mathematics, evolution, infection and public health, and leads the MAGPIE research group. She joined SFU's Mathematics Department in 2018 as a Canada 150 Research Chair in Mathematics for Infection, Evolution and Public Health. She has broad interests in applications of mathematics to questions in evolution and public health, and was a founding member of Imperial College London's Centre for the Mathematics of Precision Healthcare.10019D3ABAB, 679769Christopher CottonChristopher Cotton is a Professor of Economics at Queenâs University where he holds the Jarislowsky-Deutsch Chair in Economic & Financial Policy.10019D3ABAB, 679776David EarnProfessor of Mathematics and Faculty of Science Research Chair in Mathematical Epidemiology at McMaster University.10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679826Laura CowenAssociate Professor in the Department of Mathematics and Statistics at the University of Victoria.10019D3ABAB, 679842Mark LewisProfessor Mark Lewis, Kennedy Chair in Mathematical Biology at the University of Victoria and Emeritus Professor at the University of Alberta.10019D3ABAB, 679858Patrick BrownAssociate Professor in the Centre for Global Health Research at St. Michaelâs Hospital, and in the Department of Statistical Sciences at the University of Toronto.10019D3ABAB, 679859Patrick LeightonPatrick Leighton is a Professor of Epidemiology and Public Health at the Faculty of Veterinary Medicine, University of Montreal, and an active member of the Epidemiology of Zoonoses and Public Health Research Group (GREZOSP) and the Centre for Public Health Research (CReSP). 10019D3ABAB, 679869Rob DeardonAssociate Professor in the Department of Production Animal Health in the Faculty of Veterinary Medicine and the Department of Mathematics and Statistics in the Faculty of Science at the University of Calgary.10019D3ABAB, 679875Sarah OttoProfessor in Zoology. Theoretical biologist, Canada Research Chair in Theoretical and Experimental Evolution, and Killam Professor at the University of British Columbia.10019D3ABAB, 679890Troy DayTroy Day is a Professor and the Associate Head of the Department of Mathematics and Statistics at Queenâs University. He is an applied mathematician whose research focuses on dynamical systems, optimization, and game theory, applied to models of infectious disease dynamics and evolutionary biology.10019D3ABAB, 679893Kumar MurtyProfessor Kumar Murty is in the Department of Mathematics at the University of Toronto. His research fields are Analytic Number Theory, Algebraic Number Theory, Arithmetic Algebraic Geometry and Information Security. He is the founder of the GANITA lab, co-founder of Prata Technologies and PerfectCloud. His interest in mathematics ranges from the pure study of the subject to its applications in data and information security.10019D3ABAB, 686724Ellen RaffertyDr. Ellen Rafferty has a Master of Public Health and a PhD in epidemiology and health economics from the University of Saskatchewan. Dr. Raffertyâs research focuses on the epidemiologic and economic impact of public health policies, such as estimating the cost-effectiveness of immunization programs. She is interested in the incorporation of economics into immunization decision-making, and to that aim has worked with a variety of provincial and national organizations.10019D3ABAB, 701020CANMOD â PublicationsPublications by CANMOD Members144B5ACA0, 701037MfPH â Publications144B5ACA0, 701071OSN â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0, 704045Covid-19859FDEF6, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada â April 2023 [1] 2794CAE1, 715387SMMEID â Publications144B5ACA0 URL:
| Fragment- We propose an independent institute of emerging infectious disease modellers and policy experts, with an academic core, capable of renewing itself as needed. This institute will combine science and knowledge translation to inform decision-makers at all levels of government and ensure the highest level of preparedness (and readiness) for the next public health emergency. The Public Health Modelling Institute will provide cost-effective, science-based modelling for public policymakers in an easily visualizable, integrated framework, which can respond in an agile manner to changing needs, questions, and data. To be effective, the Institute must link to modelling groups within government, who are best able to pose questions and convey results for use by public policymakers. |
|
|