|
Artificial intelligence Interest1 #704019
| |
+Citations (4) - CitationsAjouter une citationList by: CiterankMapLink[1] Applied artificial intelligence in healthcare: Listening to the winds of change in a post-COVID-19 world
En citant: Arash Shaban-Nejad, Martin Michalowski, Robert L Davis, et al. Publication date: 25 November 2022 Publication info: Experimental Biology and Medicine, Volume 247, Issue 22 CitĂ© par: David Price 9:04 PM 26 November 2023 GMT Citerank: (2) 679775David BuckeridgeDavid is a Professor in the School of Population and Global Health at McGill University, where he directs the Surveillance Lab, an interdisciplinary group that develops, implements, and evaluates novel computational methods for population health surveillance. He is also the Chief Digital Health Officer at the McGill University Health Center where he directs strategy on digital transformation and analytics and he is an Associate Member with the Montreal Institute for Learning Algorithms (Mila).10019D3ABAB, 701020CANMOD â PublicationsPublications by CANMOD Members144B5ACA0 URL: DOI: https://doi.org/10.1177/1535370222114040
| Extrait - [Experimental Biology and Medicine, 25 November 2022]
This editorial article aims to highlight advances in artificial intelligence (AI) technologies in five areas: Collaborative AI, Multimodal AI, Human-Centered AI, Equitable AI, and Ethical and Value-based AI in order to cope with future complex socioeconomic and public health issues. |
Link[2] Managing SARS-CoV-2 Testing in Schools with an Artificial Intelligence Model and Application Developed by Simulation Data
En citant: Svetozar Zarko Valtchev, Ali Asgary, Michael Chen, Felippe A. Cronemberger, Mahdi M. Najafabadi, Monica Gabriela Cojocaru, Jianhong Wu Publication date: 7 July 2021 Publication info: Electronics, 10(14), 1626â1626. CitĂ© par: David Price 12:31 PM 1 December 2023 GMT
Citerank: (7) 679750Ali AsgaryAssociate Professor and Associate Director, Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM) in the School of Administrative Studies, and Adjunct Professor in the School of Information Technology, at York University.10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 704045Covid-19859FDEF6, 708812Simulation859FDEF6, 715617Schools859FDEF6, 715762Monica CojocaruProfessor in the Mathematics & Statistics Department at the University of Guelph. 10019D3ABAB URL: DOI: https://doi.org/10.3390/electronics10141626
| Extrait - [Electronics, 7 July 2021]
Research on SARS-CoV-2 and its social implications have become a major focus to interdisciplinary teams worldwide. As interest in more direct solutions, such as mass testing and vaccination grows, several studies appear to be dedicated to the operationalization of those solutions, leveraging both traditional and new methodologies, and, increasingly, the combination of both. This research examines the challenges anticipated for preventative testing of SARS-CoV-2 in schools and proposes an artificial intelligence (AI)-powered agent-based model crafted specifically for school scenarios. This research shows that in the absence of real data, simulation-based data can be used to develop an artificial intelligence model for the application of rapid assessment of school testing policies. |
Link[3] Harnessing Artificial Intelligence to assess the impact of nonpharmaceutical interventions on the second wave of the Coronavirus Disease 2019 pandemic across the world
En citant: Sile Tao, Nicola Luigi Bragazzi, Jianhong Wu, Bruce Mellado, Jude Dzevela Kong Publication date: 18 January 2022 Publication info: Scientific Reports, Volume 12, Article number: 944 (2022) CitĂ© par: David Price 12:15 PM 2 December 2023 GMT Citerank: (5) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 704045Covid-19859FDEF6, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6 URL: DOI: https://doi.org/10.1038/s41598-021-04731-5
| Extrait - [Scientific Reports, 18 January 2022]
In the present paper, we aimed to determine the influence of various non-pharmaceutical interventions (NPIs) enforced during the first wave of COVID-19 across countries on the spreading rate of COVID-19 during the second wave. For this purpose, we took into account national-level climatic, environmental, clinical, health, economic, pollution, social, and demographic factors. We estimated the growth of the first and second wave across countries by fitting a logistic model to daily-reported case numbers, up to the first and second epidemic peaks. We estimated the basic and effective (second wave) reproduction numbers across countries. Next, we used a random forest algorithm to study the association between the growth rate of the second wave and NPIs as well as pre-existing country-specific characteristics. Lastly, we compared the growth rate of the first and second waves of COVID-19. The top three factors associated with the growth of the second wave were body mass index, the number of days that the government sets restrictions on requiring facial coverings outside the home at all times, and restrictions on gatherings of 10 people or less. Artificial intelligence techniques can help scholars as well as decision and policy-makers estimate the effectiveness of public health policies, and implement âsmartâ interventions, which are as efficacious as stringent ones. |
Link[4] Big data- and artificial intelligence-based hot-spot analysis of COVID-19: Gauteng, South Africa, as a case study
En citant: Benjamin Lieberman, Jude Dzevela Kong, Roy Gusinow, Ali Asgary, Nicola Luigi Bragazzi, Joshua Choma, Salah-Eddine Dahbi, Kentaro Hayashi, Deepak Kar, Mary Kawonga, Mduduzi Mbada, Kgomotso Monnakgotla, James Orbinski, Xifeng Ruan, Finn Stevenson, Jianhong Wu, Bruce Mellado Publication date: 26 January 2023 Publication info: BMC Medical Informatics and Decision Making, Volume 23, Article number: 19 (2023) CitĂ© par: David Price 7:33 PM 14 December 2023 GMT Citerank: (5) 679750Ali AsgaryAssociate Professor and Associate Director, Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM) in the School of Administrative Studies, and Adjunct Professor in the School of Information Technology, at York University.10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 704045Covid-19859FDEF6 URL: DOI: 26 January 2023
| Extrait - [BMC Medical Informatics and Decision Making, 26 January 2023]
The coronavirus disease 2019 (COVID-19) has developed into a pandemic. Data-driven techniques can be used to inform and guide public health decision- and policy-makers. In generalizing the spread of a virus over a large area, such as a province, it must be assumed that the transmission occurs as a stochastic process. It is therefore very difficult for policy and decision makers to understand and visualize the location specific dynamics of the virus on a more granular level. A primary concern is exposing local virus hot-spots, in order to inform and implement non-pharmaceutical interventions. A hot-spot is defined as an area experiencing exponential growth relative to the generalised growth of the pandemic. This paper uses the first and second waves of the COVID-19 epidemic in Gauteng Province, South Africa, as a case study. The study aims provide a data-driven methodology and comprehensive case study to expose location specific virus dynamics within a given area. The methodology uses an unsupervised Gaussian Mixture model to cluster cases at a desired granularity. This is combined with an epidemiological analysis to quantify each clusterâs severity, progression and whether it can be defined as a hot-spot. |
|
|