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Abstract: Research on SARS-CoV-2 and its social implications have become a major focus to interdis-
ciplinary teams worldwide. As interest in more direct solutions, such as mass testing and vaccination
grows, several studies appear to be dedicated to the operationalization of those solutions, leveraging
both traditional and new methodologies, and, increasingly, the combination of both. This research
examines the challenges anticipated for preventative testing of SARS-CoV-2 in schools and proposes
an artificial intelligence (AI)-powered agent-based model crafted specifically for school scenarios.
This research shows that in the absence of real data, simulation-based data can be used to develop an
artificial intelligence model for the application of rapid assessment of school testing policies.

Keywords: AI; COVID-19; disease modelling; epidemiology; machine learning; SEIR; simulation; vac-
cination

1. Introduction

The SARS-COVID pandemic has imposed a historical toll to communities across the
globe. As vaccination campaigns start to get rolled out to specific segments of the society,
the need for systematic efforts to optimize policy throughputs in times of constrained
resources is a concern to authorities and the most vulnerable. Several of those efforts are
focused on social hubs, such as schools, where close contacts are frequent and expected,
which can be potentially risky as contamination escalates and remains difficult to detect.

Opening or closing of schools has been one of the most complicated public health
policies during the COVID-19 pandemic [1], a debate that echoes voices from parents,
educators, mental health specialists and the community at large, all of them with different
perspectives on the brevity and rigor of guidelines put forth by public health agencies.
According to [2], there are risks and benefits at play that justify a careful examination of
tradeoffs between lifting restrictions and sacrificing some of the positive outcomes obtained
through them.

Despite several operational inefficiencies in its delivery, testing has been a central part
in fighting the COVID-19 pandemic, particularly when it comes to taking steps towards
preventing further contamination. Authorities have been considering testing as an integral
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part of health planning and policy, and several efforts have been dedicated to rolling
out initiatives to trace the disease outbreak. As far as school testing is concerned, there
is still little knowledge or consensus on what is the best way to approach it. In this
context, variables such as costs and the operational hurdles of getting students and staff
vaccinated efficiently come in the way, often further justifying the importance of planning
and of optimal solutions to allocate resources and control the spread of the virus. Despite
limited resources for testing, recent advancements in computation are expected to improve
responses to the pandemic, especially if combined with established simulation techniques.

This research demonstrates an application for assessing the impacts of preventative
testing at schools developed based on data derived from an agent-based simulation and
empowered by an artificial intelligence model. The components expand upon previous
AI-enabled simulation modeling work [3] by enhancing predictive capabilities of some
simulation parameters observed to be critical in previous preventative testing research on
mass vaccination [4,5]. Since literature on the intersect of simulation modeling, artificial
intelligence, and school testing is particularly scarce, contributions of this focus not only
on outputs but on the extent to which AI-driven simulation artifacts can be replicated to
other contexts and emergency scenarios. Observations are presented and discussed and
comments on the path forward are presented in the conclusion.

2. Background
2.1. School Testing and Its Challenges

There are several challenges associated with testing in schools. These challenges can
be related to statistical power, such as the amount of tests needed in order to find infected
subjects; personal and social, such as the discomfort anticipated for testing children with
swabs and the stress coming from it; and operational, such as the cost of planning the testing
processes, of conducting them, and the inherent delays associated to time management and
follow up. Outside of the school boundaries, managing public acceptance and expectations,
as well as privacy issues related to information handling, are also challenges for which
authorities should be prepared for.

These obstacles should be acknowledged and in light of school testing goals set forth
by the European Centre for Disease Control (ECDC), early identification of cases and
high risk profiles figures as a top priority. These goals should also count on extensive
collaboration and support from organizations that act beyond schools, several of which
could both affect the effectiveness of school testing and be affected by testing routines.
Interorganizational benefits may include more information and broader understanding of
community outbreaks; more effective policy design towards protecting children and the
most vulnerable; reduction in the number of severe cases and the hospitalization that often
comes from it; and overall sense of safety providing testing and protective measures are in
place. Markedly, lack of testing leaves officials and communities in the dark or not being
able to proactively observe trends and adapt measures accordingly. If combined with other
public health concerns, not knowing enough about the recent pandemic appears to be the
riskier way out of the virus and a crisis that is still novel in various aspects.

Current school testing initiatives for COVID-19 conducted by public health author-
ities include regular testing at random as part of students’ routine; testing people with
symptoms or suspected of having symptoms; and one-time testing once staff and stu-
dent body return to education facilities. Testing endeavors are usually combined with
self-quarantine measures and can be conducted in schools or in other sites. The model
in this paper assumes school testing will be conducted at random across different school
facilities. For those, parameters such as test frequency, delay between testing and results,
expiration data for testing batches and follow up steps are considered as inputs in the
model. Considerations about the appropriateness of simulations to emergency response
situations such as school testing for COVID-19 outbreak are outlined next.
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2.2. Simulation Modeling Option and Artificial Intelligence

The COVID-19 pandemic brings forth challenges that ask for optimal solutions in
terms of tactical approaches and policy. These challenges have resorted data intensive
modeling [6] and computational intelligence methods [7] that embrace the complexity
of the issues that arise from the pandemic, from lack of human resources [8] and data
resources [9,10], to the lack of emergency preparedness and capabilities to respond ef-
fectively [11]. An increasing amount of studies set out to explore models and artifacts
that leverage artificial intelligence (AI) methods and methodologies to explore pandemic
facts and circumstances from several differing yet often complementary angles, from
the composites and overarching description of the virus itself [12], to diseases detection
and diagnosis [13,14] to prediction on infection rates [15], patient management [16], the
protection of healthcare workers [17,18], as well as hygiene measures, prevention and
containment [19], drug development [20], and treatment [21–23]. The use of AI techniques
is perceived to be a paradigm shift [24] towards approaches that use data science in em-
powering ways to craft, test and deploy public health care policies [25,26]. As a newly
pervasive aspect of citizens’ routines around the globe, the pandemic is not only foster-
ing the application of frontier technologies [27], but also other ways of looking at and
leveraging existing data, such as hospital key performance indicators (KPIs), from other
perspectives [28].

On top of the relative recency of the problems and the overall lack of preparedness
in face of an unprecedented scenario [29], researchers have limited research artifacts and
data to work with [30], and little attitude to risk themselves in the field, which has opened
the frontier to robotics [31,32] and mobile crowdsourcing [33] as data and information
gathering methods for the COVID era. Furthermore, there are ethical concerns in terms of
what those attempts are set out to achieve, and what responsibilities should be monitored
and assessed. That highlights the importance of simulation modeling as an accountable
approach to intricate public policy problems, where a stakeholder perspective needs to
be considered in the light possible scenarios, the environment and social context where
policies are being enacted [34] and their path forward [35].

Simulations are established as important methods to understand future scenarios in
light of current conditions [3,36]. As a practice and a methodology, modeling lays the
ground on necessary assumptions and parameters according to which agents are expected
to behave and under which systems operate [37]. It also allows for desired goals to be taken
into account in optimization efforts [38], a pursuit that benefits from problem framing and
conceptualization efforts [39,40], and systematic discussions around simulation artifacts,
a practice referred to in literature as focused on collaborative model building [41]. While
centered in practical ways of understanding issues and designing policies, these initiatives
are also epistemic, for they introduce ways of building knowledge from existing knowledge
in combination with empirical or theoretical data [42]. Simulation modeling is especially
relevant to devise strategies and mitigate the impacts of crisis such as the one unraveled
by COVID-19. It is known to inform decision-making, support resource prioritization and
resource allocation, the identification of logistical and operational bottlenecks [39], and
performance losses. In the context of the pandemic, it has also been observed that it comes
at a low computational cost [43] and opportunities to gain scale when analyzing highly
dynamic scenarios [44].

Artificial intelligence techniques are being increasingly leveraged across several do-
mains and appear to have established a new paradigm for the next decades [45–47]. Ac-
cording to [47], lack of data for machine learning scientists limits the applicability of those
techniques and justify the need for a “cyber-infrastructure to fuel world-wide collaboration”
through which more access to data sources can be leveraged. While the power to make
predictions has been portrayed as being mostly positive as far as its expeditious and predic-
tive capabilities, ethical concerns regarding security and transparency in AI applications,
often discussed outside the realm of COVID applications, are also being framed as one of
the collaterals as a policy issue [8,48]. According to [49], large-scale utilization of artificial
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intelligence may encounter obstacles not only in terms of legal and ethical aspects, but also
in the lack of process frameworks and the standards that could be set forth by it.

The role of AI in pandemic-fighting and mitigation is broad, and several studies
have focused on defining boundaries in the research space [28,31,50–54] yet to be fully
captured, particularly due to the recency of the scenario and to the possibilities that cross-
pollination across modeling realms and domains have not been unfolded or become evi-
dent [6,55]. Bullock [51] has divided research in AI into three scales: molecular, dedicated
to understanding the nature of the decease and the appropriate responses (e.g., testing and
vaccines); clinical, focused on operational and technical routines in hospitals (e.g., medical
imaging); and the societal, where overarching impacts and risks to communities are as-
sessed and simulated for better efficacy. This broader categorization echoes more research
that is focused on contextualizing contemporary technologies during the pandemic [56].
Examples would include applications of big data [57], the Internet of Things (IoT) [58] and
blockchain [59], all of them displaying relationships with artificial intelligence solutions to
some extent [60,61].

2.3. AI in Simulation Modeling for School Testing Scenarios

In face of known data and modeling constraints concerning the use of data-intensive
applications [25,35], steps are being taken incrementally, ranging from the use of unsu-
pervised methods towards a panoramic view of pandemic’s behavior [62,63], to more
simulation-centered ones, focused on parameter optimization and predictions [3,31]. Test-
ing in school settings carries some of operational obstacles, including discomfort for
children, the logistics of the delivery, and public acceptance [4,61]. These conditions inter-
act to produce an uncertain scenario, where states and prior conditions such as diagnostic
capacity and epidemiological monitoring affect the likelihood of reopening [64]. Such a
complex interplay makes simulation modeling particularly fitting to school testing scenar-
ios for which parameters and extreme conditions, as well as mixing patterns [65] can be
put to verification in light of theories, other models, and findings.

Several studies have leveraged simulation modeling for reopening of public spaces
like school or colleges, with mixing methodological formats and findings emerging. Studies
leveraged data from ongoing research and guidelines from intergovernmental agencies
such as the World Health Organization (WHO), which provides advice on the ways in
which the virus gets spread [66]. The data qualitatively informed the selection and calibra-
tion of parameters such as the availability of tests [67], levels of preparedness and response
capacity at schools [68], hygiene guidance [69], target groups [70], demographic factors [71],
geographies [72], the expected amount of unrecorded symptomatic people [73], individual
pre-existing conditions [74] and the cost of measures being implemented [75]. The sensitiv-
ity of those parameters to uncertainties [76], to hypothetical scenarios such as the additional
impact of isolation and quarantine [77], as well as the overall efficiency of arrangements
such as test-trace-isolate [1] or diagnosing-screening-surveilling arrangements [78] have
thus far informed modeling architectures.

While most modeling endeavors have not necessarily discussed artificial intelligence
applications to school testing, a few have conversed with pertaining concepts such as
optimization towards desired performance means [73] and rule-based models [79–82].

In general, despite known concerns and caveats in incorporating data science method-
ologies into practical simulation efforts [3,6,33], AI comes into play as a way of enhancing
predictive capabilities [14,26,83,84] and of optimizing parameters for desired policy goals.
It also opens avenues for prescriptive ones, as in the case of studies in which simulation
outputs can be used to verify virus spread and anomaly growth trends based on which
tactical approaches and strategies can be devised [85,86].
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3. Materials and Methods
3.1. School Testing Simulation

To build the AI application, we first developed an agent-based disease model simulate
the outcomes of different random testing in schools of different size. The agent-based
model consists of two main agents including Student and Class and the family agent. The
current model does not include Teacher and Staff as separate agents, but their population
can be added to the class and school population. We use a modified version of the SEIR
disease transmission model which includes testing and isolation elements developed by
Asgary et al. [4] (Figure 1). In this simulation students attend schools on weekdays and
stay in their class and cohort for the duration of the school hours (location state chart).
Students are assumed to be at susceptible state first (illness state chart). If they are exposed
to an infected classmate, their state changes from susceptible to exposed state. After being
exposed, they become either pre-symptomatic or asymptomatic infectious with given
probabilities. Infectious students can transmit the virus to others by a transmission rate that
is defined as the product of number of contacts and transmission probability per contact.
Infectious students (symptomatic and asymptomatic) recover after certain number of days.
It is assumed that testing takes place in the morning when students arrive at the school
(testing state chart). Depending on the availability of the test result, students who are tested
positive will be asked to self-isolate at home.
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Students are considered to be in NotTested state before testing. Students who are
tested are moved to Tested state and will remain there and will not be tested until their test
results are available. Students who are tested positive will be moved to the Quarantined
state and self-isolated at home. Students who are tested negative will remain in Tested
state until their tests are expired. In this simulation it is assumed that students of each class
are always together as a cohort and do not change their classes during the school hours.
An infectious student can infect others. Simulations can be viewed in 3D (Figure 2) and
2D visualization.
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Since we lack a closed form solution for our model, we proceed to approximate one
using a neural network, an approach that has been used, for instance, by [87] to maximize
testing through the mobilization of assessment centers. This will allow us greater flexibility
with respect to analyzing the model and its dependency on each parameter, as well as
faster computational speeds. Furthermore, the network can be used as a tool in real time to
gauge effective implementation strategies in schools and administration boards.

Since SARS-CoV-2 testing was not practiced at the time of this study, the simulation
results were validated by a mathematical model that is using the same parameters [4].

3.2. Data Preparation for the AI Network Model

In order to train a good network model, we first gather a large enough data set
with enough variability such that the network can learn all the intrinsic properties of the
simulation model. To accomplish this, we make use of the AnyLogic Cloud module, in
collaboration with their parallel processing capabilities accessed through their Python
API [88].

Since many of the model parameters are unbound in theory, we make the decision to
impose specific limits on them in order to generate a realistic range, and therefore focus
our attention on building an accurate AI model in this specific domain. For example, we
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simulate results for recovery rates amongst symptomatic cases at periods between 7 and
19 days despite the fact that we know the average period for this to be about 12 days.
This way our model can learn precisely what effects this parameter has on our output
variables. A full list of parameter sampling ranges is shown in Table 1. We proceed to
generate approximately 125,000 model simulation, saving all input and output data for
each run.

Table 1. Parameter ranges used for sampling in the data generation process.

Parameter Range Notes

Number of contacts per school day 2.45–5.45 Double
Transmission probability of pre-symptomatic 0.01–0.1 Double

Transmission probability of symptomatic 0.1–0.2 Double
Transmission probability of asymptomatic 0.1–0.2 Double

Pre-symptomatic rate (portion) 0.35–0.65 Double
Pre-symptomatic latent period 1.3–3.3 Double

Asymptomatic latent period 3.47–5.47 Double
Symptomatic latent period 1.63–3.63 Double

Self-isolation rate 0.4–0.7 Double
Symptomatic recovery period 7–19 Integer

Asymptomatic recovery period 6–12 Integer
Number of initially infected students 1–10 Integer

Class size 15–35 Integer
Number of classes 10–50 Integer

Isolate class True or False Boolean
Cross transmission True or False Boolean

Test class True or False Boolean
Number of tests in each class 1–10 Integer

Test results time (days) 0–6 Integer
Test expiry time (days) 7–21 Integer
Test frequency (days) 1, 7, 14, 21 or 28 Integer

3.3. Network Design

We aim to design a neural network which will take the parameters from Table 1 as
inputs, and return the desired results from our agent-based model in the output layer.
More precisely, we flatten the 21 parameters into an input vector for our model. Similarly,
we stack the 22 60-day time series outputs of the model along with the 10 overall statistics
into an output vector as can be seen in Figure 3. We propose a neural network design, with
blocks made up of fully connected layers, ReLU activations and dropout randomization,
followed by a final fully connected 200 neuron feature layer before the output layer. We
choose to use 200 neurons in this layer as to give the network enough information capacity
to predict the output reasonably. We partially train a collection of networks of this form,
with varying network depth and neurons per layer, using early stopping at 30 epochs,
utilizing an 80-20 train-test split from our synthesized dataset (a more thorough outline for
the full training process is given in Section 4.1). Based on the mean absolute error (MAE) of
the networks’ structures displayed in Table 2, we choose a 4-layer model, each consisting
of 512 neurons in hidden block layers. We make this decision as the marginal gain for any
more neurons or layers appears to diminish at this point. The best performance is achieved
using a 3-layer, 1024 neuron per layer structure, but since this is a coarse hyperparameter
grid search, the accuracy measures are not necessarily indicative of full training results,
and only used heuristically. It is to be noted that this is not a full training of the model, but
simply a proxy for optimal network hyperparameters. The chosen architecture is visualized
in Figure 3.
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Table 2. Mean absolute error (MAE) for different network architectures. As expected, increased
depth and neuron count generally improves overall accuracy.

Neurons per Layer 2 Layers 3 Layers 4 Layers 5 Layers

128 21.1877 23.063 27.5082 31.5405
256 19.3726 17.6099 20.9791 23.8443
512 18.2007 15.5868 15.3118 * 15.8596

1024 18.5459 14.7874 15.1074 14.9054

* Architecture selected for full training.

4. Results
4.1. Network Training

Using the same 80-20 split we used in Section 3.3, we proceed to train the network
to completion. Our training dataset consists of about 100,000 samples, while keeping a
respectable 25,000 samples on which to validate our model on. We utilize the 4-layer
network structure from Section 3.3 and train the network in shuffled batches of size 256. We
use the default ADAM optimizer built into Tensorflow 2.0 with a learning rate of 0.001 to
minimize a mean absolute error loss function between the real outputs and the predictions.
Dropout rates are kept at 20% as to reduce overfitting. Training over 100 epochs, our
model accuracy can be seen in Figure 4. When fully trained, our model achieves a mean
absolute error of 14.4264 on the test data. This can roughly be thought of as the average
distance each prediction is from the true simulator value. Given that we have many output
statistics in the orders of hundreds and thousands, this is a very promising error rate.
Furthermore, a 5-fold cross-validation procedure on the train set yields results in the same
vicinity, as can be seen in Table 3. This suggest that our network is not only accurate but
robust to samples it has not seen before. It is to be noted that this accuracy measure is not a
measure of the AI model with respect to the historical real-world data, but to the simulator
predictions themselves.
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Table 3. Mean absolute error in a 5-fold cross-validation and in overall test set.

Validation Test

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 -
14.8616 15.0594 14.8956 14.6614 14.9990 14.4264

4.2. Network Prediction

Our model is relatively lightweight, taking up only 10.9 Mb and making inference near
instantly. A histogram of the computational speeds of 1000 randomly generated inputs can
be seen in Figure 5. The average prediction time was 28.59 milliseconds, while the fastest
and slowest runs measured at 25.27 and 39.88 milliseconds respectively.
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30-millisecond range, allowing for consistent model use at around 30 Hz.

In order to use the model to predict the simulation results, we stack all our input
variables in a vector and run it through the network. The network outputs one stacked
vector of all the results, which can easily be reshaped to give us each separate output.
As our initial agent-based simulation is calibrated to forecast a time period of 60 days
ahead, our network model structure matches this setup, returning time series in chunks
of 60-day partitions. A similar structure can be implemented for varying time periods,
beginning with the agent-based dataset simulation. Given a random input sample from
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our test set, we show some of the predicted outputs vs. the true outputs in Figure 6 using
our AI model. Visual inspection supports accuracy measures obtained, notably the step
like structure in the Total Tested, with jumps happening at precisely the testing frequency
in days. The Infected population as well as the Virus Spread appears to be very well
predicted in terms of shape. The long-term equilibria of the Exposed population seems
to be slightly underestimated by the model. Testing Distributions were predicted very
well. Most notably however, the model struggled with the Tested and Isolated population,
missing out on the very structure it picked up in the Tested population. Similar effects
were seen in other test sample predictions.
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Figure 6. A prediction using our network model of a random test sample. (a) Predicted results for number of tests
administered, virus spread, cumulative and daily infected cases, isolated population and other key distributions measures
through 60 days. (b) Actual results for the same test sample. The student testing chart exhibits step-like structure inline
with the periodically administered class testing. Infection profiles and the virus spread also display the commonly observed
plateauing in the long-term dynamics of such systems, as evident in the real data.



Electronics 2021, 10, 1626 11 of 16

4.3. Analysis

Lacking an analytic solution to the underlying model, our neural network is able to
provide a smooth enough approximation to the problem. A similar statement can be made
for the simulation itself, however the speed improvement is unquestionable. A typical
simulation run took on the order of minutes, whereas our network runs in a fraction of a
second. This allows us to study the space of parameters much more efficiently. We proceed
to generate a dense field of parameter values to demonstrate this.

Two critical factors in the spread of the virus in a school environment are the size of
classes and the average number of contacts per day. We sample each of these parameters
across the entire space of allowed values as given in Table 1, and display the results in a
heatmap against time in Figure 7. Plots like these could not be generated in reasonable
time frames without our network model. We can see here the non-linear relationship with
the contact rate and the time it takes to hit specific milestones in total infection counts. We
can also help in the selection of optimal class size, and the likely horizon it would permit
for a given acceptable infection level. More interestingly, we plot the relation between
the contact rate and the class size. This provides policy makers with a range for the class
size schools should target that can dynamically be adjusted to balance out any unforeseen
changes in daily contacts measured. Alternatively, given a set class size, precautions can be
put into place to target specific levels of daily contacts along a given contour line.
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Our model allows for more general sensitivity analysis across all parameter using
such techniques, as the network itself acts as the function modeling the outbreak dynamics.
We do not proceed to exhaust all combinations here, as the list grows infeasibly large, and
the importance will differ on a case by case basis.

5. Discussion

Our research demonstrated how data generated by a school COVID-19 testing simu-
lation was used to develop an artificial intelligence version of the simulation. While the
simulation results, itself had been fully presented and discussed in earlier work [4], the
main focus of this paper was to show how machine learning and AI technology were used
to develop additional decision support tools for school testing. The results show that the
AI model can provide faster and highly accurate predictions for different input parameter
values. While developing simulation-based AI models is not new [34], its application
in different areas of study and simulation types are very limited. The AI-based school
testing model has been deployed as a web application that can be used by the users at
www.adersim.org. This application provides a school testing tool for public health and
public education agencies aiming to implement and examine different testing strategies
considering their local conditions as well as their associated costs and challenges. Users
can simply input their unique school, disease conditions and testing related parameters,
and our model will generate an accurate prediction of the disease spread and outbreak in
the school.

Our school testing simulation has been developed and parameterized based on the
existing information available about the COVID-19 in Canada and Ontario in particular.
As such, minor adjustments may be needed to the baseline parameters in order to use
the application in other countries. In addition, this simulation has not been validated
against real school testing because at the time of this research no school testing has been
done in Ontario. As real evidence of school testing, whether large scale or experimental
level, the simulation tool can be enhanced to account for real testing input and output
values. The simulation and methodology presented here can be used for other potential
disease situations.

The approach proposed should not suffice for policy moving forward. More runs,
under other combinations of parameters should illuminate the course of actions. In addi-
tion, we encourage assumptions underlying the structure of the model to be constantly
revisited as the model was designed to reflect a highly uncertain scenario, with both in-
complete and constantly changing data and conditions. Given the evidence of the social
network structures as a catalyzer for virus spread, the model proposed in this paper could
further benefit from more granular analyses at the community-level attributes such as
expected behavior. Despite our simulated data, our methods reinforce the need for more
systematic and widespread testing, for it addresses the information availability issue of
any modeling endeavor.

We have deployed this AI model into an online application that can be used by
potential users (https://www.adersim.org/SchoolTesting/, accessed on 3 March 2021).

6. Conclusions

This research makes a contribution in two ways. First, it introduces an agent-based
simulation model where AI is leveraged for parameter optimization. Secondly, it demon-
strates its application to the context of testing in school settings. Benefits of this approach
include greater accuracy in parameter estimation and more predictive power, which is
critical to the usability of the model in school testing scenarios. Limits of this research
include assumptions that are inherent to modeling approaches and may be reinforced
by the usage of machine learning paradigms. Future research should account for that
for new experimentations and consider other testing environments as means of further
assessing the robustness of the model. Qualitative and mixed-method approaches, which

www.adersim.org
www.adersim.org
https://www.adersim.org/SchoolTesting/
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may include observational steps, as well as interviews with people in the field, can also be
used for data enrichment and validation.

Author Contributions: J.W., A.A., M.C. and M.G.C. conceived the idea. A.A. and M.M.N. developed
the simulation model. S.Z.V. developed the AI model with feedback from M.C. and A.A. S.Z.V., A.A.
and F.A.C. drafted the manuscripts. J.W. and M.M.N. reviewed the manuscript and made intellectual
input. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Public Health Agency of Canada; Canadian Institute
of Health Research, Ontario Research Funds, National Science and Engineering Research Council
of Canada.

Data Availability Statement: Simulation data for the training of the neural network model can be
found at https://www.kaggle.com/zarkonium/covid19-school-spread-simulation-dataset, accessed
on 20 April 2021.

Acknowledgments: We thank the AnyLogic team for providing support for their Cloud API.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

AI Artificial Intelligence
ECDC European Centre for Disease Control
KPI Key Performance Indicator
IOT Internet of Things
WHO World Health Organization
MAE Mean Absolute Error

References
1. Panovska-Griffiths, J.; Kerr, C.C.; Stuart, R.M.; Mistry, D.; Klein, D.J.; Viner, R.M.; Bonell, C. Determining the optimal strategy for

reopening schools, the impact of test and trace interventions, and the risk of occurrence of a second COVID-19 epidemic wave in
the UK: A modelling study. Lancet Child Adolesc. Health 2020, 4, 817–827. [CrossRef]

2. Ziauddeen, N.; Woods-Townsend, K.; Saxena, S.; Gilbert, R.; Alwan, N.A. Schools and COVID-19: Reopening Pandora’s box?
Public Health Pr. 2020, 1, 100039. [CrossRef] [PubMed]

3. Asgary, A.; Valtchev, S.Z.; Chen, M.; Najafabadi, M.M.; Wu, J. Artificial intelligence model of drive-through vaccination simulation.
Int. J. Environ. Res. Public Health 2020, 18, 268. [CrossRef] [PubMed]

4. Asgary, A.; Cojocaru, M.G.; Najafabadi, M.M.; Wu, J. Simulating preventative testing of SARS-CoV-2 in schools: Policy implica-
tions. BMC Public Health 2021, 21, 125. [CrossRef]

5. Asgary, A.; Najafabadi, M.; Karsseboom, R.; Wu, J. A Drive-through simulation tool for mass vaccination during COVID-19
Pandemic. Healthcare 2020, 8, 469. [CrossRef]

6. Latif, S.; Usman, M.; Manzoor, S.; Iqbal, W.; Qadir, J.; Tyson, G.; Crowcroft, J. Leveraging data science to combat COVID-19: A
comprehensive review. IEEE Trans. Artif. Intell. 2020, 1, 85–103.

7. Torrealba-Rodriguez, O.; Conde-Gutiérrez, R.; Hernández-Javier, A. Modeling and prediction of COVID-19 in Mexico applying
mathematical and computational models. Chaos Solitons Fractals 2020, 138, 109946. [CrossRef] [PubMed]

8. Williams, C.M.; Chaturvedi, R.; Urman, R.D.; Waterman, R.S.; Gabriel, R.A. Artificial intelligence and a pandemic: An analysis of
the potential uses and drawbacks. J. Med Syst. 2021, 45, 26. [CrossRef]

9. Naudé, W. Artificial Intelligence against Covid-19: An Early Review. 2020. Available online: https://papers.ssrn.com/abstract=
3568314 (accessed on 12 May 2021).

10. Allam, Z.; Jones, D.S. On the coronavirus (COVID-19) outbreak and the smart city network: Universal data sharing standards
coupled with artificial intelligence (AI) to benefit urban health monitoring and management. Health 2020, 8, 46. [CrossRef]

11. Gatto, M.; Bertuzzo, E.; Mari, L.; Miccoli, S.; Carraro, L.; Casagrandi, R.; Rinaldo, A. Spread and dynamics of the COVID-19
epidemic in Italy: Effects of emergency containment measures. Proc. Natl. Acad. Sci. USA 2020, 117, 10484–10491. [CrossRef]

12. Mohanty, S.; Sharma, R.; Saxena, M.; Saxena, A. Heuristic Approach towards COVID-19: Big Data Analytics and Classification with
Natural Language Processing; Springer: Singapore, 2021; pp. 775–791.

13. Asif, S.; Wenhui, Y.; Jin, H.; Jinhai, S. Classification of COVID-19 from chest X-ray images using deep convolutional neural
network. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu,
China, 11–14 December 2020; pp. 426–433.

https://www.kaggle.com/zarkonium/covid19-school-spread-simulation-dataset
http://doi.org/10.1016/S2352-4642(20)30250-9
http://doi.org/10.1016/j.puhip.2020.100039
http://www.ncbi.nlm.nih.gov/pubmed/34173574
http://doi.org/10.3390/ijerph18010268
http://www.ncbi.nlm.nih.gov/pubmed/33396526
http://doi.org/10.1186/s12889-020-10153-1
http://doi.org/10.3390/healthcare8040469
http://doi.org/10.1016/j.chaos.2020.109946
http://www.ncbi.nlm.nih.gov/pubmed/32836915
http://doi.org/10.1007/s10916-021-01705-y
https://papers.ssrn.com/abstract=3568314
https://papers.ssrn.com/abstract=3568314
http://doi.org/10.3390/healthcare8010046
http://doi.org/10.1073/pnas.2004978117


Electronics 2021, 10, 1626 14 of 16

14. Mei, X.; Lee, H.-C.; Diao, K.; Huang, M.; Lin, B.; Liu, C.; Xie, Z.; Ma, Y.; Robson, P.M.; Chung, M.; et al. Artificial intelligence-
enabled rapid diagnosis of COVID-19 patients. medRxiv 2020. medRxiv:2020.04.12.20062661. [CrossRef]

15. Patel, H.R.; Patel, A.M.; Parikh, S.M. Analytical study on COVID-19 to predict future infected cases ratio in India using machine
leaning. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1022, 012022. [CrossRef]

16. Rahmatizadeh, S.; Valizadeh-Haghi, S.; Dabbagh, A. The role of artificial intelligence in management of critical COVID-19 patients.
J. Cell. Mol. Anesth. 2020, 5, 16–22.

17. McCall, B. COVID-19 and artificial intelligence: Protecting health-care workers and curbing the spread. Lancet Digit. Health 2020,
2, e166–e167. [CrossRef]

18. Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab.
Syndr. Clin. Res. Rev. 2020, 14, 337–339. [CrossRef]

19. Abd-Alrazaq, A.; Alajlani, M.; Alhuwail, D.; Schneider, J.; Al-Kuwari, S.; Shah, Z.; Hamdi, M.; Househ, M. Artificial intelligence
in the fight against COVID-19: Scoping review. J. Med. Internet Res. 2020, 22, e20756. [CrossRef]

20. Shantani, K.; Kannan, S.; Sheeza, A.; Hemalatha, K. The role of artificial intelligence and machine learning techniques: Race for
COVID-19 vaccine. Arch. Clin. Infect. Dis. 2020, 15. [CrossRef]

21. Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; La Spada, L.; Mirmozafari, M.;
Dehghani, M.; et al. Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access
2020, 8, 109581–109595. [CrossRef] [PubMed]

22. Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health
2020, 2, e667–e676. [CrossRef]

23. Shahid, O.; Nasajpour, M.; Pouriyeh, S.; Parizi, R.M.; Han, M.; Valero, M.; Li, F.; Aledhari, M.; Sheng, Q.Z. Machine learning
research towards combating COVID-19: Virus detection, spread prevention, and medical assistance. arXiv 2020, arXiv:2010.07036.
Available online: http://arxiv.org/abs/2010.07036 (accessed on 11 May 2021).

24. Islam, M.N.; Inan, T.T.; Rafi, S.; Akter, S.S.; Sarker, I.H.; Najmul, A.K. A Survey on the Use of AI and ML for Fighting the COVID-19
Pandemic. arXiv 2020, arXiv:2008.07449. Available online: http://arxiv.org/abs/2008.07449 (accessed on 11 May 2021).

25. Saxena, N.; Gupta, P.; Raman, R.; Rathore, A.S. Role of data science in managing COVID-19 pandemic. Indian Chem. Eng. 2020,
62, 385–395. [CrossRef]

26. Khan, F.N.; Khanam, A.A.; Ramlal, A.; Ahmad, S. A Review on predictive systems and data models for COVID-19. In Econometrics
for Financial Applications; Springer: Singapore, 2020; pp. 123–164.

27. Nguyen, T.T. Artificial intelligence in the battle against coronavirus (COVID-19): A survey and future research directions. arXiv
2020, arXiv:2008.07343. Available online: http://arxiv.org/abs/2008.07343 (accessed on 12 May 2021).

28. Syeda, H.B.; Syed, M.; Sexton, K.W.; Syed, S.; Begum, S.; Syed, F.; Prior, F.; Yu, F., Jr. Role of machine learning techniques to tackle
the COVID-19 crisis: Systematic review. JMIR Med. Inform. 2021, 9, e23811. [CrossRef] [PubMed]

29. Mahmood, S.; Hasan, K.; Carras, M.C.; Labrique, A. Global preparedness against COVID-19: We must leverage the power of
digital health (Preprint). JMIR Public Health Surveill. 2020, 6, e18980. [CrossRef]

30. Shinde, G.R.; Kalamkar, A.B.; Mahalle, P.N.; Dey, N.; Chaki, J.; Hassanien, A.E. Forecasting models for coronavirus disease
(COVID-19): A survey of the state-of-the-art. SN Comput. Sci. 2020, 1, 1–15. [CrossRef] [PubMed]

31. Adly, A.S.; Adly, A.S.; Adly, M.S. Approaches Based on artificial intelligence and the internet of intelligent things to prevent the
spread of COVID-19: Scoping review. J. Med. Internet Res. 2020, 22, e19104. [CrossRef] [PubMed]

32. Chen, B.; Marvin, S.; While, A. Containing COVID-19 in China: AI and the robotic restructuring of future cities. Dialog Hum.
Geogr. 2020, 10, 238–241. [CrossRef]

33. Kielienyu, S.; Kantarci, B.; Turgut, D.; Khan, S. Bridging predictive analytics and mobile crowdsensing for future risk maps of
communities against COVID-19. In Proceedings of the 18th ACM Symposium on Mobility Management and Wireless Access, New York,
NY, USA, 16–20 November 2020; Association for Computing Machinery (ACM): New York, NY, USA, 2020; pp. 37–45.

34. McBryde, E.S.; Meehan, M.T.; Adegboye, O.A.; Adekunle, A.I.; Caldwell, J.M.; Pak, A.; Rojas, D.P.; Williams, B.M.; Trauer, J.M.
Role of modelling in COVID-19 policy development. Paediatr. Respir. Rev. 2020, 35, 57–60. [CrossRef]

35. Leslie, D. Tackling COVID-19 through responsible AI innovation: Five steps in the right direction. Harv. Data Sci. Rev. 2020.
[CrossRef]

36. Kühn, M.J.; Abele, D.; Mitra, T.; Koslow, W.; Abedi, M.; Rack, K.; Siggel, M.; Khailaie, S.; Klitz, M.; Binder, S.; et al. Assessment
of effective mitigation and prediction of the spread of SARS-CoV-2 in Germany using demographic information and spatial
resolution. medRxiv 2020. medRxiv2020.12.18.20248509. [CrossRef]

37. Richardson, G.P. Reflections on the foundations of system dynamics. Syst. Dyn. Rev. 2011, 27, 219–243. [CrossRef]
38. Nah, K.; Chen, S.; Xiao, Y.; Tang, B.; Bragazzi, N.; Heffernan, J.; Asgary, A.; Ogden, N.; Wu, J. Scenario tree and adaptive decision

making on optimal type and timing for intervention and social-economic activity changes to manage the COVID-19 pandemic.
Eur. J. Pure Appl. Math. 2020, 13, 710–729. [CrossRef]

39. Currie, C.S.; Fowler, J.W.; Kotiadis, K.; Monks, T.; Onggo, B.S.; Robertson, D.A.; Tako, A.A. How simulation modelling can help
reduce the impact of COVID-19. J. Simul. 2020, 14, 83–97. [CrossRef]

40. Cronemberger, F.; Gil-Garcia, J. Problem conceptualization as a foundation of data analytics in local governments: Lessons from
the city of Syracuse, New York. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10
January 2020; Hawaii International Conference on System Sciences: Maui, HI, USA, 2020.

http://doi.org/10.1038/s41591-020-0931-3
http://doi.org/10.1088/1757-899X/1022/1/012022
http://doi.org/10.1016/S2589-7500(20)30054-6
http://doi.org/10.1016/j.dsx.2020.04.012
http://doi.org/10.2196/20756
http://doi.org/10.5812/archcid.103232
http://doi.org/10.1109/ACCESS.2020.3001973
http://www.ncbi.nlm.nih.gov/pubmed/34192103
http://doi.org/10.1016/S2589-7500(20)30192-8
http://arxiv.org/abs/2010.07036
http://arxiv.org/abs/2008.07449
http://doi.org/10.1080/00194506.2020.1855085
http://arxiv.org/abs/2008.07343
http://doi.org/10.2196/23811
http://www.ncbi.nlm.nih.gov/pubmed/33326405
http://doi.org/10.2196/18980
http://doi.org/10.1007/s42979-020-00209-9
http://www.ncbi.nlm.nih.gov/pubmed/33063048
http://doi.org/10.2196/19104
http://www.ncbi.nlm.nih.gov/pubmed/32584780
http://doi.org/10.1177/2043820620934267
http://doi.org/10.1016/j.prrv.2020.06.013
http://doi.org/10.2139/ssrn.3652970
http://doi.org/10.1101/2020.12.18.20248509
http://doi.org/10.1002/sdr.462
http://doi.org/10.29020/nybg.ejpam.v13i3.3792
http://doi.org/10.1080/17477778.2020.1751570


Electronics 2021, 10, 1626 15 of 16

41. Luna-Reyes, L.F.; Black, L.J.; Ran, W.; Andersen, D.L.; Jarman, H.; Richardson, G.P.; Andersen, D.F. Modeling and simulation as
boundary objects to facilitate interdisciplinary research. Syst. Res. Behav. Sci. 2019, 36, 494–513. [CrossRef]

42. Wolstenholme, E. Using generic system archetypes to support thinking and modelling. Syst. Dyn. Rev. 2004, 20, 341–356.
[CrossRef]

43. Sturniolo, S.; Waites, W.; Colbourn, T.; Manheim, D.; Panovska-Griffiths, J. Testing, tracing and isolation in compartmental models.
medRxiv 2020. medRxiv:2020.05.14.20101808. [CrossRef]

44. Paul, A.; Bhattacharjee, J.K.; Pal, A.; Chakraborty, S. Emergence of universality in the transmission dynamics of COVID-19. arXiv
2021, arXiv:2101.12556. Available online: http://arxiv.org/abs/2101.12556 (accessed on 12 May 2021).

45. Cristianini, N. On the current paradigm in artificial intelligence. AI Commun. 2014, 27, 37–43. [CrossRef]
46. Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: A structured

literature review. BMC Med. Inform. Decis. Mak. 2021, 21, 125.
47. Alimadadi, A.; Aryal, S.; Manandhar, I.; Munroe, P.B.; Joe, B.; Cheng, X. Artificial intelligence and machine learning to fight

COVID-19. Physiol. Genom. 2020, 52, 200–202. [CrossRef]
48. Pan, X. The application and legal issues of artificial intelligence in the global prevention and control of the COVID-19 epidemic.

In Proceedings of the 6th Annual International Conference on Social Science and Contemporary Humanity Development (SSCHD 2020),
Xi’an, China, 18–19 December 2020; Atlantis Press: Paris, France, 2021; pp. 440–445. [CrossRef]

49. Jiang, L.; Wu, Z.; Xu, X.; Zhan, Y.; Jin, X.; Wang, L.; Qiu, Y. Opportunities and challenges of artificial intelligence in the medical
field: Current application, emerging problems, and problem-solving strategies. J. Int. Med. Res. 2021, 49, 3000605211000157.
[CrossRef]

50. Raza, K. Artificial intelligence against COVID-19: A Meta-analysis of current research. In Big Data Analytics and Artificial
Intelligence against COVID-19: Innovation Vision and Approach; Hassanien, A.-E., Dey, N., Elghamrawy, S., Eds.; Springer: Cham,
Switzerland, 2020; pp. 165–176.

51. Bullock, J.; Luccioni, A.; Pham, K.H.; Lam, C.S.N.; Luengo-Oroz, M. Mapping the landscape of Artificial Intelligence applications
against COVID-19. J. Artif. Intell. Res. 2020, 69, 807–845. [CrossRef]

52. Krishnaratne, S.; Pfadenhauer, L.M.; Coenen, M.; Geffert, K.; Jung-Sievers, C.; Klinger, C.; Kratzer, S.; Littlecott, H.; Movsisyan,
A.; Rabe, J.E.; et al. Measures implemented in the school setting to contain the COVID-19 pandemic: A rapid scoping review.
Cochrane Database Syst. Rev. 2020, 12, CD013812. [CrossRef] [PubMed]

53. Lalmuanawma, S.; Hussain, J.; Chhakchhuak, L. Applications of machine learning and artificial intelligence for Covid-19
(SARS-CoV-2) pandemic: A review. Chaos Solitons Fractals 2020, 139, 110059. [CrossRef] [PubMed]

54. Chen, J.; Li, K.; Zhang, Z.; Li, K.; Yu, P.S. A Survey on applications of artificial intelligence in fighting against COVID-19. arXiv
2020, arXiv:2007.02202. Available online: http://arxiv.org/abs/2007.02202 (accessed on 11 May 2021).

55. Santosh, K.C. AI-driven tools for coronavirus outbreak: Need of Active learning and cross-population train/test models on
multitudinal/multimodal data. J. Med. Syst. 2020, 44, 1–5. [CrossRef] [PubMed]

56. Wadali, J.S.; Khosla, P.K. Healthcare 4.0 in future capacity building for pandemic control. In Predictive and Preventive Measures for
Covid-19 Pandemic; Khosla, P.K., Mittal, M., Sharma, D., Goyal, L.M., Eds.; Springer: Singapore, 2021; pp. 87–107.

57. Wang, C.J.; Ng, C.Y.; Brook, R.H. Response to COVID-19 in Taiwan: Big data analytics, new technology, and proactive testing.
JAMA 2020. [CrossRef] [PubMed]

58. Singh, R.P.; Javaid, M.; Haleem, A.; Suman, R. Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes
Metab. Syndr. 2020, 14, 521–524. [CrossRef]

59. Song, J.; Gu, T.; Feng, X.; Ge, Y.; Mohapatra, P. Blockchain meets COVID-19: A framework for contact information sharing and risk
notification system. arXiv 2020, arXiv:2007.10529. Available online: http://arxiv.org/abs/2007.10529 (accessed on 12 May 2021).

60. Khanday, A.M.U.D.; Rabani, S.T.; Khan, Q.R.; Rouf, N.; Mohi Ud Din, M. Machine learning based approaches for detecting
COVID-19 using clinical text data. Int. J. Inform. Technol. 2020, 16, 1–9. [CrossRef]

61. Baclic, O.; Tunis, M.; Young, K.; Doan, C.; Swerdfeger, H.; Schonfeld, J. Challenges and opportunities for public health made
possible by advances in natural language processing. Can. Commun. Dis. Rep. 2020, 46, 161–168. [CrossRef] [PubMed]

62. Khmaissia, F.; Haghighi, P.S.; Jayaprakash, A.; Wu, Z.; Papadopoulos, S.; Lai, Y. An unsupervised machine learning approach to
assess the ZIP code level impact of COVID-19 in NYC. arXiv 2020, arXiv:2006.08361. Available online: http://arxiv.org/abs/2006
.08361 (accessed on 11 May 2021).

63. Qeadan, F.; Honda, T.; Gren, L.H.; Dailey-Provost, J.; Benson, L.S.; Vanderslice, J.A.; Porucznik, C.A.; Waters, A.B.; Lacey, S.;
Shoaf, K. Naive forecast for COVID-19 in Utah based on the South Korea and Italy models-the fluctuation between two extremes.
Int. J. Environ. Res. Public Health 2020, 17, 2750. [CrossRef] [PubMed]

64. Askarian, M.; Groot, G.; Taherifard, E.; Taherifard, E.; Akbarialiabad, H.; Borazjani, R.; Askarian, A.; Taghrir, M.H. Basics of
developing a COVID-19 reopening roadmap: A systematic scoping review. Iran. J. Public Health 2021, 50, 232–244. [PubMed]

65. Keeling, M.J.; Tildesley, M.J.; Atkins, B.D.; Penman, B.; Southall, E.; Guyver-Fletcher, G.; Holmes, A.; McKimm, H.;
Gorsich, E.E.; Hill, E.M.; et al. The impact of school reopening on the spread of COVID-19 in England. medRxiv 2020.
medRxiv:10.1101/2020.06.04.20121434. [CrossRef]

66. World Health Organization. Key Messages and Actions for COVID-19 Prevention and Control in Schools. 2020. Available online:
https://covid19-evidence.paho.org/handle/20.500.12663/792 (accessed on 12 May 2021).

http://doi.org/10.1002/sres.2564
http://doi.org/10.1002/sdr.302
http://doi.org/10.1101/2020.05.14.20101808
http://arxiv.org/abs/2101.12556
http://doi.org/10.3233/AIC-130582
http://doi.org/10.1152/physiolgenomics.00029.2020
http://doi.org/10.2991/assehr.k.210121.092
http://doi.org/10.1177/03000605211000157
http://doi.org/10.1613/jair.1.12162
http://doi.org/10.1002/14651858.CD013812
http://www.ncbi.nlm.nih.gov/pubmed/33331665
http://doi.org/10.1016/j.chaos.2020.110059
http://www.ncbi.nlm.nih.gov/pubmed/32834612
http://arxiv.org/abs/2007.02202
http://doi.org/10.1007/s10916-020-01562-1
http://www.ncbi.nlm.nih.gov/pubmed/32189081
http://doi.org/10.1001/jama.2020.3151
http://www.ncbi.nlm.nih.gov/pubmed/32125371
http://doi.org/10.1016/j.dsx.2020.04.041
http://arxiv.org/abs/2007.10529
http://doi.org/10.1007/s41870-020-00495-9
http://doi.org/10.14745/ccdr.v46i06a02
http://www.ncbi.nlm.nih.gov/pubmed/32673380
http://arxiv.org/abs/2006.08361
http://arxiv.org/abs/2006.08361
http://doi.org/10.3390/ijerph17082750
http://www.ncbi.nlm.nih.gov/pubmed/32316165
http://www.ncbi.nlm.nih.gov/pubmed/33747987
http://doi.org/10.1101/2020.06.04.20121434
https://covid19-evidence.paho.org/handle/20.500.12663/792


Electronics 2021, 10, 1626 16 of 16

67. Vlacha, V.; Feketea, G.M. Return-to-school evaluation criteria for children with suspected coronavirus disease 2019. Front. Public
Health 2020, 8, 618642. [CrossRef]

68. Sheikh, A.; Sheikh, A.; Sheikh, Z.; Dhami, S. Reopening schools after the COVID-19 lockdown. J. Glob. Health 2020, 10, 010376.
[CrossRef]

69. Contreras, S.; Dehning, J.; Loidolt, M.; Zierenberg, J.; Spitzner, F.P.; Urrea-Quintero, J.H. The challenges of containing SARS-CoV-2
via test-trace-and-isolate. Nat. Commun. 2021, 12, 378. [CrossRef]

70. Grundel, S.; Heyder, S.; Hotz, T.; Ritschel, T.K.S.; Sauerteig, P.; Worthmann, K. How to coordinate vaccination and social distancing
to mitigate SARS-CoV-2 outbreaks. medRxiv 2020. medRxiv:2020.12.22.20248707. [CrossRef]

71. Shayak, B.; Sharma, M.M.; Mishra, A.K. Impact of immediate and preferential relaxation of social and travel restrictions for
vaccinated people on the spreading dynamics of COVID-19: A model-based analysis. medRxiv 2021. medRxiv:2021.01.19.21250100.
[CrossRef]

72. Aspinall, W.P.; Sparks, R.S.J.; Cooke, R.M.; Scarrow, J. Quantifying threat from COVID-19 infection hazard in primary schools in
England. medRxiv 2020. medRxiv:2020.08.07.20170035.

73. Kreck, M.; Scholz, E. Studying the course of Covid-19 by a recursive delay approach. medRxiv 2021. medRxiv:2021.01.18.21250012.
[CrossRef]

74. Thampi, N.; Sander, B.; Science, M. Preventing the introduction of SARS-CoV-2 into school settings. CMAJ Can. Med. Assoc. J.
2021, 193, E24–E25. [CrossRef] [PubMed]

75. Colbourn, T.; Waites, W.; Panovska-Griffiths, J.; Manheim, D.; Sturniolo, S.; Colbourn, G. Modelling the health and economic
impacts of population-wide testing, contact tracing and isolation (PTTI) strategies for COVID-19 in the UK. SSRN Electron. J. 2020.
[CrossRef]

76. Benneyan, J.C.; Gehrke, C.; Ilies, I.; Nehls, N. Potential community and campus Covid-19 outcomes under university and college
reopening scenarios. medRxiv 2020. medRxiv:10.1101/2020.08.29.20184366. [CrossRef]

77. Pavelka, M.; Van-Zandvoort, K.; Abbott, S.; Sherratt, K.; Majdan, M.; Analýz, I.Z.; Jarčuška, P.; Krajčí, M.; Flasche, S.; Funk, S. The
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