|
Iain Moyles Person1 #679799 Assistant Professor in the Department of Mathematics and Statistics at York University. | Research interests - Mathematical Modelling,
- Industrial Mathematics,
- Model Reduction,
- Scientific Computing
|
+Citations (7) - CitationsAjouter une citationList by: CiterankMapLink[2] Determination of significant immunological timescales from mRNA-LNP-based vaccines in humans
En citant: Iain R. Moyles, Chapin S. Korosec, Jane M. Heffernan Publication date: 30 April 2023 Publication info: Journal of Mathematical Biology, Volume 86, Article number: 86 (2023) CitĂ© par: David Price 9:22 PM 16 November 2023 GMT Citerank: (3) 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 701037MfPH â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0 URL: DOI: https://doi.org/10.1007/s00285-023-01919-3
| Extrait - [Journal of Mathematical Biology, 30 April 2023]
A compartment model for an in-host liquid nanoparticle delivered mRNA vaccine is presented. Through non-dimensionalisation, five timescales are identified that dictate the lifetime of the vaccine in-host: decay of interferon gamma, antibody priming, autocatalytic growth, antibody peak and decay, and interleukin cessation. Through asymptotic analysis we are able to obtain semi-analytical solutions in each of the time regimes which allows us to predict maximal concentrations and better understand parameter dependence in the model. We compare our model to 22 data sets for the BNT162b2 and mRNA-1273 mRNA vaccines demonstrating good agreement. Using our analysis, we estimate the values for each of the five timescales in each data set and predict maximal concentrations of plasma B-cells, antibody, and interleukin. Through our comparison, we do not observe any discernible differences between vaccine candidates and sex. However, we do identify an age dependence, specifically that vaccine activation takes longer and that peak antibody occurs sooner in patients aged 55 and greater. |
Link[3] Mathematical modelling of vaccination rollout and NPIs lifting on COVID-19 transmission with VOC: a case study in Toronto, Canada
En citant: Elena Aruffo, Pei Yuan, Yi Tan, Evgenia Gatov, Iain Moyles, Jacques Bélair, James Watmough, Sarah Collier, Julien Arino, Huaiping Zhu Publication date: 15 July 2022 Publication info: BMC Public Health, Volume 22, Article number: 1349 (2022) Cité par: David Price 6:50 PM 20 November 2023 GMT
Citerank: (10) 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679803Jacques BĂ©lairProfessor, Department of Mathematics and Statistics, UniversitĂ© de MontrĂ©al10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0, 704041Vaccination859FDEF6, 704045Covid-19859FDEF6, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada â April 2023 [1] 2794CAE1, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6 URL: DOI: https://doi.org/10.1186/s12889-022-13597-9
| Extrait - [BMC Public Health, 15 July 2022]
Background: Since December 2020, public health agencies have implemented a variety of vaccination strategies to curb the spread of SARS-CoV-2, along with pre-existing Nonpharmaceutical Interventions (NPIs). Initial strategies focused on vaccinating the elderly to prevent hospitalizations and deaths, but with vaccines becoming available to the broader population, it became important to determine the optimal strategy to enable the safe lifting of NPIs while avoiding virus resurgence.
Methods: We extended the classic deterministic SIR compartmental disease-transmission model to simulate the lifting of NPIs under different vaccine rollout scenarios. Using case and vaccination data from Toronto, Canada between December 28, 2020, and May 19, 2021, we estimated transmission throughout past stages of NPI escalation/relaxation to compare the impact of lifting NPIs on different dates on cases, hospitalizations, and deaths, given varying degrees of vaccine coverages by 20-year age groups, accounting for waning immunity.
Results: We found that, once coverage among the elderly is high enough (80% with at least one dose), the main age groups to target are 20â39 and 40â59 years, wherein first-dose coverage of at least 70% by mid-June 2021 is needed to minimize the possibility of resurgence if NPIs are to be lifted in the summer. While a resurgence was observed for every scenario of NPI lifting, we also found that under an optimistic vaccination coverage (70% coverage by mid-June, along with postponing reopening from August 2021 to September 2021) can reduce case counts and severe outcomes by roughly 57% by December 31, 2021.
Conclusions: Our results suggest that focusing the vaccination strategy on the working-age population can curb the spread of SARS-CoV-2. However, even with high vaccination coverage in adults, increasing contacts and easing protective personal behaviours is not advisable since a resurgence is expected to occur, especially with an earlier reopening. |
Link[4] The stochasticity in adherence to nonpharmaceutical interventions and booster doses and the mitigation of COVID-19
En citant: Yi Tan, Pei Yuan, Iain Moyles, Jane Heffernan, James Watmough, Sanyi Tang, Huaiping Zhu Publication date: 1 March 2023 Publication info: Discrete and Continuous Dynamical Systems - S, 2023, Volume 16, Issue 3&4: 602-626. CitĂ© par: David Price 11:50 AM 2 December 2023 GMT Citerank: (6) 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 701037MfPH â Publications144B5ACA0, 704045Covid-19859FDEF6, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6 URL: DOI: https://doi.org/10.3934/dcdss.2023044
| Extrait - [Discrete and Continuous Dynamical Systems - S, March 2023]
Facing the more contagious COVID-19 variant, Omicron, nonpharmaceutical interventions (NPIs) were still in place and booster doses were proposed to mitigate the epidemic. However, the uncertainty and stochasticity in individuals' behaviours toward the NPIs and booster dose increase, and how this randomness affects the transmission remains poorly understood. We present a model framework to incorporate demographic stochasticity and two kinds of environmental stochasticity (notably variations in adherence to NPIs and booster dose acceptance) to analyze the effects of different forms of stochasticity on transmission. The model is calibrated using the data from December 31, 2021, to March 8, 2022, on daily reported cases and hospitalizations, cumulative cases, deaths and vaccinations for booster doses in Toronto, Canada. An approximate Bayesian computational (ABC) method is used for calibration. We observe that demographic stochasticity could dramatically worsen the outbreak with more incidence compared with the results of the corresponding deterministic model. We found that large variations in adherence to NPIs increase infections. The randomness in booster dose acceptance will not affect the number of reported cases significantly and it is acceptable in the mitigation of COVID-19. The stochasticity in adherence to NPIs needs more attention compared to booster dose hesitancy. |
Link[5] Efficacy of a âstay-at-homeâ policy on SARS-CoV-2 transmission in Toronto, Canada: a mathematical modelling study
En citant: Pei Yuan, Juan Li, Elena Aruffo, Evgenia Gatov, Qi Li, Tingting Zheng, Nicholas H. Ogden, Beate Sander, Jane Heffernan, Sarah Collier, Yi Tan, Jun Li, Julien Arino, Jacques Bélair, James Watmough, Jude Dzevela Kong, Iain Moyles, Huaiping Zhu Publication date: 19 April 2022 Publication info: cmaj OPEN, April 19, 2022 10 (2) E367-E378 Cité par: David Price 4:11 PM 4 December 2023 GMT
Citerank: (10) 679757Beate SanderCanada Research Chair in Economics of Infectious Diseases and Director, Health Modeling & Health Economics and Population Health Economics Research at THETA (Toronto Health Economics and Technology Assessment Collaborative).10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701222OMNI â Publications144B5ACA0, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada â April 2023 [1] 2794CAE1, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB URL: DOI: https://doi.org/10.9778/cmajo.20200242
| Extrait - Background: Globally, nonpharmaceutical interventions for COVID-19, including stay-at-home policies, limitations on gatherings and closure of public spaces, are being lifted. We explored the effect of lifting a stay-at-home policy on virus resurgence under different conditions.
Methods: Using confirmed case data from Toronto, Canada, between Feb. 24 and June 24, 2020, we ran a compartmental model with household structure to simulate the impact of the stay-at-home policy considering different levels of compliance. We estimated threshold values for the maximum number of contacts, probability of transmission and testing rates required for the safe reopening of the community.
Results: After the implementation of the stay-at-home policy, the contact rate outside the household fell by 39% (from 11.58 daily contacts to 7.11). The effective reproductive number decreased from 3.56 (95% confidence interval [CI] 3.02â4.14) on Mar. 12 to 0.84 (95% CI 0.79â0.89) on May 6. Strong adherence to stay-at-home policies appeared to prevent SARS-CoV-2 resurgence, but extending the duration of stay-at-home policies beyond 2 months had little added effect on cumulative cases (25 958 for 65 days of a stay-at-home policy and 23 461 for 95 days, by July 2, 2020) and deaths (1404 for 65 days and 1353 for 95 days). To avoid a resurgence, the average number of contacts per person per day should be kept below 9, with strict nonpharmaceutical interventions in place.
Interpretation: Our study demonstrates that the stay-at-home policy implemented in Toronto in March 2020 had a substantial impact on mitigating the spread of SARS-CoV-2. In the context of the early pandemic, before the emergence of variants of concern, reopening schools and workplaces was possible only with other nonpharmaceutical interventions in place.
Nonpharmaceutical interventions for COVID-19, including stay-at-home policies, isolation of cases and contact tracing, as well as physical distancing, handwashing and use of protective equipment such as face masks, are effective mitigation strategies for preventing virus spread.1â4 Many studies investigating SARS-CoV-2 transmission and nonpharmaceutical interventions point to the importance of within- and between-household transmission. 5â8 Although stay-at-home policies can help curb spread of SARS-CoV-2 in the community by reducing contacts outside the household,8 they can increase contacts among family members, leading to higher risk within the household, 9 with secondary infection rates in households shown to be as high as 30%â52.7%.5,10 Furthermore, prolonged periods of stay-at-home policies may not be practical because of the essential operations of society, and may directly or indirectly harm the economy and the physical and mental health of individuals.11,12 Therefore, it is important to assess the optimal length of policy implementation for preventing virus resurgence.
During the epidemic, stay-at-home policies have been used to mitigate virus spread. The proportion of people staying at home is a paramount factor for evaluating the effectiveness of this policy implementation. For example, symptomatic individuals, those who tested positive for SARS-CoV-2 infection, and traced contacts are more likely to remain in the home through self-isolation or quarantine than uninfected or asymptomatic individuals. 13 Hence, rates of testing, diagnosis, isolation of cases, contact tracing and quarantine of contacts, as well as public compliance with stay-at-home policies, are essential factors for determining virus transmission and the likelihood of epidemic resurgence after the lifting of restrictive closures.1 To allow for this level of complexity, we developed a household-based transmission model to capture differences in policy uptake behaviour using confirmed case data from Toronto, Canada.
Throughout the pandemic, Canadian provinces and territories have implemented restrictive closures of businesses, schools, workplaces and public spaces to reduce the number of contacts in the population and prevent further virus spread, with these restrictions lifted and reinstituted at various times.14 On Mar. 17, 2020, Ontario declared a state of emergency, with directives including stay-at-home policies.15
We aimed to evaluate the effect of the stay-at-home policy issued in March 2020 on the transmission of SARS-CoV-2 in Toronto, accounting for average household size, the degree of adherence to the stay-at-home policy, and the length of policy implementation. Additionally, on the basis of the average family size and local epidemic data, we estimated the basic reproduction number (R0) and effective reproduction number (Rt) and investigated potential thresholds for the number of contacts, testing rates and use of nonpharmaceutical interventions that would be optimal for mitigating the epidemic. Hence, we conducted simulations of dynamic population behaviour under different reopening and adherence scenarios, to compare different public health strategies in hopes of adding those evaluations to the scientific literature. |
Link[6] School and community reopening during the COVID-19 pandemic: a mathematical modelling study
En citant: Pei Yuan, Elena Aruffo, Evgenia Gatov, Yi Tan, Qi Li, Nick Ogden, Sarah Collier, Bouchra Nasri, Iain Moyles, Huaiping Zhu Publication date: 2 February 2022 Publication info: R. Soc. open sci.9211883211883 Cité par: David Price 4:24 PM 4 December 2023 GMT
Citerank: (9) 679759Bouchra NasriProfessor Nasri is a faculty member of Biostatistics in the Department of Social and Preventive Medicine at the University of Montreal. Prof. Nasri is an FRQS Junior 1 Scholar in Artificial Intelligence in Health and Digital Health. She holds an NSERC Discovery Grant in Statistics for time series dependence modelling for complex data.10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0, 704045Covid-19859FDEF6, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada â April 2023 [1] 2794CAE1, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB, 715617Schools859FDEF6, 715617Schools859FDEF6 URL: DOI: https://doi.org/10.1098/rsos.211883
| Extrait - Operating schools safely during the COVID-19 pandemic requires a balance between health risks and the need for in-person learning. Using demographic and epidemiological data between 31 July and 23 November 2020 from Toronto, Canada, we developed a compartmental transmission model with age, household and setting structure to study the impact of schools reopening in September 2020. The model simulates transmission in the home, community and schools, accounting for differences in infectiousness between adults and children, and accounting for work-from-home and virtual learning. While we found a slight increase in infections among adults (2.2%) and children (4.5%) within the first eight weeks of school reopening, transmission in schools was not the key driver of the virus resurgence in autumn 2020. Rather, it was community spread that determined the outbreak trajectory, primarily due to increases in contact rates among adults in the community after school reopening. Analyses of cross-infection among households, communities and schools revealed that home transmission is crucial for epidemic progression and safely operating schools, while the degree of in-person attendance has a larger impact than other control measures in schools. This study suggests that safe school reopening requires the strict maintenance of public health measures in the community. |
Link[7] Mathematical modeling of mpox: A scoping review
En citant: Jeta Molla, Idriss Sekkak, Ariel Mundo Ortiz, Iain Moyles, Bouchra Nasri Publication date: 16 June 2023 Publication info: One Health Volume 16, June 2023, 100540 CitĂ© par: David Price 0:58 AM 6 February 2024 GMT Citerank: (3) 679759Bouchra NasriProfessor Nasri is a faculty member of Biostatistics in the Department of Social and Preventive Medicine at the University of Montreal. Prof. Nasri is an FRQS Junior 1 Scholar in Artificial Intelligence in Health and Digital Health. She holds an NSERC Discovery Grant in Statistics for time series dependence modelling for complex data.10019D3ABAB, 701222OMNI â Publications144B5ACA0, 715667mpox859FDEF6 URL: DOI: https://doi.org/10.1016/j.onehlt.2023.100540
| Extrait - [One Health, June 2023]
Background: Mpox (monkeypox), a disease historically endemic to Africa, has seen its largest outbreak in 2022 by spreading to many regions of the world and has become a public health threat. Informed policies aimed at controlling and managing the spread of this disease necessitate the use of adequate mathematical modeling strategies.
Objective: In this scoping review, we sought to identify the mathematical models that have been used to study mpox transmission in the literature in order to determine what are the model classes most frequently used, their assumptions, and the modelling gaps that need to be addressed in the context of the epidemiological characteristics of the ongoing mpox outbreak.
Methods: This study employed the methodology of the PRISMA guidelines for scoping reviews to identify the mathematical models available to study mpox transmission dynamics. Three databases (PubMed, Web of Science and MathSciNet) were systematically searched to identify relevant studies.
Results: A total of 5827 papers were screened from the database queries. After the screening, 35 studies that met the inclusion criteria were analyzed, and 19 were finally included in the scoping review. Our results show that compartmental, branching process, Monte Carlo (stochastic), agent-based, and network models have been used to study mpox transmission dynamics between humans as well as between humans and animals. Furthermore, compartmental and branching models have been the most commonly used classes.
Conclusions: There is a need to develop modeling strategies for mpox transmission that take into account the conditions of the current outbreak, which has been largely driven by human-to-human transmission in urban settings. In the current scenario, the assumptions and parameters used by most of the studies included in this review (which are largely based on a limited number of studies carried out in Africa in the early 80s) may not be applicable, and therefore, can complicate any public health policies that are derived from their estimates. The current mpox outbreak is also an example of how more research into neglected zoonoses is needed in an era where new and re-emerging diseases have become global public health threats. |
|
|