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Observations of male alternative reproductive tactics (ARTs) in a variety
of species have stimulated the development of mathematical models that
can account for the evolution and stable coexistence of multiple male
phenotypes. However, little attention has been given to the population
dynamic consequences of ARTs. We present a population model that
takes account of the existence of two male ARTs (guarders and sneakers),
assuming that tactic frequencies are environmentally determined and
tactic reproductive success depends on the densities of both types. The pres-
ence of sneakers typically increases overall population density. However,
if sneakers comprise a sufficiently large proportion of the population—or,
equivalently, if guarders are sufficiently rare—then it is possible for the
total population to crash to extinction (in this extreme regime, there is also
an Allee effect, i.e. a threshold density below which the population will go
extinct). We apply the model to the example of the invasive round goby
(Neogobius melanostomus). We argue that ARTs can dramatically influence
population dynamics and suggest that considering such phenotypic plas-
ticity in population models is potentially important, especially for species
of conservation or commercial importance.
1. Introduction
Alternative reproductive tactics (ARTs) represent a taxonomically widespread
biological phenomenon characterized by the coexistence of two or more discrete
phenotypes that achieve reproduction in very different ways. The existence of
two phenotypically distinct male reproductive types (with behavioural, morpho-
logical and physiological differences) was first observed in field crickets, Gryllus
integer [1] and bluegill sunfish, Lepomis macrochirus [2]. Males often use large size,
showy colours or other costly displays to compete for, or court, females. In some
species, there is a distinct male type that lacks these morphological, physiological
or behavioural traits, and—using ‘sneaky’ or coercive interloper tactics—exploits
males that court and/or provide parental care [3].

The coexistence of two or more competing reproductive tactics in a single
population challenged the assumption that there is one ‘best’ reproductive
tactic, and changed the view of how reproduction evolves [4,5]. As examples
of discontinuous behavioural and morphological variation in reproduction,
ARTs provide an excellent opportunity to develop an evolutionary understand-
ing of phenotypic plasticity, and to shed light on evolutionary and ecological
processes in general [3,5–9].

Past efforts to model ARTs have focused predominantly on understanding
why and how selection might favour the evolution of ARTs, and how these
alternative phenotypes are maintained within a population (reviewed in [3,5,8]).
Game theory has been employed to explore conditions for long-term evolutionary
stability and to understand the evolutionary trade-offs between alternative tactics
[4,5,10–13]. Phenotypic variation in tactics is thought to arise either (i) via poly-
morphic genotypes (with equal fitness) coexisting due to balancing selection or
(ii) via a monomorphic genotype in which condition or status dictates which of
the possible tactics (with unequal fitness) will be adopted [3,9,14,15]. Conditional
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strategies are common in nature; often an environmentally
determined trait such as growth rate or body size at a critical
age or time will cue an individual to employ one tactic or
another [3,5,15–17].

In situations where ARTs arise from genetic polymorph-
ism, the evolutionary dynamics can be important in the
short term. For example, Myers [10] modelled the evolution-
ary dynamics of ARTs in Atlantic salmon, in which the two
types are sexually precocious small parr (sneakers) and
larger adult males. Because the evolutionarily stable strategy
(ESS) depends on mortality rate, changes in fishing pressure
can shift the ESS so the frequency of precocious parr changes,
with potentially substantial consequences for the yield of a
salmon fishery [10,18].

By contrast, if ARTs arise from a conditional strategy that
is genetically monomorphic in the population, evolutionary
changes will occur on much longer timescales, so evolution
can be ignored when considering short-term population
dynamics. To our knowledge, the short-term population
dynamics of species with condition-dependent ARTs have
not previously been modelled.

In this study, we develop a simple ordinary differential
equation (ODE) model to describe the population dynamics
of a species in which there are two competing reproductive
tactics, the frequencies of which are determined by (slowly
changing) environmental conditions. Our aim was to improve
general understanding of the role of ARTs in population
dynamics, and also to enhance our specific understanding
of how ARTs may affect the population dynamics of one par-
ticular species, the round goby (Neogobius melanostomus), an
invasive fish in the Laurentian Great Lakes and parts of
Europe. We consider how the presence of more than one
reproductive male tactic influences the expected overall
population density, and how this overall density can be
expected to change in response to environmentally induced
changes in the proportions of the population displaying each
of the ARTs.

Understanding the short-term impacts of ARTs on the
population biology of a commercially important species,
or a species of conservation concern, can improve predic-
tions of abundance patterns and extinction risk (as has
been explored for a species with alternative life-history
strategies that do not involve distinct reproductive tactics
[19,20]). If, for example, male fish employing different repro-
ductive tactics are distinguishable by radically different
body sizes, then selectively harvesting one male type
(either accidentally or intentionally) could have unexpected,
undesirable or even irreversible effects on the population (as
Myers [10,18] inferred for Atlantic salmon based on an
evolutionary analysis).

Our model can be used to obtain qualitative insights
about the population dynamics of many species that express
similar ARTs, the frequencies of which are environ-
mentally determined. However, our work was initially
motivated by the invasive round goby and we will illustrate
our results using parameter values estimated for this (or
related) species.
2. The round goby
Round goby, originally from the Ponto-Caspian region,
were accidentally released from ship ballast water into Lake
St Clair, which is attached to Lake Erie (one of the Laurentian
Great Lakes), around 1990 [21]. Since then, round goby have
rapidly expanded in both range and abundance to all five of
the Great Lakes [22,23] and (independently) to Western
Europe [24]. The successful invasion of the round goby con-
stitutes a triple threat: (i) they can out-compete native fish
species for food, shelter and breeding habitat [25–30],
(ii) they eat eggs and young of other species [31,32], and
(iii) by virtue of their capacity to eat bivalves, they appear
to be contributing to toxicant transfer in areas of contami-
nation [29,33–36]. Round goby are thought to have
contributed to the decline of many native species and to the
deterioration of ecosystem health in general [24,28,37].
A great deal of time, effort and money has been spent on
preventing round goby from expanding further [38–40].

Round goby exhibit male ARTs [41,42]. Smaller sneaker
males exploit the effort of larger, nest-guarding males by
sneaking into nests and fertilizing the eggs within, thus
avoiding the energy expenditures of both guarding the
nest and caring for young [41,43]. These ARTs have been
studied in round goby in both fresh and brackish waters,
e.g. Lake Ontario [41,42,44,45], the Rhine, Elbe and Danube
rivers, and the Bay of Lübeck [46–48]. ARTs have also been
investigated in many other gobies, including the common
goby, Pomatoschistus microps [49], the black goby, Gobius
niger [50] and the sand goby, Pomatoschistus minutus [51].
However, to our knowledge, the impacts of ARTs on popu-
lation dynamics—of goby and most other species with
ARTs—have not previously been investigated.
3. Model of population dynamics with
alternative reproductive tactics

We refer to the males that provide parental care as guarders
and the other males as sneakers. We denote the density of
guarders by G, the density of sneakers by S, and the total
(male) density by F =G + S. We use the symbol F because
we are motivated by a fish species; we do not model females
directly, but assuming a 1 : 1 sex ratio, F is also the density
of females.

We are interested in situations in which reproductive
tactic choice is determined by environmental variables,
such as water temperature, food availability or the degree
of hormone-altering contamination. We introduce the
model parameters below.

3.1. Intrinsic reproductive rate of guarders
If a single female lays her clutches at a guarder’s nest, and the
expected clutch size and interspawn interval are E and T,
respectively, then the ( per capita) instrinsic reproductive rate
of guarders—in the absence of sneakers—will be

ng ¼ 1
2

E
T

� �
p b r, ð3:1Þ

where the factor 1/2 accounts for the fact that half the off-
spring will be female (assuming a 1 : 1 sex ratio), p is the
probability that an egg in a guarder’s nest is fertilized and
survives to maturity, b is the length of the breeding season
as a proportion of the year, and r is the proportion of guar-
ders that is reproductive in a given breeding season. The
expected number of females laying eggs at a guarder’s nest
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is F/G. Consequently, in the absence of sneakers and compe-
tition of other sorts, guarding males will produce young that
survive to maturity at ( per capita) rate

ng
F
G

� �
: ð3:2Þ

3.2. Sneaker probability
We suppose that when a male enters the breeding population
he will become a sneaker with probability σ (or a guarder
with probability 1− σ). We assume that σ is environmentally
determined (not genetically determined and not determined
by population density), so it can be considered constant in
our population dynamic model. If environmental conditions
were to change (either naturally or as a result of human
impacts), the probability σ would change.

3.3. Mortality rate
We assume for simplicity that guarders and sneakers have
the same natural death rate (μ), which ensures that the
proportion of the population that is made up of sneakers
(the sneaker prevalence) will quickly converge to σ (since snea-
kers enter the population in this proportion). Thus, we can
assume that

G ¼ ð1� sÞF and S ¼ sF; ð3:3Þ
equivalently, the number of sneakers per guarder is fixed,

S
G
¼ sF

ð1� sÞF ¼ s

1� s
: ð3:4Þ

We can therefore restrict attention to a single population state
variable (e.g. F). Note that the number of females per guarder
is also fixed,

F
G
¼ Gþ S

G
¼ 1þ S

G
¼ 1

1� s
: ð3:5Þ

In practice, guarders might live longer than sneakers and
have a different age of maturity [52] (but see [53]); however,
the two male types may nevertheless have similar reproduc-
tive lifespans, which is what actually affects the dynamics of
our model.

3.4. Sperm competition from sneakers
Sneakers hinder reproduction of guarders through sperm
competition [6,54,55]. The proportion of fertilizations
obtained by sneakers depends on the number of sneakers at
a guarder’s nest, and at the population level on the average
number of sneakers per guarder (S/G, equation (3.4)). We
refer to the proportion of fertilizations that are obtained by
guarders as the guarders’ share and denote it by Sg. Exactly
how Sg depends on the number of sneakers per guarder
does not affect our mathematical analysis, but when relating
results to sneaker prevalence we typically assume that more
sneakers per guarder reduces the guarders’ share (i.e. Sg

decreases with S/G or σ).
It is important to bear in mind that when we refer to

sperm competition in the context of our model, the compe-
tition is between sperm of males that differ only in genes
that do not influence reproductive strategies. The model
assumes that offspring display the same (conditional) repro-
ductive strategy regardless of whether they were fathered by
guarders or sneakers.
3.5. Competition between guarding males for breeding
space

If the density of guarders [G = (1− σ)F] increases, then their
individual reproductive success can be expected to decrease
due to competition for suitable breeding habitat. For
sufficiently high densities, competition for space will be so
severe that the density of guarders will decrease. We formal-
ize the density dependence of guarder reproduction with a
(standard) factor

1� GbG
� �

, ð3:6Þ

where bG is a threshold guarder density.
3.6. Guarder reproductive rate
Taking account of the intrinsic reproductive rate (νg), sperm
competition from sneakers (Sg) and competition among guar-
ders for nest space (3.6), the per capita rate at which guarders
produce new male offspring (a proportion σ of which will
become sneakers) is

ng
F
G
Sg 1� GbG
� �

: ð3:7Þ

Note here that Sg depends implicitly on σ, so this reproduc-
tive rate (3.7) depends on the number of sneakers per guarder
(3.4). Considering natural mortality (μ), the full rate of density
change attributed to guarders is

ng
F
G
Sg 1� GbG
� �

� m

� �
G: ð3:8Þ

In the absence of sneakers (F/G = 1, Sg ¼ 1), this rate is
positive if and only if the guarder density is less than

Kg ¼ bG 1� m

ng

� �
: ð3:9Þ

Thus, because we include mortality explicitly, the guarder
carrying capacity is Kg (not bG).

3.7. Sneaker reproductive rate
The expected share of eggs obtained by an individual sneaker
is the sneakers’ total share of eggs (1� Sg) divided by the
expected number of sneakers at a nest (S/G, equation (3.4)).
Thus, the rate at which a single sneaker is expected to
produce offspring from a given nest is

ngðF=GÞð1� SgÞ
S=G

¼ ngð1=ð1� sÞÞð1� SgÞ
s=ð1� sÞ

¼ ngð1� SgÞ
s

: ð3:10Þ

Of course, sneakers can reproduce only if they can access
nests with unfertilized eggs; in particular, there must be
some guarders with nests that can be parasitized. We account
for this constraint with a factor

G
G1=2 þ G

, ð3:11Þ

where G1=2 is the density of guarders at which the probability
that sneakers can successfully fertilize eggs is 1/2. The value



Table 1. Parameters of model (3.13). Parameter values (with standard deviation or range) were estimated for the Hamilton Harbour round goby population.
See appendix A for parameter estimation details. Note that bG scales out when we consider F/Kg (see equation (5.1)). We set bG ¼ 1 for convenience.

parameter symbol estimate definition

intrinsic reproductive rate of

guarders

νg 1.47 ± 0.98 yr−1 equation (3.1); rate at which guarding males produce offspring that

survive to maturity (without resource limitations or competition)

mortality rate μ 0.65 (0.46, 0.85)

yr−1
deaths per unit time per capita (same rate for both male types)

sneaker proportion σ 0.33 (0.15, 0.50) fixed proportion of males that become sneakers, independent of tactic

of parent

guarders’ share Sg 0.92 (0.76, 0.98) proportion of eggs fertilized by guarders

threshold guarder density bG — equation (3.6)

breeding habitat capacity

(guarder carrying capacity)

Kg — equation (3.9); if G > Kg then guarder density declines in the absence

of sneakers

challenge to sneaker success G1=2 ð1:47+ 0:96ÞbG equation (3.11); guarding male density required such that the

probability that sneakers find nests to invade is 1/2
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of G1=2 will be influenced by how hard it is for sneakers to find
nests to parasitize and how well guarders defend their nests.
We refer to G1=2 as the challenge to sneaker success, since
larger G1=2 implies that it is harder to sneak successfully for
any given guarder density G. Overall, the contribution of
sneakers to density change is

1
s
ngð1� SgÞ G

G1=2 þ G
� m

 !
S: ð3:12Þ
3.8. Model equation
Combining equations (3.8) and (3.12), and recalling that
G = (1− σ)F and S = σF (equation (3.3)), the total reproductive
rate is

dF
dt

¼ ng Sg 1� ð1� sÞFbG
� �

� ð1� sÞm
� �

F

þ ngð1� SgÞ ð1� sÞF
G1=2 þ ð1� sÞF� sm

 !
F: ð3:13Þ

Note here that this rate depends explicitly on the proportion
of males that are providing care (1− σ), and implicitly on this
proportion through Sg. If we now define new variables, a
scaled population density x and dimensionless time1 τ,

x ¼ ð1� sÞFbG ð3:14aÞ

and

t ¼ mt, ð3:14bÞ
and reduced parameters, a scaled half-saturation density x1=2

(which we still refer to as the challenge to sneaker success)
and guarders’ intrinsic lifetime reproductive success ν,

x1=2 ¼
G1=2bG ð3:15aÞ

and

n ¼ ng

m
, ð3:15bÞ
our model equation becomes

dx
dt

¼ nSgð1� xÞ þ nð1� SgÞ x
x1=2 þ x

� 1

" #
x: ð3:16Þ

Considering the linearization of equation (3.16) for small
populations (x≪ 1),

dx
dt

� ðnSg � 1Þx, near x ¼ 0, ð3:17Þ

we see that a small population will increase if nSg . 1 and
decrease if nSg , 1. Thus the basic reproduction number for
the model (3.16) is

R ¼ nSg: ð3:18Þ
3.9. Parameter estimates
Table 1 lists the parameters of the model (3.13), together with
our best estimates of their values for the round goby in
Hamilton Harbour. Similarly, table 2 lists the three par-
ameters of the dimensionless version of the model (3.16).
Our parameter estimation is described in appendix A.
4. Model analysis
In order to understand how the expected population
dynamics depends on parameter values, we examine the
equilibria of the model (3.16) and their stability. Our analysis
is summarized in table 3.
4.1. Existence of equilibria
We first note that the model is well posed, i.e. that it does not
predict negative populations: since the population state vari-
able x is a factor of the right-hand side of equation (3.16), the
rate of change of x when x = 0 cannot be negative, so positive
initial states always yield positive solutions.

To find equilibria, we set dx/dτ = 0 and solve for x, which
yields three potential equilibrium points x� [ f0, x�, xþg,



Table 2. Parameters of the dimensionless form of the model (3.16). Estimated values for the round goby in Hamilton Harbour were obtained using table 1,
equation (3.15) and the Delta method [56,57] as described in appendix A.

parameter symbol estimate definition

guarder intrinsic lifetime reproductive success ν 2.25 ± 1.64 equations (3.15b), (A 3)

guarders’ share Sg 0.92 (0.76, 0.98) proportion of eggs fertilized by guarders

challenge to sneaker success (scaled version of G1=2 ) x1=2 1.47 ± 0.96 equations (3.15a), (A 5), (A 6)

Table 3. Regions in parameter space defined by signs of x± (4.1), which determine the qualitative dynamics of the model (3.16). See equations (4.2) and (4.3)
for the definitions of ν± and f+ðn, x1=2Þ and relationships among ν±, ν and x1=2 . The conditions Sg + 1=n are equivalent to R + 1 (equation (3.18)). The
table is divided into three sections corresponding to persistence possible (upper section), marginal cases that would not occur in practice but are important
because they correspond to bifurcation points (middle section), and certain extinction (lower section).

properties of equilibria region of parameter space dynamics bifurcation

1 x− < 0 < x+ 1 < ν, 1
n , Sg certain persistence

2 ν+≤ ν, Sg ,
1
n

3 0 < x− < x+ 1 ≤ ν≤ ν+, Sg , f�ðn, x1=2Þ Allee effect

4 1þ x1=2 , n � nþ, fþðn, x1=2Þ , Sg ,
1
n

5 x− = 0 < x+ 1þ x1=2 , n, Sg ¼ 1
n persistence (marginal) transcritical

6 0 = x− = x+ n ¼ 1þ x1=2 , Sg ¼ 1
n extinction (marginal) transcritical,

saddle node

7 x− < 0 = x+ n , 1þ x1=2 , Sg ¼ 1
n extinction (marginal) transcritical

8 0 < x− = x+ 1 < ν≤ ν+, Sg ¼ f�ðn, x1=2Þ Allee effect (marginal) saddle node

9 0 < x− = x+ 1 < ν≤ ν+, Sg ¼ fþðn, x1=2Þ Allee effect (marginal) saddle node

10 x− = x+ < 0 ν− ≤ ν < 1, Sg ¼ f+ðn, x1=2Þ certain extinction saddle node

11 x± complex ν− ≤ ν≤ ν+, f�ðn, x1=2Þ , Sg , fþðn, x1=2Þ certain extinction

12 x− < x+ < 0 n� � n , 1þ x1=2 , fþðn, x1=2Þ , Sg ,
1
n certain extinction
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where

x+ ¼ 1
2nSg

��
nð1� Sgx1=2Þ � 1

�
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nð1� Sgx1=2Þ � 1

�2 þ 4nSgðnSg � 1Þx1=2

q �
ð4:1Þ

The equilibrium x� ¼ 0 (extinction) is always biologically rel-
evant, but x� ¼ x� and x� ¼ xþ can be negative or complex
(depending on parameter values), so they do not necessarily
yield biologically meaningful solutions. Positive equilibria
(persistent populations) are possible only in some parameter
regions.

In order to specify the various cases concisely in table 3,
we define

n+ ¼ 1þ x1=2

2
+

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=2ð4þ x1=2Þ

q
, ð4:2aÞ

and, for ν− ≤ ν≤ ν+,

f+ðn, x1=2Þ ¼
1þ n+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðn� n�Þðn� nþÞ=x1=2

q
ð4þ x1=2Þn

: ð4:2bÞ

The definition in equation (4.2a) implies that

0 � n� � 1 � 1þ x1=2 � nþ for any x1=2 � 0: ð4:3Þ
In equation (4.2b), the requirement that ν lie between ν− and
ν+ ensures that f+ðn, x1=2Þ are real numbers (because the
argument of the square root in the numerator of (4.2b) is
then non-negative); given ν and x1=2 , this condition is most
easily checked by noting that

n� � n � nþ () x1=2 �
ðn� 1Þ2

n
: ð4:4Þ

If the discriminant in equation (4.1) vanishes (which yields
bifurcation points where x− = x+), it follows that either
Sg ¼ f�ðn, x1=2Þ or Sg ¼ fþðn, x1=2Þ.
4.2. Stability of equilibria
Because our model (3.16) is one-dimensional and dx/dτ is a
continuous function, a complete dynamical stability analysis
is straightforward. Local stability of an equilibrium at a point
x� is determined by the sign of dx/dτ on either side of x� (in
situations like ours in which dx/dτ is differentiable, we can
make use of the sign of d2x/dτ2 at x�). Local stability of all
equilibria determines all basins of attraction (which com-
prised the segments between equilibria). This is how we
have characterized the dynamics in the various parameter
regions listed in table 3.
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Figure 1. The possible dynamical behaviours of our population model (3.16), which incorporates the effects of two alternative reproductive tactics (ARTs) in males,
i.e. guarding or sneaking. In the panel labels, [i] refers to row i in table 3. Increases and decreases in population density x (horizontal axis) are determined by the
sign of dx/dτ (vertical axis). The nine panels correspond to different guarders’ share Sg; the other parameters are fixed at ν = 3.2 and x1=2 = 1.86. The hatched
region in each panel is not biologically relevant (x < 0), but is shown so changes in the global dynamics and bifurcations of the model are more evident. Grey
arrows indicate the direction in which x is changing. The axis scales are the same across each row of panels, but differ in each row.
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Figure 1 shows dx/dτ as a function of x. The nine
panels—all of which were drawn using the same values of
ν and x1=2—differ in the guarders’ share Sg, and illustrate
how changes in Sg can alter the equilibria and dynamics.
Where dx/dτ is positive (negative) the population will
increase (decrease). Regardless of parameter values, suffi-
ciently large populations will decrease (in equation (3.16),
dx/dτ < 0 for all x > x+ if x+ is positive and for all x > 0 if x+
is non-positive or complex).

The marginal cases shown in the middle column of
figure 1 are important for dynamical understanding since
they correspond to bifurcations of the model; however,
because they correspond to parameter combinations for
which two equilibria exactly coincide they will not occur in
practice. Parameter combinations that yield bifurcation
points are indicated in the final column of table 3. In general,
there are three biologically distinct dynamical possibilities:

4.2.1. Case 1: certain persistence (figure 1a,b)
If a single positive equilibrium exists (x− ≤ 0 < x+), then all
initially positive populations tend to x+ (x� ¼ 0 is unstable
or at least unstable from above). (The collision of x− with 0
causes a transcritical bifurcation [58–60].)

4.2.2. Case 2: bi-stability (Allee effect; figure 1c,d,i)
If two positive equilibria exist (0 < x− < x+) then there is a criti-
cal population density (x−), below which extinction is certain
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(x� ¼ 0 is stable) and above which persistence and conver-
gence to the largest equilibrium (x+) is certain. Thus, there
is an Allee effect [61]. There is also a marginal Allee case, in
which the two non-zero equilibria are equal and positive
(0 < x− = x+); in this situation (figure 1e,h), the unique
positive equilibrium is semi-stable: all populations larger
than x+ tend to this point, and all others go extinct. (The col-
lision of x− with x+ causes a tangent or saddle-node bifurcation
[58–60,62].)
/journal/rsif
J.R.Soc.
4.2.3. Case 3: certain extinction (figure 1f,g)
If no positive equilibrium exists then all populations go
extinct (x� ¼ 0 is stable or at least semi-stable from above).
This happens if either x− and x+ are both complex (figure
1f,g) or both negative.
Interface
20:20230359
5. Model interpretation
If the basic reproduction number (3.18) is greater than one
(R . 1), then persistence is guaranteed even if it is extremely
challenging for sneakers to reproduce (i.e. even if x1=2 (3.15a) is
very large). If R , 1 then extinction is possible, and the more
challenging it is for sneakers to reproduce (the larger x1=2 ) the
larger the parameter region in which the population will cer-
tainly go extinct. Similarly, the less challenging it is for
sneakers to reproduce (the smaller x1=2 ) the easier it is for
sneakers to compensate for the fact that guarders cannot sus-
tain the population on their own, and hence the larger the
parameter region in which the population can persist via
an Allee effect.

Figure 2 displays the different possible dynamical regimes
in the Sg versus ν parameter plane. In the main (top left)
panel, the challenge to sneaker success is set to its estimated
value (x1=2 ¼ 1:47, table 2). The other (smaller) panels show
how the parameter regions that yield different dynamics
vary with x1=2 . The region of certain persistence (green) does
not depend on x1=2 . However, if sneaking is easy (small x1=2 )
then there is a large parameter region where an Allee effect
occurs (blue), whereas if sneaking is hard (large x1=2 ) then
the Allee region is very small and the certain extinction
region is correspondingly large. Figure 2 can be understood
in biological terms as follows:

— In each panel of figure 2, the right boundary corresponds
to the situation where guarders obtain all the eggs
(Sg ¼ 1). On this boundary, the basic reproduction
number (3.18) is simply R ¼ n, so the population persists
if ν > 1 (guarders more than replace themselves) and the
population goes extinct if ν < 1 (guarders do not
manage to replace themselves).

— Away from the right boundary, sneakers obtain some of
the eggs (Sg , 1), so the condition ν > 1 is not sufficient
to guarantee that the population as a whole replaces
itself. Instead, the certain persistence condition (R . 1)
can be written n . 1=Sg, so the left boundary of
the green region is the curve n ¼ 1=Sg. Within the
green region, even though guarders obtain only a
share Sg , 1 of the eggs, their intrinsic lifetime reproduc-
tive success ν is sufficient that the population will be
sustained no matter how small the sneaker reproductive
rate.
— Outside of the green region, extinction is always possible
because R , 1. In the grey region (certain extinction),
sneakers are unable to compensate for the inability of
guarders to replace themselves. In the blue region
(Allee effect), the total population will go extinct if it
starts from too low a density, but it can persist if the
population density exceeds x− (equation (4.1)).

Figure 3 shows how the scaled equilibrium population den-
sities (x±) vary as a function of the guarders’ share Sg. Each
panel corresponds to a different horizontal line (fixed ν) in
figure 2, and colours of curves indicate the corresponding
stability region in figure 2.

It is easier to interpret the results if we express equilibria
in units of the total male density F (guarders plus sneakers)
(obtained from equation (3.14a)) relative to the sneaker-free
equilibrium Kg (equation (3.9)),

F
Kg

¼
	bG=ð1� sÞ
xbGð1� m=ngÞ

¼ x
ð1� sÞð1� 1=nÞ : ð5:1Þ

The precise relationship between the proportion of the
population that is made up of sneakers (σ) and the guarders’
share of fertilizations (Sg) is not important for qualitative
understanding (though we normally assume that Sg will
decrease if σ increases). However, in order to make the
equivalent of figure 3 using F/Kg rather than x, we need to
specify how Sg depends on σ. Figure 4 shows the result
when we assume

SgðsÞ ¼ 1� s

ŝ
, 0 � s , ŝ,

0, ŝ � s , 1,

(
ð5:2Þ

where ŝ , 1 defines a sneaker proportion that is so high
that guarders fail to fertilize any eggs (Sg ¼ 0). With
this functional form (5.2), equation (5.1) implies that the
equilibria are

F�
Kg

¼ x�
1� ŝð1� SgÞ
	 
ð1� 1=nÞ , x� ¼ 0, x�, xþ: ð5:3Þ

From figure 4, we can infer population density effects that
can be expected to occur if environmental changes cause the
prevalence of sneakers (σ) to increase (and the guarders’
share Sg to decrease according to equation (5.2)). If there
are no sneakers (σ = 0, Sg ¼ 1), the equilibrium density will
be F+/Kg = 1, whereas if environmental conditions change
in a way that causes at least some individuals to opt to
sneak (σ > 0, Sg , 1) then the equilibrium total density F+
will increase, as is evident from the green curves in all
panels of figure 4. Exactly what is expected as sneaker preva-
lence is increased further depends on the guarder intrinsic
lifetime reproductive success ν (it also depends on the chal-
lenge to sneaker success x1=2 , which has the same value in
all panels of figure 4). Eventually, if sneaker prevalence con-
tinues to increase to very high levels, one of two things can
happen: either the population will certainly crash and go
extinct (figure 4a–c) or the total population density will con-
tinue to rise, but with the danger of extinction due to an Allee
effect (figure 4d–f ).

In the interesting—if unlikely—extreme of very large
sneaker prevalence (hence Sg near 0), where there is an
Allee effect, figure 4 shows that the total density F can greatly
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Figure 2. Dynamical behaviour of model (3.16) as a function of the guarders’ share (Sg, §3.4) and the guarder intrinsic lifetime reproductive success (ν, equation
(3.15b)). Different areas of the (Sg, ν) parameter plane correspond to one of three possible behaviours described in §4.1: certain persistence, an Allee effect
( persistence only above a threshold density), or certain extinction. Each panel has the challenge to sneaker success (x1=2 , equation (3.15a)) fixed at a different
value (larger x1/2 values imply fewer sneaking opportunities). The black dot and error bars in panel (a) show our estimate of (Sg, ν) for the round goby in
Hamilton Harbour (cf. table 2). To connect with the analysis summarized in table 3, within the region in which extinction is certain, we use a dotted curve
to indicate the subregion where x± are complex. The dynamics of the model are driven ultimately by the environmentally determined proportion of the population
that employs the sneaker tactic (σ, §3.2). The sneaker proportion σ determines the proportion (Sg) of eggs that are fertilized by guarders. if Sg is sufficiently small
(Sg , 1=n) then the population can collapse and go extinct (see §5).
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exceed the guarder carrying capacity Kg. However, the den-
sity of guarders is only (1− σ)F, which will be much smaller.

5.1. Application to Hamilton Harbour
The parameter estimates listed in table 2 place the Hamilton
Harbour round goby system in the certain persistence
region (Case 1 of §4.2 with x− ≃ −1.40 and x+≃ 0.54);
see the heavy dot in figure 2a. Thus, if we take our best esti-
mates (table 2) at face value then the model (3.16) predicts
that the round goby population in Hamilton Harbour will
persist and should approach an equilibrium density at
which the total male density F+ (guarders plus sneakers)
(equation (3.14a)) relative to the sneaker-free equilibrium Kg

(equation (3.9)) is

Fþ
Kg

¼ xþ
ð1� sÞð1� 1=nÞ �

0:54
ð1� 0:33Þð1� 1=2:25Þ ≃ 1:45:

ð5:4Þ

Thus, we infer that the population density of round goby is
about 45% more than would be expected in the absence of
sneakers. Moreover, since guarders represent only a fraction
1− σ of the total population, and table 1 indicates that σ≈
0.33, the implied guarder density is 97% of its expected
value in the absence of sneakers.
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Figure 3. Equilibrium densities (x−, x+, and 0) as functions of the guarders’ share Sg, with ν and x1=2 fixed (see equation (4.1)). Solid curves denote stable
equilibria; where positive, they are coloured according to the corresponding region in figure 2. Dotted black curves denote unstable equilibria. In all six
panels, there is a transcritical bifurcation, where the stable equilibrium at x = 0 changes to unstable (solid grey line at 0 changes to dotted; also marked by
a dot on the upper (x+) curve). In panels (a), (b) and (c), there are also two saddle node bifurcations (stable and unstable equilibria collide and disappear:
blue or green solid lines vanish when they intersect the dotted black lines below them). The transition from panel (c) to (d ) illustrates a saddle node bifurcation
that occurs as ν changes with Sg fixed. Each panel corresponds to the horizontal line at the indicated value of ν in figure 2a, and together they illustrate the
possible ways that total population density can change as sneaker proportion (σ) changes (which causes the guarders’ share Sg to change; e.g. (5.2)). Our best
estimates for the round goby (table 2) yield panel (a).
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Of course, tables 1 and 2 also indicate large uncertain-
ties in estimated parameter values. Considering these
uncertainties, we can at best suggest that the Hamilton
Harbour goby population probably corresponds to some
point in the region defined by the error bars shown in
figure 2a. This plausible parameter region does dip into
the (grey) certain extinction region in figure 2a (and, in
fact, within the grey region of all panels of figure 2, since
the boundary of the green region is independent of x1=2 ).
However, a much larger proportion of the area encom-
passed by the error bars is green; consequently, within
the limitations of the model, it is reasonable to conclude
that—in the absence of environmentally induced
changes in Sg or ν—the round goby is likely to persist in
Hamilton Harbour.
5.2. Affecting population size and dynamics
Our approach to modelling the population dynamics of a
species with ARTs was motivated by the prevailing view
that expression of a tactic is state- or condition-dependent, con-
trolled by the environment (e.g. by food or nest availability, or
by temperature; [5,63]). Our model (3.16) provides a way to
forecast (or at least qualitatively understand) the possible
population dynamic effects of environmental changes that
are either naturally, accidentially, or intentionally induced.
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Figure 4. Equilibrium densities as functions of the guarders’ share Sg, as in figure 3, but plotted using the more easily interpretable scale of total male density (F)
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5.2.1. Observed population dynamics
The population dynamics of the round goby in Hamilton
Harbour have been studied for more than two decades and
have been described previously [42,64,65]. The population den-
sity of round goby appeared to be declining from 2002 to 2008,
but more recently seems to have stabilized and might reflect a
(noisy) equilibrium. The initial apparent decline over the study
period might reflect existing predators adjusting to the presence
of round goby in the lake and increasing their consumption
of this new prey species. If environmental conditions were
roughly constant after the decline—and hence parameters
of our model could be considered to be unchanging—our
model would predict convergence to an equilibrium, which is
roughly consistent with the noisy apparent equilibrium that
is observed.

5.2.2. Population dynamic effects of pollution
Previous work has indicated that the prevalence of sneakers is
greater in more contaminated sites [36], perhaps as a result of
endocrine disruption. Suppose that contaminant exposure
controls the proportion of sneakers in the population (σ) with-
out affecting any other parameters of our model, and that σ
always increases as a function of contaminant concentration.
If a goby population is currently at the equilibrium associated
with our best estimates for the parameters (table 2) then the
possible population density changes that can be induced by
changes in contaminant levels correspond to moving left from
ðSg, nÞ ¼ ð0:92, 2:25Þ (towards a smaller guarders’ share Sg)
in figures 2a, 3a or 4a. In particular, figure 4a indicates that con-
tinually increasing pollution should eventually cause the
population to decline and go extinct. If, rather than focusing
on our best estimate, we were to consider the uncertainty in ν
(table 2), then figure 4f could bemore relevant; in that case, pol-
lution could push the population into the (blue) Allee region,
implying that we would expect the population to persist
and continually increase in density. In this scenario, high con-
taminant levels could induce a crash to extinction only if
random fluctuations (which we have not modelled) caused
the population density to fall below the persistence threshold
(density x−).
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5.2.3. Intentional population control
Since the round goby is invasive in Lake Ontario, if human
actions were to cause the species to go extinct, that outcome
would probably be considered beneficial. Of course, achiev-
ing that goal by polluting the lake is not desirable! Figures
2 and 4 show that there could be great value in identifying
strategies that would not harm the ecosystem and yet could
(i) greatly increase the prevalence (σ) of sneakers, (ii) reduce
the expected lifetime reproductive success (ν) of guarders in
the absence of sneakers, and/or (iii) make it harder for snea-
kers to succeed (increase x1=2 ). All three of these conditions
would probably be satisfied if a commercial fishery were
established, since there would be a strong bias for removing
larger individuals. A second approach would be to encou-
rage sport fishing, but—unlike usual catch-and-release
practices—to require permanent removal of large fish.
Interface
20:20230359
6. Discussion
To our knowledge, this study represents the first attempt to
model the population dynamic impact of alternative repro-
ductive tactics (ARTs), the frequencies of which are
environmentally determined. Our model (3.16) is sufficiently
simple that we were able to carry out a complete dynamical
analysis, which showed that the presence of sneakers can
substantially alter the expected population density and
susceptibility to extinction.

The outcomes predicted by our model (figure 2) depend
on three parameters: the intrinsic lifetime reproductive suc-
cess of guarders in the absence of sneakers (ν, equation
(3.15b)), the proportion of fertilizations obtained by guarders
(Sg, §3.4), and how challenging it is to sneak successfully
(x1=2 , equation (3.15a)). The population will persist provided
the basic reproduction number (R ¼ nSg, equation (3.18)) is
greater than one. The proportion of the male population
that adopts the sneaker tactic (σ, §3.2) or, equivalently, the
proportion (1− σ) that provides parental care, ultimately
determines the guarders’ share (Sg) and consequently
controls persistence versus extinction. Our mathematical
analysis (§4) does not depend on how Sg is related σ, but
by making an assumption about this relationship we can
infer how the prevalence of sneakers—or of caring males—
affects overall population density.

Assuming that a guarder will fertilize fewer eggs (Sg

smaller) if there are more sneakers at the nest (σ larger), we
find that greater sneaker prevalence (larger σ) is typically
associated with increased total population density, unless
sneaker prevalence is so high—i.e., guarder prevalence is so
low—that susceptibility to extinction is greatly increased
(figure 4). Sufficiently high sneaker prevalence—high
enough that Sg , 1=n, so R , 1 and guarders cannot sustain
themselves (§5)—induces extinction risk: extinction either
becomes certain (grey in figure 2) or becomes possible at
very high sneaker prevalence due to an Allee effect (i.e. a
density threshold that must be exceeded for the population
to persist; blue in figure 2).

In our model, effects of high sneaker prevalence are
equivalent to effects of low guarder prevalence, but similar
effects in real systems could be generated by guarders aban-
doning nests that are overwhelmed by sneakers, or simply by
guarders investing less in parental care because they perceive
lower paternity [66], e.g. if they recognize fewer offspring as
their own. (Note that in the context of our model, recognition
would have to be based on genes unrelated to reproductive
strategies, since we assume the population is monomorphic
with respect to reproductive strategies.) The relationship
between paternity and parental care is complex [67]. In the
specific context of the round goby, offspring recognition
and the impact of paternity on parental care have not been
studied, but they have been explored in other gobies: sand
goby have been shown to recognize whether offspring are
their own and alter care accordingly [68,69], whereas the
common goby has been found not to have this ability [70].

Consistent with our model (figure 4), a positive corre-
lation between sneaker prevalence and total population
density could arise from fertility enhancement; more eggs
might be successfully fertilized in nests with multiple males
[71–73]. At the same time, an Allee effect could be generated
by high sneaker prevalence (large σ) simply because the pro-
portion of males providing parental care to young (1− σ)
is small.

Our model predicts conditions under which populations
persist or go extinct (table 3). Our estimates of the model par-
ameters for the round goby in Hamilton Harbour (table 2)
suggest strongly that if environmental conditions do not
change then this population will persist (§5.1).
6.1. Limitations and future directions
Our modelling approach has several limitations that could be
addressed in future studies:
6.1.1. Density-dependent tactic choice
We have assumed that the sneaker probability σ can be
treated as constant, meaning that changes in σ occur slowly
compared with the rate at which equilibrium density is
reached. This assumption is reasonable for the kinds of situ-
ations that motivated us, namely tactic choice determined by
environmental conditions that change on timescales of many
generations of the focal organism.

One might argue that tactic choice should depend on
population density, since at low density it will be more diffi-
cult for sneakers to find a guarder with a nest to parasitize.
However, any density-dependent challenge in finding guar-
ders will be faced equally by females. Consequently, the
expected number of sneakers per guarder—or, equivalently,
the expected number of sneakers per nest in which a female
has laid eggs—might be similar at high and low density,
implying that the density changes that occur as equilibrium
is approached might not affect tactic choice.

However, some goby species have been observed to make
density-dependent tactic choices [74,75]. For these species at
least, the probability (σ) of adopting the sneaker tactic does
depend on density (and hence so does the guarders’ share, Sg).
There are some species that display an ontogenetic shift,
whereby (small) young males start as sneakers and then
grow into (larger) guarders [76–78]. In the case of the round
goby, it is unknown if tactic is set for life or if a sneaker may
become a guarder in the next season [45]. While our model
provides a useful starting point—and begins to close the
gap in the theory of how ARTs influence population
dynamics—addressing the effects of density-dependent tactic
choice will be important to consider in future modelling work.
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6.1.2. Combined effects of genes and environment
We have assumed that the probability that an individual
becomes a sneaker is determined entirely by the environ-
ment. However, whether a male ends up as a sneaker or
guarder morph may depend on genetics, the environment
or (most likely) on some combination of the two [5,17,79]. It
would be valuable to consider a model in which tactics are
inherited from parents (e.g. in ruffs, Philomachus pugnax,
and marine isopods, Paracerceis sculpta, ARTs have been
shown to have an inherited component [80,81]), or emerge
as an outcome of some kind of gene-environment interaction
[17] where the switch is genetically controlled [82].

6.1.3. Parameter estimation
In addition to amore complex andmore realisticmodel, having
firmer parameter estimates for round gobywould yield greater
predictive power and increase confidence about the hypoth-
esized fate of the population in Hamilton Harbour. In
particular, the estimate of degree of paternity loss to sneakers
(i.e. 1� Sg, where Sg is the guarders’ share) could be improved
as this was based on estimates for a relative, the sand goby, and
not the round goby itself [83]. It is worth noting that our esti-
mate for this parameter (1� Sg ≃ 0:08) is similar to the
degree of paternity gained by plainfin midshipman sneakers
(1� Sg ≃ 0:07; [84]), but much lower than the degree of pater-
nity gained by bluegill sunfish sneakers (1� Sg ≃ 0:72;
[85–87]) or by mature salmon parr (0:44 & 1� Sg & 0:65;
[88–90]). Further investigation is needed to determine the aver-
age level and range of fertilizations obtained by round goby
guarders and sneakers in various habitats.

6.1.4. Seasonality and spatial dynamics
Our current, simple model (3.16) does not allow for variance
in reproductive success across time or space. Including seaso-
nal forcing in the model could capture the real variation
observed in breeding success across the season (April to
October in the case of the round goby [42,64,65]). More gen-
erally, exploring how both spatial and temporal variation in
reproductive success influences population parameters
would be of great interest, especially for a fish species like
the round goby, which can tolerate many different environ-
ments and has rapidly expanded its range into many
different ecological niches and habitats [24,91,92].

6.1.5. Invasion dynamics
Previous modelling of round goby population dynamics [93]
has focused on invasion dynamics in the absence of ARTs
[94–96]. Here, we have focused on the effects of ARTs on
the dynamics of established populations. Potential effects of
ARTs on the invasion process remain to be investigated.

6.2. Conclusion
In general, there is a growing need to incorporate our knowl-
edge of mating systems, adaptive phenotypic plasticity, and
variation in mating behaviour into population models.
Modelling these behavioural processes will help us answer
fundamental questions in ecology and might lead to better
control and conservation management strategies.

Ethics. This work did not require ethical approval from a human
subject or animal welfare committee.
Data accessibility. All data used to parametrize the model are taken from
previous publications, as described in appendix A.
Declaration of AI use. We have not used AI-assisted technologies in
creating this article.
Authors’ contributions. J.A.M.Y.: conceptualization, data curation, formal
analysis, investigation, methodology, software, writing—original
draft; S.B.: conceptualization, data curation, funding acquisition,
investigation, project administration, resources, supervision, writ-
ing—review and editing; D.J.D.E.: conceptualization, formal
analysis, funding acquisition, investigation, methodology, project
administration, resources, software, supervision, validation, visual-
ization, writing—original draft, writing—review and editing.

The study was conceived jointly by the three authors. J.A.M.Y.
wrote the first draft, an early version of which appeared in her
MSc thesis (which was jointly supervised by D.J.D.E. and S.B.).
J.A.M.Y. tragically died before completing a sequence of planned
revisions. D.J.D.E. developed the model and analysis further, and
revised the manuscript. D.J.D.E. and S.B. discussed and edited all
versions. D.J.D.E. and S.B. gave final approval for publication and
agreed to be held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.
Funding. We were funded by NSERC discovery grants (to S.B. and
D.J.D.E.), and project grants from Fisheries and Oceans Canada (to S.B.).
Acknowledgements. Weare grateful to the largenumberof students and col-
leagues with whomwe have collaborated on round goby research over
the years, but especially to Marten Koops, Julie Marentette, Erin
McCallum, Adrienne McLean, Natalie Sopinka and Sina Zarini. We
are also grateful to Erol Akçay and Erin Okey for valuable comments
on the manuscript.
Endnote
1τ is time expressed in units of mean lifetime. To see that the
mean lifetime is 1/μ, note that if the intrinsic reproductive rate were
zero (νg = 0), so the only process occurring was natural death, then
equation (3.13) would reduce to dF/dt =−μF, the solution of which is
F(t) = F0 e

−μt. Thus, if F0 individuals enter the population at time 0, at
any future time t there will be F0 e

−μt still alive, implying that the dis-
tribution of lifetimes is exponentially distributed with mean 1/μ.

Appendix A. Parameter estimates
To determine the dynamics that we might expect to observe in
a round goby population, we estimate a mean and plausible
range for each of the model parameters (table 1). Whenever
possible we use data from our own studies of the round goby
population in Hamilton Harbour, Lake Ontario [36,42,64].
For remaining parameters we use estimates from other pub-
lished work, using studies of the round goby when possible,
and studies of other related goby species otherwise.

A.1. Guarder intrinsic reproductive rate in the absence
of sneakers (νg)

We are interested in the number of offspring that survive to
maturity per caring male per unit time. We need to estimate
E, T, p, b and r in equation (3.1).

A.1.1. Clutch size, E
MacInnis & Corkum [97] counted ripe eggs in the ovaries of
136 females in the Upper Detroit River, and found that mean
fecundity was 198 eggs, with a range of 84 to 606 eggs.

A.1.2. Interspawn interval, T
Eggs develop in 14–15 days at 21�C, or in 18–20 days at 17−
19°C [98]. The mean near-shore temperature, averaged over
data from the 2004–2019 breeding seasons in Hamilton
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Harbour, was approximately 20�C, and so we estimate—via
linear interpolation—that eggs in Hamilton Harbour take
an average of 17.5 days to hatch, which we interpret as the
mean interspawn interval. We have not incorporated recov-
ery or courting time between clutches, so we may be
overestimating the reproductive potential of guarding males.

A.1.3. Survival probability, p
Charlebois et al. [98] estimated that 95% of the eggs in a clutch
are fertilized, and 95% of those are successfully hatched. We
estimate that the probability that juveniles survive to matur-
ity is 0.0053, following Table 1 of Vélez-Espino et al. [93], who
collected abundance data in Hamilton Harbour between 2002
and 2008 and used it to estimate the mean annual juvenile
survival at four different sites in Hamilton Harbour. Hence,
we find

p � 0:95� 0:95� 0:0053 ≃ 4:8� 10�3: ðA1Þ

A.1.4. Breeding season length as a proportion of the year, b
In Hamilton Harbour, males exhibit reproductive character-
istics from late April to late October [36,42,64], suggesting
approximately 190 days of suitable breeding conditions.
Therefore, we estimate b = 190/365≃ 0.52.

A.1.5. Proportion of males that are reproductive, r
Reproductive status of males in Hamilton Harbour from 2006
to 2017 was analysed by McCallum et al. [42]; based on
Table S1 from that paper, we estimate that the annual
proportion of all males that showed reproductive status was
r = 0.29 ± 0.08.

Inserting the above estimates for E, T, p, b and r in
equation (3.1), we find νg = 1.47 male offspring per guarder
yr−1. To obtain an error Δνg, we apply the Delta method
[56,57] to equation (3.1),

ðDngÞ2 ¼ pbr
2T

� �2

ðDEÞ2 þ Epbr
2T2

� �2

ðDTÞ2

þ Ebr
2T

� �2

ðDpÞ2 þ Epr
2T

� �2

ðDbÞ2

þ Epb
2T

� �2

ðDrÞ2, ðA2Þ

where we estimate variances in each quantity crudely by
interpreting our error estimates above as standard devia-
tions (taking the smaller error bar if asymmetric and zero if
we have no error estimate). From this approach we find
Δνg = 0.98.

A.2. Mortality rate (μ)
Vélez-Espino et al. [93] estimated the mean annual survival
(as a proportion) for the round goby population in Hamilton
Harbour from 2002 to 2008 to be a = 0.52 (range 0.42–0.62).
Converting to an instantaneous mortality rate via standard
survival analysis (cf. endnote 1) we have a ¼ Ð 10 m e�mt dt, i.e.
μ = log(1/a) and Δμ =−(1/a)Δa, from which we infer
μ = 0.65 yr−1 (range 0.46–0.85 yr−1).

A.3. Sneaker proportion (σ)
From 2006 to 2017 round goby were sampled in Hamilton
Harbour, and males were categorized as guarder, sneaker
or non-reproductive [41,42,64]. Of reproductive males,
the mean annual proportion of sneaker males over the six
sites was 0.33 (range 0.15–0.50), which we use as an estimate
of σ.

A.4. Dimensionless guarder intrinsic lifetime
reproductive success (ν)

Inserting our estimated μ in equation (3.15b), we find ν = 2.25.
Using the Delta method,

ðDnÞ2 ¼ 1
m2 ðDngÞ

2 þ ng

m2

� �2

ðDmÞ2, ðA3Þ

we crudely estimate Δν = 1.64.

A.5. Guarders’ share ðSgÞ
Jones et al. [83] used microsatellite DNA analysis to deter-
mine rates of sneaking in a natural sand goby population
(Pomatoschistus minutus). Of nests that had sneakers present,
the average proportion of assayed eggs that each guarder
male had successfully fertilized was Sg ¼ 0:92 (range 0.76–
0.98). (Jones et al. [83] observed considerable variance in the
number of sneakers in individual nests; in their DNA analysis
they found four instances of one clutch having three fathers,
i.e. the parental male, plus two sneaker males.)

A.6. Challenge to sneaker success (G½, x½)
If the probability that a sneaker successfully finds a nest to
parasitize (3.11) is P, and we take the threshold guarder den-
sity (equations (3.6) and (3.15a)) to be bG ¼ 1, and the system
is in equilibrium (4.1), then

P ¼ xþ
x1=2 þ xþ

: ðA4Þ

Solving this equation for x1=2, noting the x+ depends on x1=2

(4.1), we find

x1=2 ¼
1� P
P

1þ P
1� Sg

Sg
� 1
nSg

� �
: ðA5Þ

Jones et al. [83] found that of 78 clutches tested for parentage,
21 contained embryos that had been fertilized by sneaker
males. Inserting P = 21/78 = 0.27 in equation (A 5), together
with Sg ¼ 0:92 and ν = 2.25, we find x1=2 ¼ 1:47. Applying
the Delta method, we have (setting ΔP = 0)

ðDx1=2Þ2 ¼
1� P
PnSg

� �2

ðDnÞ2 þ ð1� PÞð1� nPÞ
PnS2

g

 !2

ðDSgÞ2 ,

ðA6Þ
which yields Dx1=2 ¼ 0:96.
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