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We present a simple model for the spread of an infection that
incorporates spatial variability in population density. Starting
from first-principle considerations, we explore how a novel
partial differential equation with state-dependent diffusion
can be obtained. This model exhibits higher infection rates in
the areas of higher population density—a feature that we
argue to be consistent with epidemiological observations. The
model also exhibits an infection wave, the speed of which
varies with population density. In addition, we demonstrate
the possibility that an infection can ‘jump’ (i.e. tunnel) across
areas of low population density towards areas of high
population density. We briefly touch upon the data reported
for coronavirus spread in the Canadian province of Nova
Scotia as a case example with a number of qualitatively
similar features as our model. Lastly, we propose a number
of generalizations of the model towards future studies.
1. Introduction
In the era of coronavirus, the ongoing public discussion frequently
refers to the reproduction number R0 as a (simple) single-number
diagnostic that captures the entire epidemic for a given country
or region; for a summary of mathematical discussions of this
diagnostic, we refer the interested reader to [1–3]. In reality, R0 is
a parameter that changes locally—a feature that has not only
been realized during the COVID-19 pandemic (see, e.g., [4]), but
also one that has been well known for similar outbreaks of other
diseases such as dengue [5]. For example, it is natural to expect
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that areas with high population density and/or limited public health measures are hit much harder than
more rural areas or regions with strict health controls (masking and distancing). This suggests the limited
value of describing the entire population by a single reproduction number R0. In light of such
considerations, herein we are interested in modelling how the spread of disease depends on local spatio-
temporal circumstances. There is a growing literature on understanding the effect of geography on the
spread of disease [6–8]. One of the key parameters affecting the disease spread is population density.
Our aim is thus to develop a simple, potentially generalizable model that captures the effects of
population density and local differences on overall epidemic spread.

At the heart of many epidemiology models, and in the frame of this study as well, are the so-called
compartmental models, consisting of various classes of individuals and their interactions. Among the
many possibilities that have arisen not only in the context of COVID-19 but also earlier, we note the
formulation of ordinary differential equation (ODE) models [9–12], statistical models [10,13], stochastic
models [14], agent-based models [15,16], spatial network models [13,17] and partial differential
equation (PDE) models [18,19]; see also [7,15,20] for reviews. Some of these works turn out to have a
very deep influence on public thinking and policy [11,16].

The focus of the present work will be on spatially distributed models exploring the evolution of the
infection not only temporally but also spatially. Indeed, such models have a time-honoured history, e.g.
in the format of meta-population models [8], and have been extensively used in the context of COVID-19
[8]. Such models have been used for a diverse host of countries including China [21,22] and Spain [23],
while a comparison of different models developed, e.g. for the US, can be found in the so-called COVID-
19 Forecast Hub.1 On the other hand, there are also models that develop a PDE perspective such as
[24,25], in addition to earlier work by the present authors such as [18,19] (see also references within
these works).

Our aim in the present work is to complement the above approaches by means of a first-principles
look into the development of the interaction between the different agents as they move through the
spatial domain (and interact with each other). In so doing, we will develop a nonlinear dynamical
lattice-based approach, which can then be taken to the continuum limit, to yield a systematic PDE
model that is argued to be more suitable towards the modelling of COVID-19, as well as other
infectious diseases. Indeed, rather than incorporating standard processes such as diffusion and
advection into an ODE SIR-type model, this perspective retrieves a nonlinear variant of diffusion,
which seems to be more well-suited to such epidemic settings. Additionally, a key advantage of the
present model is that it enables a variety of generalizations to account for effects of longer range
interactions (and, of course, additional effects such as those, e.g., of age distribution of the pandemic
impact). Such potential extensions will be highlighted along the way. It is also relevant to mention
that for reasons of both concreteness and also practicality related to the identifiability of the model
[26] (which does not escape us as a central issue and a consistent source of concern about complex
models), we opt within the present seed study to focus on the prototypical SIR-type model.
Generalizations to more detailed models with a higher number of compartments will be evident,
including also in connection to earlier work of some of the authors [18,27].

Our presentation will be structured as follows. In §2, we will present the theoretical formulation of
our model (and its potential extensions). In §3, we will use it to explore invasion waves and their
respective speed. In §4, the onset of an infection outbreak will be examined. Finally, after briefly
touching upon the case example of Nova Scotia in §5, we conclude and present some future
challenges in §6.
2. Theoretical formulation of the model
We start with an agent-based model, with the aim of deriving a cellular automata model from it, and
then consider its continuum limit to obtain a PDE system. A similar procedure was used in [28] to
derive a spatio-temporal model of spreading of illegal activity. We assume that individuals can get
infected by leaving their home and travelling to new locations. However, they don’t just simply walk
at random or diffuse: after going out (e.g. for shopping or work), they return to their original (base)
location.

To model individual motion, we discretize the space into bins. Refer to figure 1. For illustration (and
although the procedure straightforwardly generalizes to higher dimensions), we assume a one-
1The relevant website is https://covid19forecasthub.org/doc/ensemble/.

https://covid19forecasthub.org/doc/ensemble/
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Figure 1. Schematic of the model.
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dimensional grid with bins indexed by j = 1…N. Let Sj, Ij, Rj denote the population of susceptible,
infected and recovered in bin j. As with the standard SIR model, we assume that infection occurs
with some probability β per day when a susceptible individual encounters an infected individual. A
susceptible individual in bin j can get infected in two ways: they either get infected within their own
bin (e.g. infection spreading through families at home); or they might leave their home, get infected
outside their bin (e.g. going to work, shopping etc.) and then return back to their original location.
For simplicity, assume that individuals travel only to neighbouring bins j− 1 and j + 1 for work/
shopping during the day, then return back home in the evening. We will see afterwards how to
extend the model past this simplifying assumption. In addition, assume for now that only susceptible
individuals can travel (we will deal with a more general case below). Let α denote this daily travel
rate (so that αSj susceptibles travel from j to j + 1 and αSj travel from j to j− 1). Let ΔIj denote new
infections per day in bin j. With the above assumptions, we obtain

DI j ¼ b(S j � 2aS j)I j þ baS jI j�1 þ baS jI jþ1: ð2:1Þ

Here, β(Sj− 2αSj)Ij represents the daily new infections that happen in bin j; whereas βαSjIj±1 is the total
number of new infections within bin j acquired by individuals going to work/shopping etc in the
neighbouring bins, then returning home with an infection (due to the interaction of these susceptibles
with infected individuals in bins j ± 1).

The corresponding SIR model on a lattice then reads

S jðtþ 1Þ ¼ S j � DI j; I jðtþ 1Þ ¼ I j þ DI j � gI j and Rjðtþ 1Þ ¼ Rj þ gI j: ð2:2Þ

We now consider the continuum limit of this model, in the limit of many bins. Let dx be the grid spacing,
so that Ij≈ I(x) where x = j dx. We then estimate

b(S j � 2aS j)I j þ baS jI j�1 þ baS jI jþ1 � bSI þ b(dx)2aSIxx

and we estimate Sj(t + 1)− Sj(t)≈ St (up to a rescaling by the time discretization increment dt) and
similarly for I and R. The resulting equations become

St ¼ �DbSIxx � bSI, It ¼ DbSIxx þ bSI � gI and Rt ¼ gI, ð2:3Þ
where

D ¼ (dx)2a: ð2:4Þ
Note that unlike many other PDE models [24,25,29,30], the ‘diffusion’ term depends explicitly on the
susceptible population density S(x, t). Moreover, the ‘diffusion’ enters into equation for S with a
negative sign, whereas it has a positive sign in the equation for I.

Simulations (not shown) of continuum (2.3) and discrete models (2.2) show that they agree well,
provided that the changes in both space and time are sufficiently smooth. Note that in the discrete
model, 2α represents a fraction of individuals ‘going to work’ each day and, as such, we must have
α < 0.5; otherwise, the discrete model (2.2) becomes unphysical and the solution blows up.

Next, consider a more realistic model, where both susceptible as well as (e.g. asymptomatic [8,27])
infected individuals travel, with rates αS and αI, respectively.
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Then, (2.1) gets replaced with

DI j ¼ b(S j � 2aSS j)(I j þ aI(I j�1 þ I jþ1 � 2I j))
þ baSS j(I j�1 þ aI(I j�2 þ I j � 2I j�1))

þ baSS j(I jþ1 þ aI(I jþ2 þ I j � 2I jþ1)): ð2:5Þ
The limiting procedure results in equations (2.3), but with α = αS + αI. Hence, we expect this to be the
prototypical PDE-type model within this class of compartmental systems.

The remainder of the paper is concerned with the study of continuum equations (2.3). Before we do
so, it is relevant to add a word about the possibility that travelling does not solely occur to bin j ± 1 with
rate α≡ α1, but similarly to j ± 2 with rate α2 etc. Then, it is straightforward to show that the Laplacian
term is replaced by a nonlocal term of the form SðxÞ Ð Kðx� yÞIðyÞdy, where the (decaying with
distance) kernel K is proportional to the probability of travelling between locations of distance |x−
y|. A straightforward Taylor expansion around the vanishing argument of the kernel can be used to
see that the diffusivity D above is proportional to the second moment (i.e. the variance) of the above
kernel. More specifically, assuming for simplicity an even (or more generally isotropic) kernel

ð
Kðx� yÞIðyÞdy ¼

ð
KðjÞIðjþ xÞdj �

ð
KðjÞdj

� �
IðxÞ þDIxx þ � � �

Accordingly, the first term renormalizes β, while the second one produces the diffusive approximation
with D ¼ ð1=2Þ Ð KðjÞj2 dj. We can thus see how such beyond-nearest-neighbour terms can generalize
the model, while falling back to it in the simplest diffusive correction level of approximation. Our
model also easily generalizes to two dimensions with motion along a two-dimensional grid. In this
case, it is easy to see that Ixx in (2.3) get replaced by a two-dimensional Laplacian Ixx + Iyy. It is also
interesting to further perceive how anisotropic kernels may lead to directed (convective rather than
diffusive) motion, although the latter possibility will not be pursued further here.
3. Examination of an invasion wave
One of the main effects of introducing a spatial dimension is that the infection typically propagates from
its origin. When the movement is sufficiently slow, this propagation happens in a wave-like fashion. One
of the, arguably, simplest settings exhibiting wave propagation is the context of the KPP–Fisher equation,
modelling propagation of invasive species inside a favourable medium (see, e.g., [31] for a review),

ut ¼ duxx þ ru� su2: ð3:1Þ

The travelling-wave solution has the form u(x, t) =U(x− ct), where U satisfies the corresponding co-
travelling ODE

� cU0 ¼ dU00 þ rU � sU2:

We seek a wave propagating from left to right, so that U(z)→ 0 as z→ +∞, and U→ r/s as z→−∞.
Following the relevant standard theory and linearizing at the front of the wave (z→ +∞), we can seek
a solution of the form

UðzÞ � exp (�lz), as z ! þ1,

which yields a dispersion relationship between the speed c and decay rate λ of the form

c ¼ dlþ r
l
: ð3:2Þ

The minimum speed of propagation is obtained by minimizing (3.2) over all admissible decay rates λ > 0,
which yields

cmin ¼ 2
ffiffiffiffiffi
dr

p
: ð3:3Þ

Numerical experiments confirm that the speed of propagation approaches cmin for a wide range of
initial conditions, so long as u(x, 0) decays ‘sufficiently fast’ as x→∞. This is a well-known feature of
the KPP–Fisher equations [31,32]. Note that this speed only depends on linear terms in (3.1) (i.e. it is
independent of the value of s). Now, suppose that the parameters d, r are functions of space x. If they
vary sufficiently slowly, we expect that the speed of propagation will still be well approximated by
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Figure 2. Simulation of an infection wave propagating through a heterogeneous population, for several values of γ as indicated.
Other parameters are: β = 1, S0 (x) = 1 + 0.5cos (3πx), I0(x) = 0.01exp (−1000x) and D = 0.0001. The top row shows S0 and γ.
Areas where βS0(x) > γ (i.e. where the red solid line is above the dashed line) are favourable for an outbreak. The second row shows
I(x, t), the infection density propagating through the population. The third row shows S(x, t), the density of susceptibles. The last
row shows the speed c of the wave as a function of wave position x, comparing numerics with the adiabatic theory. Note how the
infection ‘tunnels’ through areas of low infectivity in the last two columns. We used N = 200 meshpoints and Δt = 0.001. See
Appendix A for MATLAB code to simulate (2.3).
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(3.3). This is the so-called adiabatic approximation. We now return to the SIR model of equation (2.3). At
the front of the infection wave, we estimate S(x) by S0(x), where S0(x) is the corresponding initial
condition. The implicit assumption here is that I, R≪ S and hence maintaining S≈ S0 is a reasonable
approximation. Then, this leads to the effective linear PDE for I(x, t)

It � DbS0ðxÞIxx þ ðbS0ðxÞ � gÞI: ð3:4Þ

Assuming that the motion is sufficiently slow (D≪O(1)), we linearize at the front of the wave similarly to
our discussion above for the KPP–Fisher equation and obtain the following approximation for the speed
of propagation

cðxÞ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DbS0ðxÞðbS0ðxÞ � gÞ

p
: ð3:5Þ

Figure 2 shows a comparison between the formula (3.5) and full numerical simulations for several
choices of γ. We used an implicit–explicit finite difference scheme to simulate the PDE of equation
(2.3). The numerical speed c is computed by tracking the front of the infection wave x(t). At any given
time t, this is done by solving I(x, t) = 0.0001 for x = x(t), and then approximating c(t)≈ x(t + Δt)/Δt.
The discontinuity of the blue curve in the second and third columns is due to the fact that I(x, t) dips
below 0.0001 before reappearing on the right side. As can be seen in figure 2, the adiabatic
approximation (3.5) works relatively well in the areas where βS0(x)− γ > 0. The formula breaks down
in the areas where βS0(x)− γ≤ 0.

These areas can be thought of as ‘buffer zones’where effective infection growth is negative; otherwise
stated, the local R0 is below unity and infection is suppressed therein. Nonetheless, the infection wave is
able to ‘tunnel through’ these areas, with some delay; see §5 for further investigation of this
phenomenon.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220064
6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 D

ec
em

be
r 

20
23

 

4. The onset of the outbreak
Note that equations (2.3) admit a ‘trivial’ solution corresponding to no outbreak; namely, I(x, t) = 0 and
S(x, t) = S0(x), where S0(x) describes the initial population distribution. We now explore the conditions for
the initiation of the outbreak. At the onset of the outbreak, we may assume that I(x, t)≪ 1. Linearizing
equation (2.3), in analogy to what is done for the ODE variant of the model to obtain the bifurcation
associated with the spreading of the infection [1–3], leads to an equation for I only of the form (3.4).
Looking for solutions of the form I(x, t) = eλtϕ(x), we obtain an eigenvalue problem

lþ g

bS0ðxÞf ¼ Dfxx þ f: ð4:1Þ

First, consider the limit D = 0. In this case, each point x in space evolves separately, and the eigenvalues λ
are given by λ∼ βS0(x)− γ. The outbreak is therefore prevented when βS0(x) < γ for all x, or γ > γc, where

gc ¼ bmax
x

S0ðxÞ: ð4:2Þ

This can be thought of as a ‘spatially extended’ generalization of the ODE result, in that the points in
space are practically independent, and hence for the epidemic to be suppressed, this needs to be
achieved ‘individually’ for every spatial point.

More generally, we define γc to be a threshold value of the decay parameter γ, corresponding to the
zero-eigenvalue of (4.1). Namely, γc satisfies

gc
bS0ðxÞf ¼ Dfxx þ f; ð4:3Þ

the outbreak occurs if, and only if, γ < γc. For general S0(x) and D, the problem (4.3) does not have an
explicit solution. However, we expect γc to approach (4.2) as D→ 0. We now derive the corrections to
(4.2) in the limit of small but non-zero D, i.e. for 0 <D≪ 1 using asymptotic analysis. We expect the
outbreak to first occur near the maximum of S0. Let xm be the point at which S0(x) has its maximum.
As such, we expand

x ¼ xm þ 1y,

where ɛ is a small constant to be determined. Near xm, write

S0ðxÞ � A(1� B12y2)þOð13Þ, where A ¼ S0ðxmÞ; AB ¼ �S000ðxmÞ
2

and we expand 1/S0(x)∼ (1 + Bɛ2y2)/A. Problem (4.3) then becomes

gc
Ab

(1þ B12y2)f � D1�2fyy þ f:

We now choose ɛ so that Bɛ2 =Dɛ−2. In other words, we let

1 : ¼ D1=4B�1=4:

Assuming ɛ is small, to leading order we obtain an eigenvalue problem

fyy � y2f ¼ �mf, y [ R ð4:4Þ

with

m ¼ � gc
Ab

� 1
� �

D�1=2B�1=2: ð4:5Þ

Equation (4.4) is a well-known quantum-harmonic oscillator eigenvalue problem, where eigenfunctions
are given in terms of Hermite polynomials multiplied by a Gaussian. The corresponding eigenvalues are
given by

m ¼ 1, 3, 5, 7, . . .

The smallest eigenvalue is μ = 1. Setting μ = 1 in (4.5), we obtain the following formula for the threshold
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value γc

gc
b

� S0ðxmÞ �D1=2 �S00ðxmÞ
2

� �1=2

S0ðxmÞ1=2 þOðDÞ: ð4:6Þ

For example, take S0(x) = a + sin (πx); β = 1, x∈ (0, 1). Then, the maximum occurs at xm = 0.5 and we obtain

gc � 1þ a�D1=2p(1þ a)1=22�1=2: ð4:7Þ

Table 1 compares the formula (4.7) with the fully numerical solution of the eigenvalue problem (4.3), in
the case of a = 0. The relative error appears to scale with a direct proportionality to D.
D 0.01 0.005 0.0025 0.00125

γc from numerics (4.3) 0.7686 0.8429 0.8889 0.9214

γc from asymptotics (4.7) 0.7778 0.8389 0.8871 0.9206

relative error 1.18% 0.47% 0.20% 0.093%
Let us also study the asymptotics in the limit of large D, on the domain x∈ [0, L] with Neumann
boundary conditions ϕ(0) = ϕ(L) = 0. In this case, we expand ϕ in (4.3) as

f ¼ f0 þ
1
D
f1 þ � � �

At leading order in D, we obtain ϕ0xx = 0. Together with boundary conditions ϕ
0
(0) = ϕ

0
(L) = 0, this yields

ϕ0 (x) =const. By scaling, we may then take ϕ0 = 1. The next-order equation for ϕ1 then becomes
gc

bS0ðxÞ ¼ f1xx þ 1: ð4:8Þ

We then integrate both sides to obtain

gc � b
1
L

ðL
0

1
S0ðxÞ

� ��1

, D � Oð1Þ: ð4:9Þ

The quantity ðð1=LÞ Ð L0 ðS0ðxÞÞ�1Þ�1 is called the harmonic average of S0(x).
For example, take S0(x) = a + sin (πx) with x∈ (0, 1). Then, (4.8) integrates to

gc �
p

ffiffiffiffiffiffiffiffi
1�a2

p
log 1þ

ffiffiffiffiffiffiffiffi
1�a2

pð Þ�log 1�
ffiffiffiffiffiffiffiffi
1�a2

pð Þ , 0 , a , 1
p
2 , a ¼ 1

p
ffiffiffiffiffiffiffiffi
a2�1

p
p�2 arctan ((a2�1)�1=2)

, a . 1:

8>><
>>:

ð4:10Þ

Figure 3a compares the asymptotics (4.10) with full numerical simulations of (4.3) for a wide range of
a, and with D = 1. Despite a relatively small value of D, the agreement is excellent over the entire range of
a (within 0.1%). On the right, we fix a = 1 and vary D; as can be seen, both large- and small-D asymptotics
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agree very well with full numerics. The intermediate regime of D, where neither of our approximations is
of value, illustrates the most substantial deviations, yet we still have a very adequate description of the
two asymptotic limits.

Finally, note that for constant population density S0, the threshold γc defined by (4.3) is independent
of D, and both (4.9) and (4.6) yield γc = βS0. This may also be rather natural to expect as in that case, the
diffusion term is ‘deactivated’ and we are effectively back to the ODE problem case. One might naively
expect that in the large-D limit, S0 would be replaced by the arithmetic average of S0(x). However, our
analysis shows that the more appropriate formula is to take a harmonic average of S0(x), as in (4.9).
5. Indicative observations from COVID-19 in Nova Scotia and ‘tunnelling’
As a case study, consider the Canadian province of Nova Scotia where some of the authors of this paper
reside. It has a population of about 1 million, with slightly less than half of those living in Halifax
Regional Minicipality (HRM: the city of Halifax and surrounding area). The second-biggest town is
Sydney (see map in figure 4b) with a population of 30 000. Much of the rest of the province has
relatively low population density. Nova Scotia managed to completely suppress the initial outbreak in
the spring of 2020 using very strict stay-at-home orders and border controls. Any visitor required a
strict self-isolation quarantine of two weeks upon entry. As a result, there were very few locally
transmitted cases up until April 2021; stringent health measures managed to extinguish the few
localized outbreaks that did occur before they could spread.

Figure 4 shows the daily COVID case numbers for Nova Scotia. In total, as of July 2021, Nova Scotia
had about 5800 cases, which is about 0.6% of the total population of 1 million. About 70% of these cases
occurred during the ‘third wave’ in April–June 2021. Very few cases occurred in between the three
waves—and most of those were travel-related in quarantine (i.e. not involving community spread).
Although less than half of the Nova Scotia population lives in HRM, it was responsible for 79% of
the cases overall and 81% of the cases in the third wave. Another 10.5% of cases occurred in
Sydney, about 400 km (4.5 h drive) from Halifax. Together, HRM and Sydney were responsible for
over 90% of all infections, despite having about half of the overall population of the province.
Despite its relatively smaller size, the infection rate in Sydney was about 2.5 times that of Halifax
during the third wave.

The main takeaway lesson from this brief data summary, in connection to the qualitative model
features discussed herein, is that the rate of infection is much higher in denser urban regions than the
rest of Nova Scotia, which is mainly rural with low population density. This is indeed consistent with
our model and its corresponding observations. In addition, due to stringent health measures, it is
likely that the epidemic in most of the regions of Nova Scotia did not spread—even during the third
wave—as almost all infections came from HRM and Sydney—the two biggest population centres in
Nova Scotia. Despite strict travel restrictions (even inter-provincial travel was banned during the third
wave in May 2021), the infection was able to ‘tunnel through’ the rural areas from HRM to Sydney.2
2It is also interesting to note that there are other significant population centres closer to HRM that did not see anything near the size of
the outbreak in Sydney. This includes the towns of Truro (pop. 23 000, 1 h drive from Halifax) and New Glasgow (pop. 19 000, 2 h
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x [ ½0, 1:5�. Without spatial interactions (D = 0), the disease is suppressed in the middle region x ∈ [0.298, 0.701], as well as for
x > 1.298. Here, we take D = 0.00005. The disease is introduced at t = 0 at the left end x = 0; corresponding to initial conditions
I(x, 0) = 0.001exp (−1000�x). An infection wave propagating to the right is initially observed but appears to die out around t≈ 30
as it hits the buffer region at x≈ 0.3. However, it is able to ‘tunnel through’ the buffer region, reappearing at x = 1 (where S0 has
its maximum) when t≈ 90, then propagating from there to the rest of the infectious region x [ ½0:7, 1:3�.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220064
9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 D

ec
em

be
r 

20
23

 

Motivated by the above observations, we now show that our model can reproduce, at least
qualitatively, a ‘tunnelling-through’ effect, where the infection can spread between two regions of
locally positive growth, even when separated by a ‘buffer zone’ of negative growth (i.e. infection
suppression). Consider a sample simulation as shown in figure 5, with S0 = S0(x) = 1.3 + cos (2πx),
withx∈ (0, 1.5) and β = γ = 1. Locally (in the limit of D = 0), the infection is suppressed in the middle
region x∈ (0.298, 0.701) as well as for x > 1.298 where S0(x)β < γ, and grows to the left and to the right
of that region. We initially introduce the infection near the left boundary of x = 0. The outbreak then
takes over the entire left region 0≤ x≤ 0.298 by the time t = 20. Then, for a relatively long time 20 < t <
100, nothing appears to happen. But eventually at around t≈ 100, the infection manages to ‘jump’
over to the right region and reappears at x = 1 (where S0(x) has its maximum), then spreads from
there both to the left and to the right until the entire region 0.701≤ x≤ 1.298 is infected.

Qualitatively, the ‘tunnelling’ behaviour can be explained by the presence of diffusion, which allows
for an exponentially small amount of infection to ‘diffuse’within the suppression region x∈ (0.298, 0.701)
until it is eventually amplified in the outbreak region x > 0.701. Further investigation of this phenomenon
is an interesting topic for future work.

It is interesting to note that when the infection reappears at t≈ 100, it does so at x = 1 rather than x≈
0.7. The reason merits further investigation, but roughly speaking, this happens because the local growth
rate of infection is given roughly by S0(x)β− γ and is the highest at the maximum of S0(x). We remark that
similar ‘jumps’ of infection were investigated using network models in [33]. There, the authors
investigated how network connectivity (and particularly, the presence of a few ‘long’ edges connecting
otherwise ‘local’ regions) caused the appearance of new infection clusters. In [34], the authors also
showed how tracking new clusters can be used to investigate the origin of the epidemic, and how
network connectivity can predict the arrival times at various locations.
6. Conclusion and future work
We have presented a model of spatio-temporal infection spread. We have started from a lattice variant of
the problem and considered a first-principles inclusion of mobility according to which people move to
new, adjacent locations (for work, shopping or other purposes), get infected and return to their base
in that new infected state. The model allows for extensions whereby the mobility is to different
drive from Halifax), which not see any significant outbreaks during the third wave. The outbreak in Sydney started with a hockey
game, when kids and families from Halifax visited for a hockey tournament at the onset of the third wave, a potential
superspreader event. At the end of the day, our simple model is insufficient to make predictions at such localized detail; many of
the outbreaks are driven by random events and the luck of the draw, which our deterministic model is not designed to deal with
in this first installment. This is naturally an intriguing challenge for further work.
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locations (rather than to adjacent bins) with a kernel that decays over distance. The latter constitutes an
interesting variant of the current model relevant to examine in future work. Considering the continuum
limit of the proposed lattice system, we obtained a PDE (2.3) with state-dependent diffusion terms.
Essentially, the scope of our work is to advocate the relevance of consideration of such terms, in
addition to local ones and, arguably, instead of regular diffusion processes in this setting. The key
assumption in our modelling is that while individuals move around, they do not diffuse, while
infection does. While numerous PDE models exist in epidemiology (see, e.g., [18,19,24,25,29] for a
sample), most assume either constant diffusion, or diffusion that is prescribed to be spatially
dependent. By contrast, we present a first-principles derivation of equation (2.3) from the underlying
cellular automata representation of the basic infection mechanisms. Our model naturally leads to a
diffusion that scales with the current number of susceptibles. Note that the phenomena such as
tunnelling can also be observed in models without the state-dependent diffusion. However, our model
should provide a more qualitatively accurate account of how the infection propagates throughout the
domain; in particular, one can expect an additional slowdown of propagation in the areas of lower
population density due to state-dependent diffusion.

Introducing a spatial component to a basic SIR model also naturally explains why areas of high
population density experience higher infection rates than more rural areas (for related approaches, see,
e.g., [9,35]). We also generalized the concept of the reproduction number in this spatially variable
setting by deriving an eigenvalue problem (4.1), where the solution describes overall decay or spread
of the disease. Importantly, the relevant eigenvalue problem near the maximum of the susceptible
population can be approximated by a quantum harmonic oscillator, which allows an approximate
analytical expression for the critical clearance rate that would avoid the spreading of infection. We
have tested the relevant predictions numerically, finding very good agreement with our theoretical
results, where appropriate.

Aside from spatially dependent infection rates, our model demonstrates the difficulty of suppressing
the outbreaks. As illustrated in figure 5, the disease can ‘tunnel’ between ‘islands’ of positive growth
separated by areas of negative growth (i.e. decay) of the epidemic. A better understanding and more
systematic quantification of such phenomena is planned for future work.

There are also numerous additional dimensions in which the present consideration can be extended (both
literally and figuratively). Indeed, here we restricted considerations to one-dimensional settings, i.e.
‘geographical corridors’. In line with other works such as [18,24], it is naturally more relevant to explore
two-dimensional domains. In addition, it is of substantial interest to consider infections across different age
groups. Our considerations herein have assumed that the infectiousness and especially recovery properties
of the entire population are the same. However, it is well understood that COVID-19 has a far more severe
impact on more senior individuals with a weakened immune system; indeed, this has been the basis for
designing relevant non-pharmaceutical intervention strategies [36]. It is then of interest to introduce kernels
of interaction across a ‘synthetic dimension’ representing age (in addition to spatial dimensions). There,
interactions are predominant along the ‘diagonal’, i.e. for people of the same age group, but there are
nontrivial interactions between age groups at some ‘distance’ between them (e.g. parents/grandparents and
children/grandchildren); see, e.g., [37]. There, a more complicated non-monotonic kernel of interaction
across ages may be relevant to include. These are all interesting possibilities currently under consideration
for future work and will be reported accordingly in future publications.

Data accessibility. This article has no additional data.
Authors’ contributions. A.V.: writing—original draft, writing—review and editing; T.K.: writing—original draft, writing—
review and editing; P.G.K.: writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.
Conflict of interest declaration. We declare that we have no competing interests.
Funding. P.G.K. gratefully acknowledges support through the C3.ai Digital Transformation Institute and also
enlightening discussions with the PEACoG group (M. Barmann, Q.-Y. Chen, J. Cuevas-Maraver, Y. Drossinos, G.A.
Kevrekidis, Z. Rapti).
Acknowledgements. T.K. gratefully acknowledges support through an NSERC discovery grant, Canada.
Appendix A. Matlab code for model (2.3)
The following MATLAB code was used to simulate (2.3). It uses implicit–explicit finite differences, where
the Laplacian term is discretized implicitly (for numerical stability, allowing for a relatively large time
stepping), whereas nonlinear terms are handled explicitly. Cut-and-paste into MATLAB to run.
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