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Predicting the Temperature-Driven
Development of Stage-Structured Insect
Populations with a Bayesian Hierarchical

Model
Kala Studens , Benjamin M. Bolker , and Jean-Noël Candau

The management of forest pests relies on an accurate understanding of the species’
phenology. Thermal performance curves (TPCs) have traditionally been used to model
insect phenology. Many such models have been proposed and fitted to data from both
wild and laboratory-reared populations. Using Hamiltonian Monte Carlo for estimation,
we implement and fit an individual-level, Bayesian hierarchical model of insect devel-
opment to the observed larval stage durations of a population reared in a laboratory at
constant temperatures. This hierarchical model handles interval censoring and temper-
ature transfers between two constant temperatures during rearing. It also incorporates
individual variation, quadratic variation in development rates across insects’ larval stages,
and “flexibility” parameters that allow for deviations from a parametric TPC. Using a
Bayesian method ensures a proper propagation of parameter uncertainty into predictions
and provides insights into the model at hand. The model is applied to a population of
eastern spruce budworm (Choristoneura fumiferana) reared at 7 constant temperatures.
Resulting posterior distributions can be incorporated into a workflow that provides pre-
diction intervals for the timing of life stages under different temperature regimes. We
provide a basic example for the spruce budworm using a year of hourly temperature data
from Timmins, Ontario, Canada.

Supplementary materials accompanying this paper appear on-line.

1. INTRODUCTION

Many efforts have been made to improve predictions of insect development and phenol-
ogy in the past century (Uvarov 1931). These studies were historically motivated by the
management of insect pests (Pruess 1983; Crimmins et al. 2020). More recently, climate
change and the increasing threat from invasive species have renewed interest in incorporat-
ing quantitative models of insect development and phenology in process-based models of

K. Studens (B)· J.-N. Candau, Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre,
Sault Ste. Marie, ON, Canada. (E-mail: kala.studens@nrcan-rncan.gc.ca).
B.M.Bolker, Departments ofMathematics&Statistics andBiology,McMasterUniversity, Hamilton,ON,Canada.

© 2023 Crown
Journal of Agricultural, Biological, and Environmental Statistics
https://doi.org/10.1007/s13253-023-00581-y

https://doi.org/10.1007/s13253-023-00581-y
http://orcid.org/0000-0003-1932-9896
http://orcid.org/0000-0002-2127-0443
http://orcid.org/0000-0001-9356-3950
mailto:kala.studens@nrcan-rncan.gc.ca
http://crossmark.crossref.org/dialog/?doi=10.1007/s13253-023-00581-y&domain=pdf


K. Studens et al.

geographic distribution (Régnière et al. 2012), evolutionary ecology (Bewick et al. 2016),
and biological invasion (Porter et al. 1991).

Insects accomplish their life cycle by developing through discrete morphological stages.
Development rate depends on several climatic variables, of which temperature is consid-
ered the most important (Rebaudo and Rabhi 2018). Most models of insect development
rely on two principles: a thermal performance curve (TPC), which formalizes the relation-
ship between development rate and temperature (Chuine and Régnière 2017), and a rate
summation, which states that maturation to the next stage occurs when development (based
on the TPC and the distribution of environmental temperature) reaches a threshold.

Bayesian methods have been applied to fit TPCs for various organisms. These include
thermal development curves for unicellular organisms (Corkrey et al. 2012), temperature-
dependent growth of fish (Childress and Letcher 2017) and fungi (Gajewski et al. 2021), and
temperature-trait relationships of disease-vector insects (Johnson et al. 2015;Mordecai et al.
2019; Shocket et al. 2020; Villena et al. 2022). To our knowledge, Bayesian methods have
never been used to model TPCs of forest insects. In this domain, TPC models fits typically
provide point estimates with standard errors or confidence intervals (CIs: Rebaudo and
Rabhi 2018; Quinn 2017); estimates of parameter correlation are rarely given. Most models
of insect development are fitted using either nonlinear least squares or maximum likelihood
estimation (MLE: Damos and Savopoulou-Soultani 2012).While one can use thesemethods
to estimate correlations amongparameters andhence deriveCIs for prediction (Bolker 2008),
Bayesian methods provide samples of the full multivariate posterior distribution and thus
enable CIs for any function of model parameters. Bayesian methodology also allows the use
of the vast amount of prior knowledge gathered on insect phenology [e.g. Hoffmann et al.
(2013), Rebaudo andRabhi (2018)] to specify informative prior distributions (McCarthy and
Masters 2005).McManis et al. (2018) impose Bayesian prior distributions on the parameters
of their mountain pine beetle development model, but the parameter estimation is done by
minimizing the negative log posterior rather than sampling a full posterior distribution. This
approach leverages prior knowledge, but does not provide the benefits of convenient error
propagation.

In this study we developed a Bayesian hierarchical model of individual-based,
temperature-driven development for spruce budworm (Choristoneura fumiferana). The
resulting posterior distribution was used to simulate one year of larval development in
the wild, to demonstrate howwe could obtain prediction intervals for development achieved
by a given date, or of dates by which a critical developmental threshold occurs.

2. METHODS

2.1. STUDY SYSTEM

The eastern spruce budworm is native to the boreal forests of North America. During
periodic outbreaks, its populations have caused extensive tree mortality, especially of white
spruce and balsam fir trees (Blais 1983). The species is univoltine, and its six larval stages
(instars) are delineated by the shedding of head capsules. Upon emergence from eggs in
the summer, the first instar larvae disperse and form hibernacula (cocoon-like shelters) in
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which they moult to second instar and enter diapause, a resting stage in which they spend
the duration of the winter. Second instar larvae emerge from these hibernacula in the early
spring and feed on old needles until budburst. In the third to sixth larval instars, larvae
feed on new foliage. The synchrony of these larval stages with new foliage is crucial for
survival (Lawrence et al. 1997). Understanding the timing of each phenomenon is necessary
in order to predict the impact of climate change on the species’ behaviour. The pupal stage is
typically reached in early summer, and moths emerge several days later. Understanding the
timing of adult emergence is important for modelling the species’ landscape-scale dispersal
(Sturtevant et al. 2013).

Early models of spruce budworm development neglected individual variability (Bean
1961; Cameron et al. 1968; Dennis et al. 1986; Lysyk 1989; Hudes and Shoemaker 1988).
Régnière (1984; 1987) was the first to account for variability in a two-step procedure that
separately estimated the effect of temperature on median development rate and the distri-
bution of individual rates around the median, modelling the rate using a Type I generalized
logistic distribution (Balakrishnan and Leung 1988). Stedinger et al. (1985) modelled the
distribution of larvae in each larval stage as Dirichlet-multinomial distribution, accounting
for environmental conditions at three spatial scales (regional, site and individual). More
recently, Régnière et al. (2012) proposed a general framework for quantifying insect devel-
opment that models individual variability as a log-normal distribution.

2.2. DATA COLLECTION

The data come from a spruce budworm rearing experiment described in Wardlaw et al.
(2022). Samples of diapausing larvae were collected as described in Candau et al. (2019)
from Timmins, Ontario, in accordance with the methods in Perrault et al. (2021). Upon
emergence from diapause, individuals were collected and placed in separate containers
containing artificial diet created to mimic the nutrition that the insects would consume in
the wild. The development of each insect was observed daily; a moult was reported once a
larva had shed its head capsule. The colony was divided into seven sub-populations, each of
which was reared at a different constant temperature, at evenly spaced temperatures from 5
to 35 ◦C. Due to the potential for high mortality rates at temperatures outside a “sustainable”
temperature range of 15–25 ◦C, an extra rearing stepwas taken for populations at the extreme
temperatures. For each stage, the times to moult at the extreme temperatures were estimated
using the development rate model presented in (Régnière et al. 2012). The insects were
held at the extreme temperatures for approximately half the predicted moulting time and
then moved to 20 ◦C for the remainder of each stage. Each sub-population contained 250
individuals, resulting in a total of 1750 individuals. Since the main objective of the project
was to observe development rates in the larval instar stages, survival was not considered in
the modelling process. Thus, the data used to fit the model consisted only of individuals who
survived the full rearing process from the first larval instar to pupation. These data included
76 individuals reared at 5 ◦C, 151 individuals at 10 ◦C, 18 at 15 ◦C, 120 at 20 ◦C, 92 at
25 ◦C, 197 at 30 ◦C and 109 individuals at 35 ◦C. Only the first new generation from the
wild population was used to fit the data, to eliminate any generational effect of laboratory
rearing. The low survival rate in the 15 ◦C treatment is likely due to the fact that it is on the
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Figure 1. Visualization of the data used to fit the model, faceted by treatment. Grey bars indicate time spent at
the treatment temperature with the shade darkening as stages progress, while black bars represent time spent at
our alternative sustainable temperature, 20 ◦C. Plot facet heights are scaled by the number of observations in each
treatment .

edge of the sustainable growth regime. The insects at this temperature may have benefited
from the transfer treatment performed for the larvae exposed to more extreme temperatures
(Fig. 1).

2.3. DEVELOPMENT RATE MODEL

We chose the Schoolfield et al. (1981) model with the reference temperature gener-
alization presented in Ikemoto (2005) for our Bayesian implementation of the likelihood
framework described in Régnière et al. (2012). The development rate equation in this model,
representing the rate of the enzyme-catalysed reaction governing growth, is

r(TK ) =
ρ TK

TA
exp

[
HA
R

(
1
TA

− 1
TK

)]

1 + exp
[
HL
R

(
1
TL

− 1
TK

)]
+ exp

[
HH
R

(
1
TH

− 1
TK

)] . (1)

here R = 1.987 kcal · K−1 · mol−1 is the universal gas constant and TK is the independent
temperature variable of the TPC in degrees Kelvin, while the remaining values are the
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curve parameters. All temperatures in this model are represented in degrees Kelvin. This
model formulation is based on the assumption that the enzymes controlling growth rate can
be in one of three states: active, inactive due to low temperature, or inactive due to high
temperature. These states are assumed to be reversible. The reciprocal of the denominator
represents the fraction of enzymes in the active state. TA is the temperature at which the
fraction of active enzymes is maximized, while the value of ρ in the numerator represents
the development rate when TK = TA. In the parameterization from Ikemoto (2005), the
value of the reference temperature TA is calculated from the other parameters as follows:

TA = HL − HH

R · log
(−HL

HH

)
+

(
HL
TL

)
−

(
HH
TH

) (2)

The parameters TL and TH represent the temperatures at which half of the rate-controlling
enzymes have been de-activated due to low or high temperatures, respectively. The HL and
HH parameters represent the changes in enthalpy resulting from low- and high-temperature
enzyme de-activation, and HA is the activation enthalpy of the growth reaction.

2.4. LIKELIHOOD STRUCTURE

In the model of Régnière et al. (2012), an individual’s physiological age a within a
developmental stage is defined as the proportion of the stage that it has completed. The age
of an individual i in the development stage s is represented as:

ais(t, θs) = δis
∑
t

r(Tt , θs)�t , (3)

where r(T, θs) is the populationmedian development rate as a function of temperature T and
the vector of development rate parameters θs for stage s, and δis is a multiplier representing
the development rate of individual i , relative to the population median for stage s. Here, δis
is independent of temperature. Themultiplier�t represents the time spent at temperature Tt .
The value ai represents the proportion of the development stage s that has been completed
by individual i , and thus, it ranges between 0 and 1.

An age of 1.0 signals the end of a developmental stage. Therefore, if tm is the amount
of time taken by individual i to complete a stage s, then ais(tm, θ) = 1. Since observations
were taken daily, we do not directly observe tm and instead the data are interval censored.
That is, we know only the one-day interval within which an individual completed each
developmental stage (i.e. tm ∈ [t1, t2]). Thus,

ais(t1, θ) < ais(tm, θ) = 1 < ais(t2, θ). (4)

Substituting for Eq.3 and rearranging gives

1∑t2
t=1 r(Tt , θs)�t

< δis <
1∑t1

t=1 r(Tt , θs)�t
. (5)
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If we treat δis as a random variable with cumulative distribution Fδ , then the likelihood of
our observation of individual i for stage s given parameters θs is

L(θs) = Fδ

(
1∑t1

t=1 r(Tt , θs)�t

)
− Fδ

(
1∑t2

t=1 r(Tt , θs)�t

)
. (6)

Régnière et al. (2012) assign a log-normal distribution to δis to ensure that δ > 0 and
that the distribution of individual variation is positively skewed. Their parameterization
gives E(δ) = 1, thus centring the population mean at the development rate curve. In our
parameterization, we centre the distribution at the population median instead of the mean,
so that a population’s development times and development rates have the same distribution
across individuals. Therefore, we have

log(δis) = εis
iid∼ Normal(0, σ 2

εs
) (7)

for each individual i = 1, ..., N , where σεs is unknown.
For each treatment j and stage s, Régnière et al. (2012) included a multiplicative random

effect υ js , which allows the mean development times at the treatment temperatures to
deviate from those predicted by the parametricmodel. This term adds flexibility to themodel,
relaxing the strict parametric form of the development rate curve. These additional flexibility
parameters are included to decrease the systematic error caused by misspecification of the
development rate curve. Using this method allows us to obtain the most accurate predictions
possible while still learning about the parameters from the model form that we are interested
in.

Régnière et al. (2012) specifiedυ j,s ∼ Normal(1.0, σ 2
υs

) (where σ 2
υs
is a fitted parameter).

We set υ j,s ∼ log-Normal(0, σ 2
υs

) to ensure that the υ j,s parameters remain nonnegative.
The resulting development rates are:

r∗(Tj , θs) = r(Tj , θs)

υ js
(8)

Since we only have observations at seven treatment temperatures, we can only apply
our flexibility parameters at those discrete points on the TPC. To expand this relaxation
of the TPC’s parametric form for prediction, we use the interpSpline function from
the splines R package, to connect these, and the points (r, T) = (0, 0) and (40, 0) (i.e.
we know development should approach zero towards these temperatures) so that we can
estimate development at temperatures other than those observed in the experiment (Fig. 2).

The full log likelihood for stage s can be written as:

�(θs,υ) =
∑

j

{
log

[
fυs (υ js)

] +
∑
i

log

[
Fδs

(
1

∑t1i
t=1 r

∗(Tjt , θs)�t

)

− Fδs

(
1

∑t2i
t=1 r

∗(Tjt , θs)�t

)]}
(9)
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Figure 2. Example of the effect of flexibility parameters, υ, with modified development rates connected with an
interpolation spline (R’s interpSpline function).

where i denotes individual, j denotes temperature treatments, and fυs is the probability
density function of a log-normal distribution with location parameter 0 and scale parameter
συs .

The observations for the L2 stage were interval censored, while the observations for the
remaining stages were double censored (Calle 2002). That is, the start time for the L2 stage
is known, but the exact end time is interval-censored, while for the remaining stages both the
start and end times are interval-censored. Since observations were made daily, the interval
for the true moult time t for an individual in the L2 stage is t ∈ [tobs − 1, tobs], while the
interval for an individual in any other development stage is t ∈ [tobs − 1, tobs + 1]. Here,
tobs is the observed moult time. For the L2 stage, it is the number of days until a moult is
observed, while for the remaining stages it is the number of days between the observations
of successive moults (Fig. 3).

2.5. BAYESIAN IMPLEMENTATION

Effective methods for sampling from the posterior distribution of Bayesian models have
been an active area in computational statistics for decades. Hamiltonian (or hybrid) Monte
Carlo (HMC) proposed that nearly 30 years ago (Neal 1993) has recently achieved much
greater popularity with the availability of convenient and powerful implementations. While
Stan (Stan Development Team 2020) is probably the most popular such tool, our model was
written in Template Model Builder (Kristensen et al. 2015), which is primarily designed
for maximum likelihood estimation. The R package tmbstan (Monnahan and Kristensen
2018) was used to apply the No-U-Turn Sampler (NUTS), a particular step-size rule for
HMC, to the model.

The chains were initialized by sampling parameter vectors from the prior distribution.
We assumed Gamma priors for ρs (for s = 1, ..., 5), HA, HH , −HL , and tdiff = TH − TL
to ensure nonnegativity, while TL was assigned a log-normal prior. The scale parameters
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Figure 3. Example of interval censoring for L2 stage, and double interval censoring for L3 stage in a transfer
treatment.

σεs and συs were also assigned log-normal priors. We know that the duration of the spruce
budworm’s larval stages decreases from the second larval stage to the fourth and then
increases until pupation (Régnière et al. 2012). Thus, while maintaining a constant scale
parameter across stages, the shape parameters were set such that the means of the prior dis-
tributions for ρ reflected this known structure. The parameter ρ is the only TPC parameter
that is permitted to vary across development stages, since we know that the stage dura-
tions vary. The other parameters are held constant under the assumption that the enzyme
activation/deactivation process is the same across developmental stages. Our priors were
determined both by interpreting the biological parameters and performing prior predictive
checks.We plotted development rate curves with wide but realistic ranges on each parameter
and tightened the prior assumptions when the resulting development rate curves displayed
unrealistic characteristics (such as non-negligible development rates at temperatures above
or below the range known to support development). To test the convergence and reliability
of MCMC sampling, we used several diagnostic tools: the R̂ convergence diagnostic and
bulk/tail effective sample size (ESS) values (Vehtari et al. 2021), checking for divergent tran-
sitions (StanDevelopment Team2020), simulation-based calibration (SBC: Talts et al. 2018;
Cook et al. 2006) and posterior predictive checking (PPC). SBC entails several instances
of sampling from the prior, generating a dataset using the model’s data generating process,
fitting the model to each of these datasets and assessing the uniformity of the resulting
ranks of the prior draws within the posterior distributions. In theory, these ranks should be
uniform. Visual tests are performed on the histograms of the ranks to check for uniformity.
The full details and results of the SBC can be found in the Supplementary Materials.
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Algorithm 1Model Specification

ρs ∼ Gamma(k = −1.05s2 + 4.22s + 4.08, θ = 0.0045), for s = 1, ..., 5
(−HL , HA, HH ) ∼ Gamma(k = (3.6, 5.4, 7.6), θ = (2.3, 3.1, 0.1))
TL ∼ logNormal(μ = 5.64, σ = 0.0067)
TH − TL ∼ Gamma(k = 112, θ = 0.23)
(σε, συ) ∼ logNormal(μ = (−1.5, −2.5), σ = (0.1, 0.05))
υ∗
j,s ∼ Normal(μ = 0, σ = 1), for j = 1, ..., 7 and s = 1, ..., 5

LL ← − log
[
π(θ̃)

]

for i in 1 : nrow(data) do � Here, r(T, θ) is the Schoolfield development rate model.

TA ← (HL − HH )
[
R log

(
− HL

HH

)
+ HL

TL
+ HH

TH

]−1

pk ← r(T = tk(i), ρs(i), HA, TL , HL , TH , HH , TA) � for k = 1, 2

υk ← exp
[
υ∗
tk [ j (i)],sσυ

]

p∗
k ← pk

υk

εlower ← log(t1d (i)p∗
1 + t2d (i)p∗

2)σ−1
ε,s

εupper ← log(t1(i)p
∗
1 + t2(i)p

∗
2)σ−1

ε,s
ll(i) ← �(εupper ) − �(εlower )

LL ← LL − n(i)ll(i)
end for

2.6. POSTERIOR SIMULATIONS

To demonstrate how we could use our model fits to obtain downstream credible intervals
for values that are of use for pest-management decision making, we simulated insect devel-
opment based on our posterior samples and on a year of hourly weather data from Timmins,
Ontario, where the wild colony was initially sampled. These data were obtained from the
weathercan package in R (LaZerte and Albers 2018). Since the scope of the model did
not include overwintering larvae, each individual was assumed to begin the L2 stage at the
same time, on April 1, 2020. This procedure is outlined in Algorithm 1.

The data and the code for the model fitting, SBC and weather simulations can be found
at https://github.com/kdis19/bayessbw.

3. RESULTS

Some divergent transitions did occur in earlier stages of the model development, but
we eliminated them by (1) reducing the sampler’s step size and (2) using non-centred
parameterizations for distributions in the model definition in order to make the posterior
surface more amenable to HMC sampling (Gelman et al. 2020; Stan Development Team
2020).Non-centred parameters are sampled froma standardized distribution and then shifted
and scaled appropriately, rather than being sampled directly (StanDevelopment Team2020).
While the R̂ diagnostic and ESS values were acceptable and the HMC sampler reported
no divergent transitions, the results of the SBC indicated that the sampler was not properly
recovering the scale parameters for the distribution of individual variation, σεs . In an attempt
to correct these estimates for use in prediction, we fitted parameters to power-transform the

https://github.com/kdis19/bayessbw
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Algorithm 2 Posterior Simulations
for p in 1 : P do � P = 100 populations

θp ∼ f (θ |y) � Sample from posterior
r∗
s (Tt , θp) ← rs(Tt , θp)/υs,t
Create a cubic spline connecting r∗

s (Tt , θp) evaluated at each treatment
temperature Tt using R’s interpSpline function from the splines
package:

Ss(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ps,0(T ) if T < 5

Ps,1(T ) if 5 ≤ T < 10
...

Ps,7(T ) if 30 ≤ T < 35

Ps,8(T ) if T ≥ 35

where P(Tt ) = r∗(Tt , θp)
for i in 1 : N do � N = 100 individuals

εs,i ∼ Normal(0, σ 2
ε,p) � σε,p is an element of θp

δs,i ← eεs,i � Both for s = 1, ...5

Calculate age vector using hourly weather data:
as,i ( j) ← 0 for j = 1, ..., H and s = 1, ..., 5
s ← 1
for h in 1 : H do � H is the length of the hourly weather vector

anew ← as,i (h − 1) + δs,i Ss(Th)�h
if anew ≥ 1 then

as,i ( j) ← 1 for j ≥ h
if s < 5 then

s ← s + 1
as,i (h) ← δs,i Ss(Th) · anew−1

δs−1,i Ss−1(Th)
else

Break loop
end if

else
as,i (h) ← anew

end if
end for
The age a of an individual i at the hth time step is defined as ai,h ← ∑

s ai,s(h)

end for
end for
Calculate temperature-wise prediction intervals for insect age using age vectors of all simulated
individuals.

posterior draws from the SBC such that they matched with the prior. This transformation
improved the coverage of 90% credible intervals for the σε parameters.

We applied this fitted transformation to the posterior distribution we obtained by fitting
themodel to our data in order to improve the accuracy of our predictions.While this matched
the prior with the full set of posterior samples, the SBC histograms still showed signs of
heavy autocorrelation, as indicated by large spikes at the extremes of the histogram (Talts
et al. 2018). The histograms for the remaining parameters looked mostly uniform with
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Figure 4. Violins represent densities of posterior prediction intervals for the number of degree days at each
treatment temperature in each developmental stage. The points are the observed degree days at each corresponding
stage and temperature.

some indications of skewness, but the boxplots comparing prior and posterior samples were
very similar and the coverage of the 90% credible intervals ranged from 0.84 to 0.91 with
mean 0.87. However, the SBC histograms for the development rate estimates at each rearing
temperature and stage also displayed this tendency, while the boxplots indicated that the
overall posterior and prior distributions were very similar.

Figure 4 compares posterior prediction intervals for the “observed” degree days to moult
to the actual degree days observed in the data. The posterior datasets were generated in a
similar fashion to Algorithm 1, where the weather vector inputs imitate the experimental
conditions and the observations are interval censored as though they were observed under
our experimental protocol. Degree days were used instead of days in this plot so that we
could directly compare data from transfer treatments to that from non-transfer treatments. To
generate the prediction intervals, we drew1000 posterior samples containing 250 individuals
per treatment. The data mostly fall well within the posterior prediction intervals, but there
are a few outlier points that land outside (L6, 30 and 35 ◦C). These outlying points could be
due to the discrepancy we observed with the σε parameters in the SBC.

The bottom panel of Fig. 5 shows quantiles of daily development for the full simulated
cohort. The vertical extent of the ribbons represents the credible intervals for the cohort’s
developmental age over time, while the ribbons’ horizontal extents show the credible inter-
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Figure 5. Top panel show mean daily temperature in Timmins, ON, for the year 2020. Background shading
indicates expected development rate as a function of temperature and median proportions of the population in each
development stage. Bottom panel shows symmetric credible intervals of development for the simulated population.
The colours of the ribbons represent the lower percentile of the credible intervals .

vals of dates at which developmental milestones are reached. Though it uses a crude estimate
of the cohort’s starting date for the L2 stage, the development timeline shown in the fig-
ure matches what we would expect from an Ontario budworm population in a typical year
(Régnière et al. 2012). The black line in the upper panel of the figure shows mean daily
temperature, while the background shading represents the expected development rate given
temperature and proportion of individuals in each stage at a given date. This expected
development rate is calculated using the median estimated development rate curve for each
stage, weighted by the median estimated proportion of individuals in each stage on a given
date. When the mean daily temperature line traverses darkly shaded areas (e.g. early June),
budworm larvae are expected to develop rapidly.
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4. DISCUSSION

4.1. MODELLING ASSUMPTIONS

Several assumptions have to be made when accepting the results of the weather sim-
ulations. While our colony was collected from the wild, it was reared under laboratory
conditions on artificial diet, at constant temperatures. While this is convenient for model
fitting, we acknowledge that the results may not apply directly to populations of spruce
budworm living in the wild [but see von Schmalensee et al. (2021)]. This model should
be validated on data collected in the wild before its results can be accepted in practice.
Secondly, the model in its current form does not take into account any type of lag effect
from transferring the insects from one temperature to another. This type of effect could be
significant in our data, as the environments of some insects were warmed or cooled by up
to 15 ◦C instantaneously. While not optimal, these temperature transfers are necessary to
capture observations at temperatures near the upper and lower limits of the developmental
range without excessive mortality in the data. Future efforts could take these changes into
account by modelling the effect of temperature changes on the insects. The current state
of the model also does not include any correlation in development rates within individuals,
among developmental stages. Also, since we have individual-level data, in theory we could
follow individuals across their development stages and use that shared information to get
better estimates within the interval censored windows. Another area of further study is the
use of continuous measurements such as weight and length, instead of discrete observations
of moulting, to track development. Using these continuous measurements would eliminate
the difficulties that come with fitting a model to interval censored data, since measure-
ments could be interpolated between unobserved states. Body size is also a better predictor
of fitness traits such as fecundity (Honěk 1993). However, these measurements are much
more time-consuming to collect. In terms of the selection of a TPC to fit to our data, the
Schoolfield (1981) model provides an advantage over TPCs with sharp temperature thresh-
olds, specifically for the Bayesian implementation of this model. With our implementation
of individual variation, each individual would have exactly the same temperature thresholds
for development, but we do not expect this to be the case. Using a development rate curve
that gradually approaches zero provides more flexibility. Furthermore, when dealing with
the gradient of a likelihood surface, blunt thresholds create pathologies and therefore are
not a desirable characteristic of a TPC in our framework. An example of a TPC with upper
and lower temperature thresholds is the curve presented in Regniere and St. Amant (2012).

4.2. POSTERIOR SAMPLES

While the typical MCMC diagnostics of R̂, bulk and tail ESS, divergent transitions
and posterior predictive checks did not indicate model misfit, lack of convergence or other
difficulties with MCMC sampling, the SBC did reveal some issues in the model fitting.
The non-uniformity in the SBC histograms indicates that the sampler does not properly
recover the parameters for the scale of individual variation in the double interval-censored
stages, nor the development rates at the transfer temperatures in the double interval-censored
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stages. These patterns in the histograms suggest that both the interval censoring and the
temperature transfers intrinsic to the data make it difficult to fit. The boxplots from the SBC
of the σε parameters show discrepancies in the location, scale and skew of the prior and
posterior distributions. To use the model fit in practice, we suggest applying corrections to
the posterior distribution according to the mismatch found in the SBC. For example, we can
apply a Box–Cox transformation to the SBC-derived posterior distribution to get it as close
to normal as we can, and log transform the log-normally distributed prior samples to make
them normal as well. We can then use robust measures of location and scale (median and
scaled IQR) to obtain a Gaussian distribution and apply the mean and standard deviation
of the log prior to have the distributions match. Using the power parameter from the initial
Box–Cox transformation, the location and scale parameters derived from the log prior and
the SBC-derived posterior, one could then transform the data-derived posterior in a similar
fashion. Performing this transformation improved the 90% coverage of the posteriors in the
SBC for the σε parameters, but the resulting credible intervals still undercover, and thus,
these results should be interpreted with caution.

4.3. SIMULATIONS

We can obtain credible intervals for values of interest by sampling populations and indi-
viduals directly from the posterior distribution and using these values for simulations based
on realistic temperature profiles (Fig. 5). Current simulations using weather data to pre-
dict spruce budworm population development rely on point estimates of model parameters,
with the only stochastic component coming from individual-level variation around a deter-
ministic development curve (Régnière et al. 2014; Régnière et al. 2012). This simulation
method neglects uncertainty around parameter estimates and therefore underestimates the
uncertainty in downstream predictions. In contrast, using Bayesian methods to sample both
individual- and population-level variation from the estimated posterior distributions propa-
gates the full range of model uncertainty through the simulations, so that they are reflected
in the credible intervals for predicted values. This technique is equally applicable to sce-
narios informed by current conditions, based on historical weather data, or using climate
projections to predict how insect populations will develop in the future.
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