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Abstract

Background: Coronavirus disease (COVID-19) presents an unprecedented threat to global health worldwide.
Accurately predicting the mortality risk among the infected individuals is crucial for prioritizing medical care and
mitigating the healthcare system’s burden. The present study aimed to assess the predictive accuracy of machine
learning methods to predict the COVID-19 mortality risk.

Methods: We compared the performance of classification tree, random forest (RF), extreme gradient boosting
(XGBoost), logistic regression, generalized additive model (GAM) and linear discriminant analysis (LDA) to predict the
mortality risk among 49,216 COVID-19 positive cases in Toronto, Canada, reported from March 1 to December 10,
2020. We used repeated split-sample validation and k-steps-ahead forecasting validation. Predictive models were
estimated using training samples, and predictive accuracy of the methods for the testing samples was assessed using
the area under the receiver operating characteristic curve, Brier’s score, calibration intercept and calibration slope.

Results: We found XGBoost is highly discriminative, with an AUC of 0.9669 and has superior performance over
conventional tree-based methods, i.e., classification tree or RF methods for predicting COVID-19 mortality risk.
Regression-based methods (logistic, GAM and LASSO) had comparable performance to the XGBoost with slightly
lower AUCs and higher Brier’s scores.

Conclusions: XGBoost offers superior performance over conventional tree-based methods and minor improvement
over regression-based methods for predicting COVID-19 mortality risk in the study population.

Keywords: COVID-19 mortality, Predictive model, Generalized additive model, Classification trees, Extreme gradient
boosting
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Background
Coronavirus disease (COVID-19), caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
presents an unprecedented threat to global health world-
wide. Cases have put a great burden onmedical resources,
leading to a shortage of intensive care resources. Predic-
tion of mortality risk at the individual level is crucial for
helping healthcare professionals prioritize medical care
for patients by facilitating resource planning, and for guid-
ing public health policy-making to mitigate the burden on
the healthcare system.
For predicting event probability, logistic regression is

commonly used. In logistic regression, linear effects are
often assumed for continuous covariates, which may be
restrictive in many applications. In contrast, generalized
additive model (GAM) can model non-linear covariate
effects [1–3]. For regression-based approaches, correct
model specification is needed to ensure consistent prob-
ability estimates, which is challenging in the case of
collinearity or complex interactive effects between inde-
pendent variables.
To overcome these challenges, tree-based machine

learning methods, such as classification tree [4], random
forest [5], and gradient boosting [6, 7] have gained popu-
larity in the literature. One advantage of tree-based meth-
ods is that they do not require specifying the parametric
nature of the relationship between continuous predictors
and the outcome. The tree-based methods can also easily
handle categorical predictors without the need to cre-
ate dummy variables. Further, tree-based methods allow
for identifying high-risk sub-populations, especially when
predictors have complex interaction effects. Nevertheless,
the tree-basedmethods are prone to over-fitting, resulting
in low bias but high variance, and limits to generalizability
and robustness of models.
Research has been conducted comparing the perfor-

mance of regression-based and tree-based methods in
terms of predictive accuracy, but the results are inconclu-
sive. Some studies concluded that classification tree and
logistic regression had comparable performance [8, 9];
some studies concluded that logistic regression had supe-
rior performance over the tree-based methods [10, 11];
while some showed that tree-based methods outperform
logistic regression [12–15]. One reason for this incon-
sistency is that comparative performance likely differs
depending on the application and dimensionality of the
data. Machine learning methods may perform better than
regression-based methods when there are complex, con-
tingent relationships between predictors, and data has
high dimensionality. Thus, it is important to assess model
performance for specific applications and data sources.
Few studies have been conducted examining the use of
machine learningmethods for predicting COVID-19mor-
tality risk in Canada using available data sources.

If predictive models are going to be used for pandemic
planning, validation to assess model robustness and per-
formance is critical. In research on the performance of
regression and machine learning methods, there is incon-
sistency in validation methods and how performance is
assessed. Most studies used k-fold cross-validation (CV).
Only a few employed repeated split-sample validation
with a larger number of folds for CV to examine the
robustness of the findings [8, 10]. Performance of the
models at different levels of predicted probabilities is
also important, as good performance overall may obscure
predictive errors affecting those at different levels of risk.
The objective of this study was therefore to compare

the performance of regression models and tree-based
methods for predicting COVID-19 mortality in Toronto,
Canada using data available in many settings. A range
of individual and neighborhood-level predictors were
considered. The predictive accuracy was assessed with
repeated split-sample validation and forecast validation
using the area under the receiver operating characteris-
tic (ROC) curve and the Brier’s score. Predictive accuracy
was also assessed at different levels of predicted probabil-
ities.

Methods
Data description
Data on COVID-19 confirmed cases from March 1, 2020,
through December 10, 2020, in the city of Toronto,
Canada, were retrieved from the Ontario Ministry of
Health. The outcome variable was an individual’s mortal-
ity status due to COVID-19. A range of predictors were
considered. The COVID-19 epidemic is dynamic, increas-
ing or decreasing over time, sometimes on a daily basis.
It is therefore expected that time is an important predic-
tor for COVID-19 mortality. In the dataset, the episode
date, a derived/combined variable, was provided as the
best estimate of when the disease was acquired and refers
to the earliest available date from symptom onset (the
first day that COVID-19 symptoms occurred), labora-
tory specimen collection date, or reported date. The time
variable included in the predictive model is the elapsed
days between the start date of the study (March 1, 2020)
and the episode date. The demographic characteristics of
the subject include age groups: ≤19, 20-29, 30-39, 40-49,
50-59, 60-69, 70-79, 80-89, 90+ years of old and self-
reported gender: males, females and others, where others
represent unknown or other sexual identifications such
as transgender. Toronto is divided into 140 geographi-
cally distinct neighborhoods that were established to help
government and community agencies with local planning
by providing meaningful social and economic ecological
data from census and other sources. Neighborhood-level
predictors over the 140 neighborhoods in Toronto were
obtained from the 2016 Canadian Census data, including
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population density and average household income, which
were linked to the COVID-19 data by neighborhoods.
Research shows that temperature is negatively associ-
ated with COVID-19 transmission [16, 17]. Therefore, the
daily temperature in Toronto from March 1, 2020, until
December 10, 2020, was included as a predictor, down-
loaded from the Government of Canada Daily Weather
Data Report. Variables describing the history of hospi-
talization for COVID-19 (ever hospitalized, ever in the
intensive care unit (ICU), or ever intubated) were also
used as predictors. These variables may be intermediate
outcomes between infection and death, and may interact
with other variables as predictors of mortality. For exam-
ple, individual and neighborhood variables may be proxies
for health status and chronic disease variables associated
with serious COVID-19 outcomes. Theymay also be asso-
ciated with differences in health care access and quality,
and thus modify the relationship between intermediate
hospital outcomes and death.

Predictive models for COVID-19 mortality risk
Regressionmethods
Logistic Regression The logistic regression (LR) model
with the logit link function can be expressed as,
logit(πi) = X iβ , where πi denotes the probability of mor-
tality and X i is the design matrix for all the covariates and
β = (1,β1, ...,βp)T is a p × 1 vector of regression coef-
ficients. We considered two types of logistic regression
models. The first model consisted of all the variables. No
variable reduction was performed. In the second model,
all the variables and their two-way interactions were
included in the initial model. Then, the Least Absolute
Shrinkage and Selection Operator (LASSO) [18] was used
to exclude “unnecessary” predictors by shrinking their
coefficients to exactly zero, yielding a more parsimonious
model. The hyperparameter or regularization parameter
controlling the amount of regularization in the LASSO
regression is chosen by minimizing misclassification error
in terms of Area Under the ROC curve (AUC) based on
10 fold cross-validation. The function cv.glmnet in the
glmnet package [19] in R was used for implementing the
LASSO method.

Generalized Additive Models Generalized additive
models (GAMs) are a non-parametric, regression tech-
nique providing greater flexibility in modeling non-linear
covariate effects with smoothed splines [1, 20], which can
be described as logit(πi) = X iβ + ∑J

j=1 fj(zij) where X i
is a row of the design matrix for any parametric model
component, such as age groups, gender and critical
care use; β is the corresponding parameter vector; fj(zij)
denote non-parametric spline functions for the jth con-
tinous predictor, j = 1, · · · , J , respectively. A penalized
log-likelihood method is maximized to estimate all the

parameters [1]. The smoothing parameters are estimated
by the generalized cross-validation method [20]. The
above model is fitted using the R package mgcv [20].

LinearDiscriminantAnalysis Linear discriminant anal-
ysis (LDA) [21] models the distribution of the predictors
separately in each of the response classes and then uses
Bayes’ theorem to convert these back into estimates for
the probability of an event. When the response vari-
able classes are well-separated, logistic regression may be
unstable, but LDA does not suffer from this problem.
However, LDA assumes the distribution of the predictors
X are approximately normal in each of the classes and have
a common variance, which may fail to hold in some cases.
DA has closed-form solutions, so it has no hyperparame-
ters to tune. LDA was implemented in the lda function
in the R package MASS [22].

Tree-basedmethods
Classification Tree Classification tree has become a
popular alternative to logistic regression [4]. Unlike logis-
tic and linear regression, a classification tree does not
develop a prediction equation. The method firstly parti-
tions the sample into two distinct samples according to
all possible dichotomizations of all continuous variables
given a threshold, and all the categorical variables. Then,
the partition that yields the greatest reduction in impurity
is selected. The procedure is then repeated iteratively until
a pre-specified stopping rule is met. After the entire fea-
ture space is split into a certain number of simple regions
recursively, the predicted probability of the event for a
given subset can be calculated using the proportion of
subjects who have the condition of interest among all the
subjects in the subset to which the given subject belongs
[23].
In this study, the classification tree model was imple-

mented using the R package rpart [24]. At each node,
the partition was chosen that maximized the reduction in
misclassification error. The minimum number of observa-
tions that must exist in a node in order for a split to be
attempted was 30. The maximum depth of any node of the
final tree was 100. The value of the complexity parameter
(cp) was set as cp= 0.001. Any split that did not decrease
the overall lack of fit by a factor of cp was not attempted.
To reduce the variance of the resultingmodels and prevent
overfitting the data, the trees were then pruned by remov-
ing any split which did not improve the fit. The optimal
size of each tree was determined using cross-validation
using the cptable function, which selects the optimal
cp with lowest cross validation error. Pruning the tree was
done using the prune function of the rpart R package.

Random Forest Classification trees tend to overfit the
training dataset, which may lead to low bias, but high
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variance [25]. To remedy the issue of high variation in
classification trees, the results from multiple trees based
on bootstrap samples from the original data can be aggre-
gated, which are referred to as ensemble methods. A
common ensemblemethodwith trees is the random forest
(RF) approach [26], which is a bagging procedure to com-
bine multiple trees based on bootstrap samples from the
original data. One tree is built from each bootstrap sam-
ple by introducing recursive binary splits to the data. At
a given node, rather than considering all possible binary
splits on all candidate predictors, it only considers a ran-
dom sample of the candidate predictor variables to lower
the correlation between trees.
For this study, 1000 regression trees were grown, and

the size of the set of randomly selected predictor variables
used for determining each binary split was the square
root of the number of predictor variables (rounded down),
which is the default parameter value in the R package
randomForest [5]. In contrast to the classification tree,
trees of an RF are not pruned back.

Extreme Gradient Boosting Gradient boosting tree is
an ensemble method of classification trees by iteratively
refitting weak classifier to residuals of previous models,
meaning that the current weak classifier was generated
based on the previous one to optimize the predictive effi-
ciency [6, 7]. Extreme gradient boosting (XGBoost) is an
efficient implementation of the gradient boosting method
[27], which can learn nonlinear relations among input
variables and outcomes in a boosting ensemble manner
to capture and learn nonlinear and complex relations
accurately. Extreme gradient boosting can improve the
accuracy of a classification tree [12–15].
In this study, XGBoost was implemented using the

xgboost package in R, which automatically does paral-
lel computation on a single machine, and is thus more
computationally efficient than other gradient boosting
packages. Hyperparameter optimization was performed
to prevent overfitting of the model on the training data.
Due to computational and time constraints, hyperparam-
eter optimization was performed across a sparse param-
eter grid to determine the optimal combination of candi-
date hyperparameters, i.e., depth of the tree 1, 2, 3, 4, 5, 6,
shrinkage factor = 0.01, 0.02, 0.03, 0.04, 0.05, and the
maximum number of iterations= 500, 1000, 1500, 2000.

Predictive model assessment
Cross validation
Repeated Split-Sample Validation Repeated split-
sample validation [10] was used to compare the predictive
accuracy of each statistical method. The data were ran-
domly divided into 80% training and 20% testing datasets.
Each model was fit on the training dataset. Predictions
were then obtained in the testing dataset using the model

derived from the training dataset. This process was
repeated 200 times, i.e., each predictive model was fit
using the training dataset. The model was then used to
predict the mortality risk based on the testing dataset.
Results were then summarized over the 200 testing
datasets. Repeated split-sample validation assesses the
robustness of the results and is less likely to be impacted
by influential observations in only a few testing samples.

Forecasting Validation We also validated the models
based on the k-step-ahead predictions of the last k days of
the observation period, where k = 7, 8, · · · , 30. For each
of the k-step-ahead predictions, the training dataset was
all the data prior to the k days to be predicted. Each model
fit the training dataset, and predictions were obtained for
the last k days of the testing dataset.

Performancemeasures
Discrimination of the predictionmethod can bemeasured
by the area under the ROC curve (AUC) [28]. Higher
values of the AUC indicate better model discrimination.
AUC examines the ability of the method to distinguish
whether the patients who have the outcome have higher
risk predictions than those who do not, but does not
account for calibration, i.e., the magnitude of the disagree-
ment between the observed and predicted responses [28].
To quantify how close the predictions are to the actual
outcome, Brier’s score [28, 29] was used, which is defined
as, 1/n

∑n
i=1(π̂i − Yi)2, where π̂i is the predicted proba-

bility in the testing set, and Yi is the observed response
for the ith subject in the testing set. Lower Brier’s scores
indicate greater model accuracy. Performance was further
quantified using calibration measurement, which fits a
logistic regression to model the outcome variable against
the logit of the predicted probabilities as the independent
variable in the testing dataset. For a well calibrated predic-
tion model, the intercept of the calibration model should
be zero and the slope should be one. We also assessed
the models by graphically comparing the agreement of the
predicted versus observed probabilities over the range of
the predicted probabilities.

Results
Description of the study sample
The study sample includes n=49,216 COVID-19 positive
cases, of whom 1938 (3.9%) died from COVID-19. Com-
parison of the sample characteristics by patients’ mor-
tality status due to COVID-19 is reported in Table 1.
The neighborhood-level variables (population density and
average household income) and the daily mean tem-
peratures are continuous predictors, which may have a
nonlinear relationship with the COVID-19 mortality risk.
In Table 1, these variables were categorized into four
categories to describe their distributions in relation to
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Table 1 Characteristics of the study sample by COVID-19 mortality status

All Alive Died
P-value

n =49216 n =47278 n =1938

Age <0.001

19 and younger 5439 (11.1%) 5438 (100.0%) 1 (0.02%)

20 to 29 Years 9635 (19.6%) 9634 (100.0%) 1 (0.01%)

30 to 39 Years 7889 (16.0%) 7887 (100.0%) 2 (0.03%)

40 to 49 Years 6955 (14.1%) 6944 (99.8%) 11 (0.16%)

50 to 59 Years 7161 (14.6%) 7101 (99.2%) 60 (0.84%)

60 to 69 Years 4684 (9.52%) 4511 (96.3%) 173 (3.69%)

70 to 79 Years 2593 (5.27%) 2257 (87.0%) 336 (13.0%)

80 to 89 Years 2854 (5.80%) 2166 (75.9%) 688 (24.1%)

90 and older 2006 (4.08%) 1340 (66.8%) 666 (33.2%)

Gender 0.002

Female 25192 (51.2%) 24205 (96.1%) 987 (3.92%)

Male 23670 (48.1%) 22746 (96.1%) 924 (3.90%)

Unknown 354 (0.72%) 327 (92.4%) 27 (7.63%)

Ever Hospitalized <0.001

No 45604 (92.7%) 44663 (97.9%) 941 (2.06%)

Yes 3612 (7.34%) 2615 (72.4%) 997 (27.6%)

Ever in ICU <0.001

No 48500 (98.5%) 46853 (96.6%) 1647 (3.40%)

Yes 716 (1.45%) 425 (59.4%) 291 (40.6%)

Ever Intubated <0.001

No 48770 (99.1%) 47044 (96.5%) 1726 (3.54%)

Yes 446 (0.91%) 234 (52.5%) 212 (47.5%)

Population Density: <0.001

(1.04e+03,3.2e+03) 12461 (25.3%) 11893 (95.4%) 568 (4.56%)

(3.2e+03,4.89e+03) 12274 (24.9%) 11715 (95.4%) 559 (4.55%)

(4.89e+03,7.2e+03) 12889 (26.2%) 12470 (96.7%) 419 (3.25%)

(7.2e+03, 44.32e+03) 11592 (23.6%) 11200 (96.6%) 392 (3.38%)

Average Income: <0.001

(2.38e+04,2.75e+04) 12490 (25.4%) 12196 (97.6%) 294 (2.35%)

(2.75e+04,2.98e+04) 12964 (26.3%) 12446 (96.0%) 518 (4.00%)

(2.98e+04,3.79e+04) 11503 (23.4%) 10967 (95.3%) 536 (4.66%)

(3.79e+04, 19.34e+04) 12259 (24.9%) 11669 (95.2%) 590 (4.81%)

Daily Mean Temperature <0.001

(-8.9,-1.2) 1937 (3.94%) 1879 (97.0%) 58 (2.99%)

(-1.2,0.7) 3081 (6.26%) 2980 (96.7%) 101 (3.28%)

(0.7,8.4) 19772 (40.2%) 18672 (94.4%) 1100 (5.56%)

(8.4, 28.4) 24426 (49.6%) 23747 (97.2%) 679 (2.78%)
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COVID-19 mortality status; however, in the predictive
models, all these variables are modeled as continuous
predictors. The results presented in Table 1 show statisti-
cally significant differences in all the predictors between
COVID-19-infected individuals who died versus not.
We included two different sets of predictors in the

models. The first set included all individual and neighbor-
hood variables, and also variables describing hospital use
for COVID-19 conditions (ever hospitalized, ever in ICU
and ever intubated). Hospitalization, ICU use and intuba-
tiontare often intermediate outcomes between infection
andmortality, andmay interact with individual and neigh-
borhood variables in predicting mortality as a result of
differences in risk (e.g. due to health status and chronic
disease) and quality of care. The second set of predictors
included only individual and neighborhood variables, thus
omitting intermediate hospital outcomes as predictors of
mortality.

Comparison of predictive ability of predictive methods
Repeated Split-Sample validation
The predictive accuracy of the methods averaged over 200
repeated split samples are reported in Table 2. The results
indicate XGBoost yields the highest AUC at 0.9669 and
the lowest Brier’s score at 0.0251. The regression-based
methods (logistic, LASSO, and GAM) perform almost
equivalently well as XGBoost at only slightly lower AUCs
(0.9610 to 0.9622) and higher Brier’s scores (0.0261 to
0.0265). LDA results in a lower predictive accuracy with

AUC at 0.9559 and the highest Brier’s score at 0.0471.
Among the tree-based methods, the classification tree
yields the lowest AUC at 0.9450 and the highest Brier’s
score at 0.0271. RF provides an improvement over the
classification tree with a higher AUC value at 0.9552 and
a lower Brier’s score at 0.0270. However, both classifica-
tion tree and RF methods do not perform as well as the
XGBoost method. Excluding history of hospital use for
COVID-19 conditions as predictors results in worse pre-
dictive accuracy for all type of models. Nevertheless, the
relative performance of the methods is consistent with
the results when including hospital use as predictors. For
ease of comparison, the distributions of the AUC and
Brier’s test scores over the 200 repeated samples for all the
methods are displayed in Fig. 1.
In the calibration assessment (Table 2), XGBoost and

LASSO have a calibration intercept closest to zero and
calibration slope closest to one as compared to the other
methods. Logistic and GAM result in a slightly worse
calibration compared to XGBoost and LASSO. Of the
tree-based methods, RF has much worse calibration as
compared to the classification tree, and both are not com-
parable with the XGBoost method. LDA has the worst
performance in terms of calibration.
A graphical assessment of calibration presents pre-

dictions on the x-axis, and the outcome on the y-axis
[30]. Perfect predictions are on the 45-degree line. Fur-
ther, examining calibration at various levels of predictive
probability provides additional insights of the agreement

Table 2 Comparison of model performance in terms of AUC, Brier’s score, calibration intercept and calibration slope averaged over the
200 testing samples in the repeated split-sample validation

Methods
Predictive Accuracy Calibration

AUC Brier Intercept Slope

Including Hospital Use Variables

logistic 0.9610 0.0265 -0.0303 0.9827

LASSO 0.9622 0.0261 -0.0109 0.9958

GAM 0.9620 0.0262 -0.0620 0.9592

LDA 0.9559 0.0471 -1.6859 0.3630

Tree 0.9450 0.0271 -0.0893 0.9378

RF 0.9552 0.0270 -0.2993 0.5798

XGBoost 0.9669 0.0251 0.0464 1.0287

Excluding Hospital Use Variables

logistic 0.9423 0.0296 -0.0179 0.9879

LASSO 0.9424 0.0295 0.0145 1.0087

GAM 0.9425 0.0295 -0.0474 0.9692

LDA 0.9348 0.0536 -1.6425 0.4178

Tree 0.9276 0.0299 -0.0463 0.9697

RF 0.9190 0.0317 -0.7027 0.4783

XGBoost 0.9461 0.0288 0.0235 1.0090
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Fig. 1 AUC (left panels) and Brier’s score (right panels) over the 200 testing samples of the repeated split sample validation for the methods
including all the considered predictors (top panels) and excluding hospital use variables (ever hospitalized, ever ICU use and ever intubated) for
COVID-19 as predictors (bottom panels)

between predicted and observed mortality risk. Ideally, a
calibration measure would compare the predicted proba-
bility with the true probability for each individual, but the
measurement of actual probability for a single individual
is challenging. Forming groups of individuals and calcu-
lating the proportion of positive outcomes is an approach
to calculating the observed or true probability of an event
or outcome, which is the central idea of the Hosmer-
Lemeshow (H-L) test [31]. There are two popular ways
of grouping individuals: (1) group using deciles of pre-
dicted probability, and (2) group using equal intervals
according to the predicted probability. We adopted the
latter grouping method to graphically demonstrate the
calibration of the predictive methods at various levels of
predictive probability. This is achieved by splitting the
individuals into 10 equally spaced groups between 0 and
1 according to their predicted probabilities of COVID-19
mortality. Model calibration can then be assessed graphi-
cally by plotting themean predicted versus observed event
rates for the 10 groups, thus providing information on the

direction or magnitude of miscalibration [30]. The results
are presented in Figs. 2 and 3 for the case with and with-
out history of hospital use for COVID-19, respectively.
The graphs reveal that the points in the lower risk inter-
vals are closer to the 45-degree diagonal line. By contrast,
the points in the higher risk intervals are more dispersed,
which can be explained by the fact that very few patients
had predicted risk above 0.8 and the prediction above this
threshold appears to be less well-calibrated. Most of the
methods suffer from the over-prediction of risk in the
high-risk groups. XGBoost appears to provide better cal-
ibration with points more closely distributed around the
45-degree diagonal line across the groups. When hospital
use for COVID-19 variables are not included as predic-
tors, the predicted probabilities are mostly below 0.8, as
shown in Fig. 3. This indicates the distributions of pre-
dicted risk of mortality are less spread out compared to
models that omit hospital use variables as predictors.
A better discriminating model has more dispersed pre-

dictive probabilities than a poorly discriminating model.
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Fig. 2Mean predicted probability versus the observed event rate over 10 predicted probability groups between 0 and 1 at an increment of 0.1 for
the scenario with hospital use for COVID-19 predictors. The black line at 45 degree represents a line of perfect calibration. The grey lines are the
linear regression lines for modelling the observed event rate against the mean predicted probabilities over the 10 groups as predictor
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Fig. 3Mean predicted probability versus the observed event rate over 10 predicted probability groups between 0 and 1 at an increment of 0.1 for
the scenario without hospital use for COVID-19 as predictors. The black line at 45 degree represents a line of perfect calibration. The grey lines are
the linear regression lines for modelling the observed event rate against the mean predicted probabilities over the 10 groups as predictor
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Therefore, the distributions of the predicted mortality
probability based on a random sample of the 200 repeated
split samples for all the methods are displayed in Fig. 4.
The distribution of the predicted mortality probability
based on all the repeated split samples yielded very sim-
ilar results, so only one random sample is presented for
simplicity of illustration. The distributions of the predic-
tive mortality probability are highly right-skewed, so the
predicted probabilities below 0.2 are suppressed for bet-
ter visualization of the higher predictive risk. As shown in
Fig. 4, all of the predictive methods with hospital use vari-
ables as predictors, except for LDA method, had longer
right tails in the predicted mortality probability compared
to the counterpart models that omit hospital use variables
as predictors. Therefore, it is expected that the methods
including hospital use variables as predictors have better
discrimination and calibration performance compared to
the methods omitting hospital use variables as predictors.

Evaluating differences in the importance of predictors
provides additional insight into model differences. The
importance of predictors in order of significance with and
without history of hospital use for COVID-19 variables
are presented in Fig. 5. Predictors with the largest influ-
ence varied considerably between the different methods.
For the XGBoost method, age is the strongest predic-
tor, followed by reporting time. Of history of hospital
use variables, ever in hospital is the strongest predic-
tor. The neighborhood-level factors (population density
and average income) and temperature, also contribute to
the prediction. Gender has the least contribution to the
prediction.

Forecasting validation
The predictive accuracy of all methods for predicting daily
COVID-19 mortality risk over the last 7 to 30 days of the
observational period is reported in Table 3. Notably, com-

Fig. 4 Density plots of the predicted mortality probability based on a random sample of the 200 repeated split samples. The distributions of the
predictive mortality probability are highly right-skewed, so the predicted probabilities below 0.2 are suppressed for better visualization of the higher
predictive risk
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Fig. 5 Variable importance in the prediction of COVID-19 mortality risk with (top panels) and without (bottom panels) hospital use for COVID-19
predictors using the R package vip. From left to right, the panels are for Logistic, LASSO, Tree, RF and XGBoost, respectively

pared to repeated split-sample validation, the predictive
accuracy of all the methods for forecasting, as measured
by AUC, tends to be higher. XGBoost yields the highest
AUC of 0.9866 and the lowest Brier’s score of 0.0091. The
regression-based methods (logistic, LASSO and GAM)
again perform nearly equivalently well as the XGBoost
method with AUC ranging from 0.9819 to 0.9842 and

Brier’s score ranging from 0.0094 to 0.0096, with LASSO
being the method most comparable to XGBoost. Among
the tree-based methods, the classification tree results in
the lowest AUC value at 0.9781 and highest Brier’s score
at 0.0098. RF improved over the classification tree with
a higher AUC at 0.9808 and a lower Brier’s score at
0.0096. Despite the higher AUC values for forecasting

Table 3 Comparison of model performance in terms of AUC, Brier’s score, calibration intercept and slope averaged over the last 7 to
30 days at the end of the observational period in the forecasting validation

Methods
Predictive Accuracy Calibration

AUC Brier Intercept Slope

Including hospital use variables

logistic 0.9819 0.0094 0.1031 1.2468

LASSO 0.9842 0.0096 -0.2558 1.1376

GAM 0.9823 0.0095 0.4267 1.2265

LDA 0.9849 0.0172 -2.1364 0.5276

Tree 0.9781 0.0098 -0.1898 1.0332

RF 0.9808 0.0096 -0.2993 0.5798

XGBoost 0.9866 0.0091 0.4799 1.2934

Excluding hospital use variables

logistic 0.9472 0.0121 0.0712 1.0800

LASSO 0.9453 0.0121 -0.1516 0.9540

GAM 0.9473 0.0121 0.1983 1.0987

LDA 0.9331 0.0185 -1.5685 0.5427

Tree 0.9133 0.0124 -0.2133 1.0171

RF 0.9229 0.0130 -1.0875 0.6017

XGBoost 0.9487 0.0123 0.1079 1.0421
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CV compared to repeated-split sample CV, the calibra-
tion for forecasting CV tends to be poorer compared to
repeated-split sample CV.
The predictive ability of the methods for forecasting

mortality risk for the last 7 to 30 days at the end of the
observational period is displayed graphically in Fig. 6.
The results indicate that the accuracy of all the meth-
ods tends to decrease as the number of forecast days
increases. XGBoost consistently outperforms the other
methods over the forecasting time window. Interestingly,
the superior performance of XGBoost over the regression-
based methods in terms of AUC is more substantial in the
scenario when the history of hospital use predictors are
included, compared to the scenario when they are omit-
ted. This indicates the hospital use predictors may have
complex interactive effects with the rest of the predic-
tors for predicting the mortality risk. By contrast, in the
scenario omitting hospital use predictors, logistic regres-
sion performs equivalently to XGBoost. In this case with
only a few predictors being considered, the advantage of
XGBoost to identify complex relationships between input
variables and the outcomes is less pronounced.

Discussion
This article compared regression and tree-based machine
learning methods for predicting COVID-19 mortality risk
in Toronto, Canada. This investigation demonstrates that
predictive models based on machine learning methods,
applied to available data, can provide important insights
to inform resource planning for health care services to
address the burden of the COVID-19 pandemic.
Our findings revealed that using machine learning

methods to data employing a few easily accessible predic-
tor variables, including age, hospital use for COVID-19,
episode date, gender, and neighborhood demographic and
economic characteristics, it is possible to predict the risk
of COVID-19 mortality with a high degree of predictive
power. Our findings also provide insight into the best
choice of machine learning methods to use.We found that
XGBoost outperforms the conventional regression tree
methods, probably because it is a regularized model for-
malization to control over-fitting. We fit three separate
logistic regression models: main effect only, GAM and
LASSO. The LASSO’s predictive performance is slightly
better than the main effect only method, which indicates

Fig. 6 AUC and Brier’s score for forecasting validation based on the k-steps-ahead prediction of the last k days of the observation period
k = 7, 8, · · · , 30. The top and bottom panels are based on the methods including (top panels) and excluding (bottom panels) hospital use (ever
hospitalized, ever ICU and ever intubated related to COVID-19) as predictors, respectively
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interactions among some predictors may exist. Compared
to the logistic regression, GAMyielded an almost identical
model fit, which implies that assuming linear relationships
between input variables and the outcomes might be ade-
quate in this study. However, note that we did not include
two-way interactions in the GAM method due to model
fitting complexity. For this reason, concluding the appro-
priateness of the linearity assumption may be premature.
In this study, we only considered a few predictors. As the
number of correlated and interactive predictors increases,
LASSO would likely outperform the other regression-
based methods. When non-linear covariates effects are
pronounced, GAM is expected to outperform the conven-
tional logistic regression methods. LDA resulted in the
worst predictive accuracy in this study, which indicates
the assumptions of LDA do not hold (i.e., Predictors in this
study are likely not drawn from a Gaussian distribution
with a common covariance matrix in each class).
There are limitations to this study that merit discus-

sion. One major limitation of this study is the unavail-
ability of data on clinical characteristics of patients, such
as co-morbidities. Recent research has identified certain
chronic health conditions risk factors (e.g. obesity) as
strong predictors of prognosis and severity of progression
for COVID-19 [32]. These crucial pieces of information
are not readily available in publicly accessible data, but
could be obtained from administrative health databases.
Another potential limitation is the inclusion hospitaliza-
tion, ICU use, and intubation for COVID-19 as predictors.
While they are clearly important predictors, the interpre-
tation of these predictors and the policy implications of
including them in models need to be considered. They
may be proxies for patients’ underlying health status, or
proxies for access to and quality of care. They are also
intermediate health outcomes prior to most COVID-19
deaths. Another limitation is that we did not consider
support vector machine techniques or neural networks
[25], which could be alternative approaches for predicting
COVID-19 mortality risk.
Despite the limitations, our findings revealed that by

focusing on a few easily accessible variables, including
age, past hospital use for COVID-19, episode date, gender,
and neighborhood demographic and economic character-
istics, it is possible to predict the risk of mortality with
high predictive power in the studied population.

Conclusion
The study demonstrates that the high predictive accu-
racy for COVID-19 mortality risk can be achieved based
on publicly available data in the studied population. This
study provided a careful assessment of the predictive
accuracy of the regression and tree-based machine learn-
ing methods for predicting COVID-19 mortality risk
among confirmed cases in the study region. Although the

prediction model established in our study included only
a few easily accessible variables, XGBoost and LR-based
methods have high predictive power with XGBoost result-
ing in slightly better performance. This type of data-driven
risk prediction may assist health resource planning for
COVID-19.
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