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Abstract
We applied a queuing model to inform ventilator capacity planning during the first wave of the COVID-19 epidemic in the
province of British Columbia (BC), Canada. The core of our framework is a multi-class Erlang loss model that represents
ventilator use by both COVID-19 and non-COVID-19 patients. Input for the model includes COVID-19 case projections,
and our analysis incorporates projections with different levels of transmission due to public health measures and social
distancing. We incorporated data from the BC Intensive Care Unit Database to calibrate and validate the model. Using
discrete event simulation, we projected ventilator access, including when capacity would be reached and how many patients
would be unable to access a ventilator. Simulation results were compared with three numerical approximation methods,
namely pointwise stationary approximation, modified offered load, and fixed point approximation. Using this comparison,
we developed a hybrid optimization approach to efficiently identify required ventilator capacity to meet access targets.
Model projections demonstrate that public health measures and social distancing potentially averted up to 50 deaths per day
in BC, by ensuring that ventilator capacity was not reached during the first wave of COVID-19. Without these measures,
an additional 173 ventilators would have been required to ensure that at least 95% of patients can access a ventilator
immediately. Our model enables policy makers to estimate critical care utilization based on epidemic projections with
different transmission levels, thereby providing a tool to quantify the interplay between public health measures, necessary
critical care resources, and patient access indicators.

Keywords COVID-19 · Critical care · Ventilator capacity planning · Erlang loss model · Discrete event simulation ·
Fixed point approximation

Highlights

• We applied a queuing model to inform ventilator
management at a provincial level in British Columbia,
Canada, during the first wave of COVID-19 in March
and April 2020. Our analysis addresses patient-centred
access indicators.
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• We used simulation to evaluate the accuracy of three
numerical approximation methods to project ventilator
model access; to our knowledge, this study is the first
evaluation of these methods under rapidly growing
epidemic demand.
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patient access targets using simulation.
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1 Introduction

The World Health Organization declared COVID-19 a
global pandemic on March 11th, 2020 [14]. Severe
COVID-19 cases may involve critical conditions including
respiratory failure, which requires mechanical ventilation
for survival [52]. However, hospitals have a limited number
of ventilators, which also need to be used by patients
with medical and surgical conditions unrelated to COVID-
19. The potential surge in intensive care unit (ICU) and
ventilator demand due to the pandemic heightens the
importance of strategic medical resource management.

The importance of mathematical modeling to project
critical care resource demand and capacity requirements
during the COVID-19 pandemic is widely recognized [5,
15, 63]. Mathematical models of disease transmission
are used to predict COVID-19 case counts [30, 36,
58, 62]. Nevertheless, additional modeling is needed to
project medical resource utilization and inform operational
decisions [15]. One approach to estimate ICU use is to
scale predicted case counts by the projected proportion
of cases admitted to the ICU [16, 58]. However, critical
care resource utilization also depends on non-COVID-19
demand, resource use time, available capacity, and the delay
from COVID-19 symptom onset to critical care. Queuing
models can provide an accurate way to project resource
utilization by incorporating these stochastic inputs [15].

We applied a multi-class Erlang loss queuing model
to inform ventilator management at a provincial level in
British Columbia (BC), Canada, during the first wave of
COVID-19 in March and April 2020. Our work provides
a real-world case study for epidemic capacity planning
using Erlang loss models. We used local critical care
data from the BC ICU Database to calibrate and validate
the model, and incorporated COVID-19 case projections
provided by the BC Centre for Disease Control (BCCDC).
Model projections capture the interaction between ventilator
capacity and patient access. Capacity optimization in the
model identifies the number of ventilators required to meet
access targets. Model analysis under epidemic scenarios
with different transmission levels demonstrates the impact
of public health measures and social distancing on ventilator
access.

To project ventilator access, we simulated the model
using discrete event simulation (DES). We compared
three numerical techniques with the simulation results,
specifically: pointwise stationary approximation (PSA),
modified offered load (MOL) approximation, and fixed
point approximation (FPA). To our knowledge, no other
studies apply and compare the accuracy of these techniques
under the rapid growth of epidemic-type demand, and this
represents another contribution of our work.

To inform capacity planning, we identified the number
of ventilators required to meet access targets in the
model. Loss model performance indicators can capture
patient-centred outcomes and limited access to healthcare
resources due to capacity constraints. Epidemic-type
demand can pose challenges for loss model capacity
optimization. Approximations which rely on steady-state
formulae may be inaccurate under rapidly changing
demand. Furthermore, simulation-based optimization can
be especially computationally intensive for queuing models
under heavy offered load. To address these challenges,
we developed a hybrid capacity optimization approach by
combining a simulation-based search procedure with our
comparative analysis of PSA, MOL, and FPA. Our hybrid
method offers an accurate and computationally efficient
approach to epidemic loss model capacity planning. To our
knowledge, no other studies use loss model access targets
for capacity optimization in epidemic scenarios.

Relevant literature is reviewed in Section 2. The
ventilator queuing model is described in Section 3.
Model analysis is detailed in Section 4, including access
projections and capacity optimization. Section 5 describes
BC specific model calibration and epidemic projections,
which were used to produce the results presented in
Section 6. Lastly, the significance of our results is discussed
in Section 7.

2 Literature Review

Queuing models play an important role in medical resource
and ICU management [7, 12, 13]. The life-threatening
conditions faced by many ICU patients motivate the use
of Erlang loss models or infinite server models. In loss
models, arriving patients are either seen immediately, or are
lost to the model if resources are unavailable. In infinite
server models, patients are always seen immediately and no
capacity limits are incorporated. In both models, patients do
not wait for service.

Under non-epidemic conditions, McManus et al. [45]
and Julio et al. [37] compared loss model results with
historical ICU data and found that they accurately predicted
transfer rates. Generalized loss models have been used to
determine the required number of ICU beds [43, 53, 64],
hospital ward beds [8, 11], and neonatal cots [4]. These
studies optimize capacity based on steady-state formulae
[4, 11], linear simulation searches [53, 64] or MOL [8].
Although Bekker and de Bruin [8] analyzed the impact of
cyclic patterns in arrival rates, none of these studies consider
epidemic growth in arrival rates.

Queuing models can also be used to determine the surge
capacity required to meet epidemic or mass causality event
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demand [39, 42]. Both loss and infinite server queuing
models have been used to inform critical care management
in response to the COVID-19 pandemic [1, 6, 9, 21, 46, 49,
54, 56, 61]. Infinite server models can capture the stochastic
interplay between admissions and length of stay, yielding
time-dependent utilization curves that are independent of
capacity limits [49]. The probability of excessive utilization
can be measured through simulation [21, 54, 56] or exact
formulae [6, 9]. However, infinite server models are unable
to fully capture performance indicators based on patient
access, because these models do not incorporate the impact
of finite capacity. On the other hand, loss models have
a finite number of servers and are able to explore the
stochastic relationships between capacity, utilization, and
patient-centred access indicators [1, 61]. To our knowledge,
loss models have not been used for epidemic capacity
optimization.

Time-dependent loss model performance measures can
be accurately evaluated using DES. However, this approach
is computationally intensive, and a number of numerical
approximation methods have been developed [2, 60]. For
phase-type service distributions, loss model performance
measures can be expressed exactly in terms of the Chapman-
Kolmogorov equations [17]. However, solving this system
of ordinary differential equations (ODEs) can also be compu-
tationally intensive as the system size grows [33]. Approxi-
mate ODE solutions include closure approximation [2, 28],
Gram-Charlier series expansion [51], and time-dependent
perturbation theory [55]. Alternatively, another branch of
loss model approximations apply steady-state properties in
strategic ways to approximate time-dependent results. In
the pointwise stationary approximation (PSA) [22, 24] and
its extensions [25, 26], steady-state formulae are applied
directly to the time-dependent arrival rate. In the stationary-
peakedness approximation, steady-state results are instead
applied to an associated non-Poisson model in each time
interval [44]. In the modified offered load (MOL) approx-
imation, steady-state results are applied to an offered load
given by the expected number of busy servers in an asso-
ciated infinite server queue [20, 24, 34, 35, 44]. In the
fixed point approximation (FPA), time-dependent results
and steady-state relationships are applied in an iterative
algorithm [3, 33]. Of the above approximation techniques,
the three that have existing extensions to general ser-
vice time distributions and multiple customer classes are
PSA, MOL, and FPA. Published numerical comparison of
these methods focus on test cases with sinusoidal arrival
rates [3, 17, 20, 22–26, 33, 35]; to our knowledge, no
other studies evaluate the accuracy of these methods under
epidemic-type growth in demand.

Loss model approximation techniques can be used to
identify time-dependent staffing levels required to meet or
stabilize loss probability targets, which is often referred to

as stabilization. PSA can be applied to determine staffing
requirements independently in each time interval, which is
termed the stationary independent period by period (SIPP)
approach [24, 27]. MOL can be combined with approx-
imate staffing formulas, such as the square root staffing
rule [29], to efficiently identify time-dependent staffing
requirements [20, 24, 35]. More sophisticated staffing
approaches draw on iterative evaluation of performance
measures [18, 20, 32]. Li et al. [41] investigate how to achieve
a stable loss probability during abrupt staffing changes.
Ventilator capacity management differs from the stabiliza-
tion problem, because the number of ventilators is not easily
changed. Our goal is to determine the number of ventilators
required to meet a target loss probability at the epidemic
wave peak, rather than stabilize the loss probability over the
epidemic curve. Nonetheless, the approximation methods
developed for the stabilization problem can be used to esti-
mate the peak loss probability, and this study investigates
the accuracy of these methods under epidemic scenarios.

3 QueuingModel

We modeled pandemic ventilator utilization by applying
a two-stage queuing system. The core of this system is
a multi-class Erlang loss model, which captures ventilator
use by COVID-19 and multiple types of non-COVID-19
patients. Additionally, for COVID-19 patients who require
mechanical ventilation, an initial delay model represents the
time from symptom onset to the need for ventilation. The
complete queuing system for COVID-19 and non-COVID-
19 patients is depicted in Fig. 1.

The ventilator use model is a multi-class ./G/c/c Erlang
loss model with a limited supply of c ventilators that is
shared between K + 1 groups of patients. It considers both
COVID-19 patients (group 1) as well as K different types
of non-COVID-19 patients (groups 2 through K + 1). Each
patient requires one ventilator, and if all c ventilators are in
use, then arriving patients are lost to the system. The use
of a loss model for ventilator access is motivated by the
life-threatening nature of respiratory failure. Patients who
need a mechanical ventilator for life support are not able
to wait until one becomes available. When this model is
applied to an individual hospital, patients unable to access a
ventilator may be transferred to a different hospital. When
it is applied at a multi-hospital or provincial level, loss
may indicate mortality. Modeling the provincial ventilator
supply as a single resource pool assumes that the critical
care transfer service is able to work efficiently, even under
pandemic demand.

The subdivision of non-COVID-19 demand into K

groups is based on preliminary data analysis and expert
opinion that patient indicators affect the distribution of
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Fig. 1 Diagram of a two-stage
queuing system for ventilator
use by COVID-19 and
non-COVID-19 patients
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ventilation time. In our analysis, we considered demand
categories based on the diagnoses of viral pneumonia (VP)
and acute respiratory distress syndrome (ARDS). Future
work could consider other characteristics, such as surgical
status, trauma, and age category.

Each of the K + 1 patient groups has a potentially
different general distribution for time spent on a mechanical
ventilator, as well as a different arrival process for ventilator
need. We define [K + 1] as the set of integers 1 through
K + 1 representing patient groups. We denote the CDF
of each ventilation time distribution as Gk , with mean
1/μk , for all k in [K + 1]. In the model, non-COVID-19
patients require a ventilator based on non-homogeneous
Poisson processes with arrival rate λk(t) at time t , for all
k ∈ 2, ..., K + 1. Time-dependency in the arrival rates can
capture seasonal patterns in ventilator demand, as well as
a reduction in elective surgeries in response to COVID-19.
For COVID-19 patients needing mechanical ventilation, the
effective ventilator demand is the output of the symptom
delay model.

Epidemic case projections are translated into ventilator
demand using an Mt/G/∞ queuing model to represent
symptom delay. This infinite server model does not cor-
respond to utilization of any physical resource; it simply
implements a stochastic delay from the onset of COVID-19
to the presentation of severe symptoms requiring mechan-
ical ventilation. The arrival process for this model is a
non-homogeneous Poisson process with rate λ0(t) at time
t , which we base on scaled localized COVID-19 case pro-
jections. The output process of the symptom delay model is
a non-homogeneous Poisson process, with rate λ1 given by
the convolution [19],

λ1(t) =
∫ ∞

0
λ0(t − s)g0(s)ds , (1)

where g0 is the symptom delay PDF. In other words,
ventilator demand is a weighted average of past case rates,

scaled by the proportion of critical cases and weighted by
the symptom delay PDF.

A key system performance measure is the loss probability
at any time t , denoted by βc(t). This represents the
probability of a patient being unable to access mechanical
ventilation, given that they need a ventilator at time t . Other
system quantities of interest include the time-dependent
expected number of ventilators in use and offered load,
denoted by m(t) and a(t) respectively. The patient group
specific version of these quantities are denoted bymk(t) and
ak(t), for all k in [K+1]; however, the loss probability βc(t)

is the same for each patient group. To our knowledge, there
are no exact analytical formulas for βc(t) and mk(t).

4Model Analysis

Our queuing model analysis focuses on addressing two
practical ventilator management questions. Firstly, we pro-
jected ventilator access in the model based on epidemic
forecasts. These projections determine whether the ventila-
tor supply is sufficient, when capacity would be reached,
and the rate of patients unable to access a ventilator.
Comparing projections under multiple epidemic scenar-
ios can link public health measures to ventilator access.
Subsection 4.1 describes the four methods that we applied
and compared for projecting ventilator access, namely: dis-
crete event simulation (DES), pointwise stationary approxi-
mation (PSA), modified offered load approximation (MOL)
and fixed point approximation (FPA). Secondly, we opti-
mized ventilator capacity by identifying the minimum num-
ber of ventilators required to keep the loss probability under
5%, over the course of a projected epidemic scenario. This
optimization problem identifies a single peak requirement,
since this is sufficient to inform planning. Unlike staffing,
which can fluctuate to address demand, ventilator capac-
ity does not vary day to day. Subsection 4.2 describes our
hybrid approach to capacity optimization that draws on the
numerical approximations in Subsection 4.1.
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4.1 Projecting Ventilator Access

We applied and compared four methods for approximating
ventilator access in the model. DES is an accurate esti-
mator of time-dependent system performance in queuing
models and it is often used for analysis or benchmarking
of intractable models. However, simulation can be compu-
tationally intensive, especially under heavy offered load.
On the other hand, the numerical approximations PSA,
MOL, and FPA are all computationally efficient, albeit
with less accuracy. PSA is typically inaccurate when arrival
rates change rapidly relative to service times [22, 23].
Although MOL is often more accurate than PSA, it has
declining accuracy for higher loss probabilities [44]. FPA
has demonstrated high accuracy in published test cases
[3, 33]. Previous numerical comparisons of these methods
have solely used sinusoidal test cases [3, 17, 20, 22–26,
33, 35] and not epidemic arrival rate functions. Subsub-
section 4.1.1 describes our DES implementation, which we
use as a benchmark for three other numerical procedures.
Our applications of PSA, MOL, and FPA are described in
Subsubsections 4.1.2, 4.1.3, and 4.1.4, respectively.

4.1.1 Discrete event simulation

We built a DES simulation of the queuing model using
the AnyLogic modeling software. The simulation has two
source nodes, one for COVID-19 and one for combined
non-COVID-19 patient streams. Each source node generates
patients according to separate non-homogeneous Poisson
processes, which are each obtained by thinning a homoge-
neous Poisson process with a time-dependent probability
of acceptance. Generated non-COVID-19 patients are then
randomly assigned into groups based on time-dependent
mixing probabilities. Generated COVID-19 patients face an
additional stochastic symptom delay prior to ventilator use.
A single service block combines ventilator use for all patient
types. Simulated patients will use any available ventilator,
with a service time that is generated randomly from a dis-
tribution based on patient group. If all ventilators are in use,
then arriving patients will leave the model without returning
or affecting future ventilator use.

At regular time intervals, the DES model measures the
number of ventilators being used and whether capacity
has been reached. Averaging these measurements across
multiple simulation runs yields time-dependent estimates
m̂DES(t) and β̂DES

c (t) for the expected ventilator use and loss
probability, respectively, at each sampled time t . Confidence
intervals and interquartile ranges were also calculated for
these estimates.

4.1.2 Pointwise stationary approximation
and steady-state formulae

The PSA approach obtains proximate expressions for time-
dependent properties by substituting the time-dependent
arrival rate into steady-state formulae [2, 22] at each
time point. PSA assumes that the system reaches a
new equilibrium value instantaneously as the arrival
rate changes, and does not incorporate the impact of
past arrivals. Some extensions try to mitigate this by
incorporating a lag in arrival rate substitution [25, 26].
While this approximation is computationally efficient, it
is known to be over-responsive and have limited accuracy
in scenarios with arrival rates that change rapidly relative
to service times [22–24]. We applied PSA by substituting
estimated ventilator arrival rates into steady-state formulae
for our multi-class loss model.

If the arrival rate were time-independent, then the loss
model would have an equilibrium state with constant loss
probability. Even though ventilation time is generally dis-
tributed, Takács [57] proved that general service time loss
models have the same steady-state distribution as expo-
nential service time loss models, under time-independent
arrivals. Furthermore, Kaufman [38] proved that this prop-
erty of insensitivity to service time distribution also extends
to multi-class loss models. The steady-state loss probability,
β is given by Erlang’s B formula,

β = B (c, a) = ac/c!
c∑

j=0
aj /j !

, (2)

where c is the number of ventilators and a is the constant
total offered load. Erlang’s B formula is an increasing
function of a and a decreasing function of c. For ease of
calculation, B(c, a) has an equivalent recursive expression
[47]

B (c + 1, a)−1 = 1 + c + 1

a
B (c, a)−1 . (3)

The total offered load a is given by the sum of the constant
offered load for each group,

a =
K+1∑
k=1

ak

ak = λk

μk

, ∀k ∈ [K + 1] . (4)
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The steady-state expected number of busy ventilators for
patient group k is given by

mk = ak (1 − β) , (5)

and the total over patient groups is

m =
K+1∑
k=1

mk = a (1 − β) . (6)

Applying Eq. 2, the PSA proximate loss probability
β̂PSA

c (t) of the ventilator model, with PSA time-dependent
offered load âPSA(t), is given by

β̂PSA
c (t) = B

(
c, âPSA(t)

)
. (7)

Furthermore, the PSA estimate for the expected number of
busy servers is

m̂PSA(t) = âPSA(t)
(
1 − β̂PSA

c (t)
)
. (8)

In a multi-class loss model, the PSA time-dependent offered
load is not dependent on c, and given by

âPSA(t) =
(

K+1∑
k=1

λk(t)

μk

)
. (9)

4.1.3 Modified offered load

In the MOL approach, time-dependent offered load is
approximated by utilization in a corresponding system
without capacity limits [20, 34, 35, 44]. In this infinite
server system, the expected number of busy servers,
denoted by m∞(t), incorporates the interplay between
past arrivals and service times [17]. Substituting this
offered load estimate into steady-state formulae provides an
approximation for finite system performance measures.

TheMOL estimates for offered load, loss probability, and
the expected number of ventilators in use are

âMOL(t) = m∞(t) , (10)

β̂MOL
c (t) = B

(
c, âMOL(t)

)
, and (11)

m̂MOL(t) = âMOL(t)
(
1 − β̂MOL

c (t)
)

, (12)

respectively. Erlang’s B formula B (c, a) is given by Eqs. 2
and 3. Here m∞(t) is a sum over patient groups,

m∞(t) =
K+1∑
k=1

m∞
k (t) , (13)

where m∞
k (t) is the expected number of ventilators in use

by patients of group k in an infinite server system. Without
capacity limits, there is no patient interaction, thus each
m∞

k (t) is individually given by the convolution [19],

m∞
k (t) =

∫ t

−∞
λk(u)

(
1 − Gk(t − u)

)
du . (14)

4.1.4 Fixed point approximation

The FPA approach iteratively estimates performance mea-
sures at several fixed points in time [3, 33]. Iterative esti-
mates of the time-series for loss probability, utilization,
and offered load are sequentially updated, until consecutive
changes are insubstantial. Each iteration refines estimates
of these performance measures using both steady-state and
time-dependent relationships. By starting with an initial loss
probability of zero, the FPA algorithm begins with MOL
values and iteratively improves estimates to incorporate the
impact of finite server capacity [3, 33].

We applied the multi-class FPA algorithm described
by Izady and Worthington [33] to our loss model. For
each iteration i, the loss estimate is denoted β̂i

c(t).
The corresponding estimate for the expected number of
ventilators in use is given by

m̂i
k(t) =

∫ t

−∞
λk(u)

(
1 − β̂i

c(u)
) (

1 − Gk(t − u)
)

du , (15)

for all k in [K + 1]. Iterative offered load is estimated using
the steady-state relationship in Eq. 5, which gives

âi
k(t) = m̂i

k(t)

1 − β̂i
c(t)

, ∀k ∈ [K + 1] . (16)

The sum of offered load estimates is substituted into
Erlang’s B formula Eq. 2 or Eq. 3, to yield a subsequent
estimate of loss probability,

β̂i+1
c (t) = B

(
c,

K+1∑
k=1

âi
k(t)

)
. (17)

The FPA algorithm repeats the three steps given by
Eqs. 15, 16, and Eq. 17 in each iteration, until sequential
loss probability estimates are within a set tolerance of each
other. The FPA approach uses regularly spaced time points
and numerical integration in Eq. 15 must be based on fixed
and regular time points.

4.2 Optimizing Ventilator Capacity

To address ventilator capacity planning, we determined
the minimum number of ventilators required to maintain
modeled loss probability under target α over the time
planning horizon T , which ensures 100(1 − α)% access.
This capacity optimization problem can be formulated as

minimize c

subject to max
t∈T

βc(t) ≤ α

c ∈ N

. (18)

Maximum modeled loss probability is a strictly decreasing
and non-linear function of the number of ventilators c. This
response function can be approximated by the methods
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described in Subsection 4.1, namely DES, PSA, MOL,
and FPA, which give the estimates β̂DES

c (t), β̂PSA
c (t),

β̂MOL
c (t), and β̂FPA

c (t), respectively. Substituting each of
these estimates into problem Eq. 18 provides proximate
capacity requirements.

Simulation is the most accurate of these methods to
estimate the response function; however, solving the opti-
mization problem Eq. 18 using DES can be computationally
intensive. On the other hand, the three approximation meth-
ods PSA, MOL, and FPA are computationally efficient, but
may be inaccurate. We compared three proximate capac-
ity requirements—obtained by substituting PSA, MOL, and
FPA estimates into problem Eq. 18—with the DES solution.
To boost the efficiency of our DES search, we developed a
hybrid optimization approach with a strategic starting point
informed by our comparison of approximation methods to
project access under the current ventilator supply.

To approximately solve problem Eq. 18 using PSA,
MOL, and FPA, we simply performed deterministic linear
searches, by increasing the ventilator capacity until each
loss estimate max

t∈R
β̂c(t) is under α. This straightforward

approach sufficed because of the computational efficiency
of these approximation methods.

To solve the optimization problem Eq. 18 using DES
estimation for the response function, we applied a modified
response surface methodology (RSM) search procedure
to incorporate the stochasticity in β̂DES

c (t). Our response
function is only defined on natural number capacities;
consequently, multi-point root-finding procedures are more
suitable than single-point methods, which rely on derivative
proxies [50]. The RSM framework typically uses first
and second-order approximations of a sampled response
function to guide an optimization search [40, 48]. We
modified the RSM framework in Nicolai and Dekker [48]
for stochastic root finding. Our adapted procedure is guided
by second-order approximations of the response function, to
account for non-linear and asymptotic behavior as capacity
grows. In each iteration, the algorithm identifies a root with
α of a second order approximation. This intersection point
is used as a subsequent solution estimate, which becomes
the centre-point for re-approximating the response function.
The algorithm is repeated until desired convergence in
centre-points is achieved.

In our application, we determined an initial centre-point
for RSM using a proximate required capacity, obtained from
the numerical approximation method which best projected
current capacity outcomes. We ended the algorithm at a
change of 5 ventilators, and plotted the loss probability for
the ten capacity values surrounding the final centre-point. A
graphical representation enables further interpretation of our
results by decision makers, and illustrates the sensitivity of
loss probability to the number of ventilators. The Appendix

discusses the algorithmic details of our modified RSM and
linear search approach.

5 Data Analysis and Case Projections

We analyzed data on critical care utilization in BC, in
order to apply our model to the BC context. The primary
data set used was an extract from the BC ICU Database.
We supplemented this with summary data provided by
the BC Ministry of Health from the Discharge Abstract
Database, published reports, expert opinion, and data from
the Provincial Health Services Authority on ventilator
capacity. The BC Centre for Disease Control provided case
projections for the COVID-19 epidemic in BC as input for
the model.

The British Columbia ICU Database was established
in 1998 at the Centre for Health Evaluation & Outcome
Sciences to provide detailed information on the delivery
of critical care in British Columbia [59]. Our data extract
consists of records from calendar years 2016–2018. At the
time of this work, 2019 data was unavailable. For 2016–
2018, the database contains ICU data from 20 hospitals
in BC, including nearly all major hospitals. However, an
additional 21 hospitals in BC with ICUs are not included in
our extract. For these hospitals, we used ICU admission data
from the Discharge Abstract Database, which is a national
database of hospital admissions in Canada. We estimated
ventilator utilization for these hospitals by assuming that
they have the same fraction of ICU admissions requiring
mechanical ventilation as the hospitals in the ICU Database.
Our ICU Database extract includes an entry for each
instance of mechanical ventilation. It has fields for the start
and stop time of mechanical ventilation, acute respiratory
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Fig. 2 Average monthly rate of mechanical ventilation starts from
the ICU Database, for years 2017 and 2018, along with a combined
monthly average across both years
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Table 1 Fitted gamma distribution parameters for time spent on
mechanical ventilation

VP or ARDS Neither VP nor ARDS

Shape 0.94 0.85

Scale 7.9 days 4.8 days

Mean 7.5 days 4.1 days

distress syndrome (ARDS) diagnosis, and viral pneumonia
(VP) diagnosis. We included these diagnoses in our extract
because they are clinically similar to respiratory failure due
to COVID-19.

5.1 Non-COVID-19 Demand and Ventilator Capacity

We projected non-COVID-19 ventilator demand into 2019–
2020 by using the frequency of ventilation starts in the
most recent two years of our BC ICU Database extract,
namely 2017–2018. Patients may have multiple ventilation
periods during a single ICU stay; however, we treated these
as independent ventilation starts. Figure 2 shows a monthly
time series of mechanical ventilation starts in the BC ICU
Database for 2017 and 2018. For both years, the rate of
ventilation starts is higher at the beginning of the year than
at the end; however, 2018 has an additional peak in May.
To balance capturing seasonal tends without over-fitting to
these years of data, we projected ventilation demand into
2019–2020 using the average monthly rate over both years,
which is also shown in Fig. 2. We multiplied this by 1.198,
which was computed from the DAD to account for the
additional 21 hospitals not in the BC ICU Database.

The BC Ministry of Health responded to the COVID-19
pandemic by canceling non-urgent elective surgeries as
of March 16th, 2020. Detailed data on the impact of
this reduction was unavailable at the time of this study.
Based on expert opinion, we estimated that this led to a
15% reduction in the number of non-COVID-19 patients
requiring mechanical ventilation. We implemented this
change as a step reduction in the non-COVID-19 demand
rate by 15% from March 16th, 2020 onwards.

The Provincial Health Services Authority of BC con-
ducted an inventory of ventilators in the province in March

2020. There were 498 adult mechanical ventilators avail-
able in 34 hospitals. We were advised that at any given time,
approximately 10% of these ventilators would be unavail-
able due to repair or maintenance. Therefore, we set the
current number of ventilators in the model to 448. Based
on consultation with a respiratory therapist, we assumed
that the time required to clean a ventilator and prepare it
for a new patient is approximately two hours, which we
incorporated into the modeled ventilation service time.

5.2Mechanical Ventilation Time and SymptomDelay

We characterized the duration of time that patients receive
ventilation by using start and stop times from the 2017–2018
records of our BC ICU Database extract. Approximately
10.4% of these records were either missing a start/stop
time or had zero ventilation time, and we did not use
these records in ventilation time analysis. We divided
the remaining records into two groups: one for patients
diagnosed with either ARDS or VP, and one for patients
with neither of these diagnoses. For each group of records,
we fit ventilation time to a gamma distribution using the
maximum-likelihood method implemented in the ‘MASS’
package in R. The parameters for the distribution fits are
given in Table 1 and the distributions are plotted in Fig. 3.
The ventilation time data appears to be well captured by the
fitted gamma distributions. The mean ventilation time in our
dataset for patients with VP or ARDS is 7.5 days, which
is substantially greater than the mean ventilation time for
patients with neither diagnosis.

At the time of our analysis, there were limited data
available for ventilation time of COVID-19 patients. VP
is clinically similar to COVID-19, and many patients who
had respiratory failure due to COVID-19 were diagnosed
with ARDS. Therefore, we assumed that the distribution of
ventilation time for patients with these diagnoses is repre-
sentative of the distribution for COVID-19 patients within
the time frame of our projections. Bhatraju et al. [10]
studied eighteen COVID-19 patients on mechanical ventila-
tion in Seattle area hospitals during March 2020, which is
a similar region and time period to our study. They found
a median ventilation time of 10 days with an interquar-
tile range of 7 to 12 days, which is consistent with our

Fig. 3 Density histograms of the
time on mechanical ventilation
for two patient groups. Fitted
gamma distributions are overlaid
as a blue curves
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estimated ventilation time distribution. Treatment proto-
cols for COVID-19 ventilator use changed over the course
of the pandemic, and this should be considered in other
applications of our model.

Figure 4 displays the 2017–2018 monthly proportion of
ventilation starts that are for patients with either VP or
ARDS, as opposed to patients with neither diagnosis. Both
years show a seasonal trend of higher winter proportions
of patients with VP or ARDS, compared to the summer
months. We modeled the arrival rates for these patients
using a time-dependent mixing probability based on the
monthly proportion of ventilation starts for patients in this
group in both 2017–2018, which is also displayed in Fig. 4.
The compliment of this time-dependent mixing probability
gives the arrivals for the group of patients with neither VP
nor ARDS.

Symptom onset time is not routinely entered in medical
record data in BC, and we are unaware of BC specific
estimates for the distribution of time between COVID-19
symptom onset and severe symptoms requiring mechanical
ventilation. A study by Phua et al. [52] estimated the median
time from symptom onset to ICU admission as 7–12 days.
Therefore, we assumed a uniform distribution between 7
and 12 days for our symptom delay model.

5.3 COVID-19 Case Projections

The BC Centre for Disease Control provided COVID-19
case projections made using a stochastic disease model1

based on Hellewell et al. [30]. Their epidemiological
model was calibrated using historical data on cases
in BC and projects cases under different scenarios by
varying a transmission rate parameter. Scenarios of reduced
transmission were specifically used to illustrate the impact
of public health measures such as social distancing and
other changes in population behavior. Significant public
health measures in BC during the first wave of the epidemic
began on March 16th and included restricting gatherings
to no more than 50 people and closing schools2. Their
model was re-calibrated weekly in March and April 2020,
with projections extending one month from calibration date.
The results in our paper are based on projections released
on March 19th, 2020 for COVID-19 case counts from
March 16th to April 13th.

Based on expert opinion and initial data on the epidemic
in BC, we assumed that 6.7% of COVID-19 cases would
require ICU care. We further assumed that 70% of COVID-19
ICU patients would require mechanical ventilation, based

1The BCCDC model is implemented as an R package, which is
available from https://github.com/bcgov/epi.branch.sim.
2Additional details on public health measures undertaken in BC are
available at https://news.gov.bc.ca/releases/2020HLTH0086-000499.
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Fig. 4 Monthly proportion of ventilation starts for patients with either
VP or ARDS. Values are shown for 2017, 2018, and both years

on the ICNARC Report on COVID-19 (April 10th, 2020)
[31] and expert opinion on hospitalizations in BC. We
multiplied the BCCDC projected daily case counts by
the above two proportions, in order to project COVID-19
symptom onset for cases which will eventually require
mechanical ventilation. We then converted this into pro-
jected hourly rates at noon of each day, and linearly inter-
polated to obtain instantaneous rates for the symptom delay
model.

6 Results

We present the results of applying the multi-class Erlang
loss model from Section 3 to project and optimize venti-
lator capacity at a provincial level in BC, during the first
wave of the COVID-19 epidemic in March and April 2020.
Validation of the model for historical non-COVID-19 venti-
lator use is presented in Subection 6.1. Model projections of
ventilator access are presented in Subsection 6.2, under dif-
ferent epidemic scenarios to illustrate the impact of public
health measures. Subsection 6.3 compares access projec-
tions from simulation with results from three numerical
approximation methods: PSA, MOL, and FPA. Results of
our hybrid capacity optimization approach are presented in
Subsection 6.4.

6.1 Validation

We validated our non-COVID-19 modeling assumptions by
comparing simulated non-COVID-19 ventilator use with
pre-COVID-19 ICU data. Using our BC ICU Database
extract, we estimated the number of patients on a ventilator
at any time from the recorded start and stop times of
ventilation. For the 10.4% of records without a recorded

S. L. Zimmerman et al.208

1 3

https://github.com/bcgov/epi.branch.sim
https://news.gov.bc.ca/releases/2020HLTH0086-000499


stop time, we assumed a stop time proxy equal to the start
time plus an annual mean ventilation time. This yielded a
time series of estimated ventilator utilization, measured at
the time of each recorded or estimated ventilation start/stop
in 2017 and 2018.

For comparison with historic data, we ran our
DES implementation with only non-COVID-19 ventilator
demand for the 20 hospitals in the BC ICU Database, and
without a reduction in elective surgeries. We used a venti-
lator capacity of 356, which corresponds to the estimated
number of functional adult ventilators in these hospitals.
We ran the DES model for a three-year simulation of 2016
through 2018. We measured the mean, 5th, and 95th per-
centiles of the number of simulation ventilators in use,
which is compared in Fig. 5 with the inferred historic ven-
tilator use for 2017 and 2018. Simulation output for 2016
was not analysed, because the first simulation year was
used to populate the model. In Fig. 5, the arrival rates and
patient group proportions are given by monthly averages
across data from 2017 and 2018. With these monthly arrival
rates, the 5th to 95th percentile range of the simulation
output covers the historic data 84.5% of the time. This indi-
cates some unaddressed data variability; however, a monthly
time granularity is appropriate for the purpose of projecting
non-COVID-19 ventilator demand into 2019–2020.

We performed a second simulation evaluation with
increased time granularity in the arrival rate to further
validate our model against historical data. Figure 6 shows
these simulation results, in which arrival rates are specific
to each year and week of the simulation, and patient group
proportions are given by year and month. With this level
of time granularity, the simulation is able to fully match
the data variability, since the 5th to 95th percentile range
covers the historic data 90% of the time. Since the unmet
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Fig. 5 Comparison of pre-COVID-19 simulation and inferred 2017-
2018 ventilator use from the BC Intensive Care Unit Database. This
simulation uses monthly average arrival rates over 2017 and 2018.
The mean, 5th, and 95th percentiles of simulation ventilator use were
measured at midnight of each simulated day, based on 4000 runs that
use 2016 to populate the model
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Fig. 6 Comparison of pre-COVID-19 simulation and inferred 2017-
2018 ventilator use from the BC Intensive Care Unit Database. This
simulation uses week and year specific arrival rates for 2016, 2017 and
2018. The mean, 5th, and 95th percentiles of simulation ventilator use
are measured from 4000 runs, using 2016 to populate the model

variability in Fig. 5 can be fully addressed by increased
time-granularity of arrivals, it does not indicate limitations
in our other non-COVID-19 modeling assumptions.

6.2 Projected Ventilator Access

We simulated the queue model using DES to project provin-
cial ventilator access under different epidemic trajectories,
during the first wave of COVID-19 in BC. Model simula-
tion results for the March 19th, 2020 case projections from
the BCCDC are shown in Fig. 7, under scenarios with and
without reduced transmission due to public health measures.
These projections start at the beginning of the community
spread of COVID-19 on March 16th, 2020, and project
COVID-19 case counts until April 13th, 2020. To build up
non-COVID-19 ICU occupancy, we started the simulation
one year prior to the epidemic projections. We ran the
simulation until April 20th, 2020, since the delay between
symptom onset and ventilation has a minimum of 7 days.

The effect of the cancellation of non-urgent elective
surgeries on March 16th is noticeable in both scenarios as a
slight decrease in ventilator utilization, before an increase
occurs due to the projected rising COVID-19 cases. Without
reduced transmission, the projected number of COVID-19
cases requiring a ventilator reaches approximately
112 patients per day by the end of the projection. In this
scenario, the estimated probability of reaching ventilator
capacity is negligible until approximately April 14th. At
this point in time, a small number of simulation runs reach
ventilator capacity, resulting in a small mean loss rate
outside of an interquartile range of zero. After April 15th

the loss rate in the simulation begins to rise dramatically.
By the end of the simulation, the mean number of patients
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Fig. 7 Epidemic projections and
DES results for scenarios with
and without reduced
transmission. Simulation runs
use 448 ventilators. The dotted
red line represents the start of
projections and the reduction in
elective surgeries. The topmost
panels present epidemic
projections of daily COVID-19
cases requiring a ventilator,
from March 16th to April 13th,
2020. The second and third pairs
of panels shows DES estimates
for the expected number of
ventilators in use and loss
probability, both measured at
midnight and noon of each
simulated day. The fourth pair of
panels show the average number
of patients unable to access a
ventilator per day, measured
every half-day. Simulation
results are obtained using
4000 runs

unable to access a ventilator reaches approximately 50 per
day. However, with reduced transmission due to public
health measures, the projected rate of COVID-19 ventilator
cases reaches a substantially lower rate of approximately
36 patients per day. In this scenario, the estimated probabil-
ity of reaching ventilator capacity remains negligible and
all the simulated patients are able to access a ventilator.

6.3 Comparing Numerical Approximations

We applied three numerical methods, namely PSA, MOL,
and FPA, to approximate time-dependent ventilator uti-
lization and access under the epidemic scenario without
reduced transmission from the March 19th epidemic projec-
tions. Figures 8 and 9 compare the results of these methods
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with simulation values for the expected number of venti-
lators in use and loss probability. The percentages of time
that these estimates are within the DES interquartile range
(IQR) or confidence interval (CI) are shown in Table 2,
for March 16th onwards. PSA, MOL, FPA, and simulation
values were all evaluated at 12-hour intervals aligned with
noon and midnight of each day. All of the integration in the
numerical methods was performed using the trapezoid rule.
Simulation estimates were obtained using 4000 runs and a
tolerance value of 10−10 was used to obtain FPA results.
Table 3 compares peak loss probability estimates, as well as
computation times for these four approaches.

The FPA estimates are substantially closer to the
simulation results than estimates from PSA and MOL. FPA
values for the expected number of ventilators in use are
within the simulation IQR 100% of the time, and values
for loss probability are within the simulation CI 90.2% of
the time (Table 2). Furthermore, the FPA estimate of the
peak loss probability is within 1.5% of the DES value.
In comparison, the MOL loss probability estimates were
within the simulation IQR 79.2% of the time, and PSA loss
probability estimates were only within the IQR 61.1% of
the time. Because the MOL method is based on infinite
server estimate of the offered load, it is known to poorly
approximate systems with higher loss probabilities [44].
This behavior is illustrated in our results, where MOL
underestimates the peak loss probability by 45% (Table 3).
The PSA method assumes that the system instantaneously
reaches steady-state in response to system changes [2, 22],
and this is evident in Fig. 9, where PSA results predict
that capacity would have been reached about a week sooner
than in the simulation. The PSA and FPA estimates of loss

Fig. 8 Comparison of four estimates for the time-dependent expected
number of ventilators in use. These projections use the current
ventilator capacity of 448, and assume an an epidemic scenario without
reduced transmission. The mean and interquartile range (IQR) for
simulation values are obtained using 4000 runs

Fig. 9 Comparison of four estimates for the time-dependent loss
probability. These projections use the current ventilator capacity
of 448, and assume an an epidemic scenario without reduced
transmission. The mean and interquartile range (IQR) for simulation
values are obtained using 4000 runs

probability happen to overlap at the end of our projections,
but the PSA method does not accurately estimate peak loss
probability in general.

Table 3 shows that our implementation of the FPA
requires almost double the computation time of the MOL
method. However, our computation times show that FPA is
still orders of magnitude faster than DES.

6.4 Capacity Optimization Results

We performed the search procedures described in
Subsection 4.2 to determine the ventilator capacity required
to keep ventilator access above 95% in the March 19th epi-
demic scenario without reduced transmission. This section
compares proximate capacity requirements based on the

Table 2 Comparison of the percentage of time-dependent estimates
that are within the simulation ranges, for twice daily estimates between
March 16th to April 21st, 2020

Percentage of Time within DES Range for

Method m̂DES β̂DES

PSA 27.8% 61.1%

MOL 84.7% 79.2%

FPA 100% 90.2%

All of the estimates are under the epidemic scenario without reduced
transmission and use the current supply of 448 ventilators. The
simulation range for the expected number of ventilators in use (m̂DES)
is an interquatile range, and the range for the loss probability (β̂DES) is
a 95% confidence interval
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Table 3 Peak estimated loss probability for DES, PSA,MOL, and FPA
methods, as well as computational times

Method Peak loss probability (95% CI) Evaluation time

DES 0.455 (0.44,0.47) ≥ 25 m

PSA 0.462 0.34 s

MOL 0.250 1.06 s

FPA 0.448 2.08 s

Computation times were evaluated on a 2.3 GHz quad-core Intel core
i7 processor. DES results were obtained from 4000 runs and were
executed in parallel over 8 threads

three numerical approximations (PSA, MOL, and FPA) to
DES optimization results obtained using a hybrid approach.

First, we performed three separate linear searches using
the PSA, MOL, and FPA model approximations. Table 4
compares the proximate required ventilator capacity for
each of these methods to the DES-based result. Our hybrid
approach to simulation-based optimization initializes an
iterative RSM search procedure with the FPA proximate
capacity requirement. This starting point was informed by
the results in Subsection 6.3, which demonstrate that FPA
performs the best at predicting loss probability under the
current ventilator capacity.

Our simulation-based optimization started at the FPA
proximate capacity requirement of 606 ventilators, and took
only 3 iterations of second order RSM approximations until
consecutive estimates were within 5 ventilators of each
other. Figure 10 presents the DES loss probabilities for the
10 values surrounding the last RSM capacity estimate, and
it shows at least 621 ventilators are required to maintain a
5% target. A reduction in capacity of up to 5 ventilators will
keep the loss probability within 6%.

For the optimal capacity of 621 ventilators, Figs. 11 and
12 compare DES and numerical approximation projections
of ventilator use and access. In these figures, MOL and
FPA both accurately approximate the expected number of
ventilators in use. However, both FPA and MOL methods
underestimate loss probability.

Table 4 Ventilator capacity requirements to keep the respective loss
probability estimates (β̂PSA

c , β̂MOL
c , β̂FPA

c , and β̂DES
c ) under 5%

Method Proximate Optimal Capacity

PSA 805

MOL 597

FPA 606

DES 621

Fig. 10 Linear search across the ten ventilator capacities surrounding
the final RSM required capacity estimate. For each number of
ventilators, the peak loss probability and 95% confidence interval (CI)
is estimated using 4000 simulation runs

7 Discussion and Conclusions

We applied a multi-class Erlang loss model to inform
ventilator capacity management during the first wave of the
COVID-19 pandemic in BC, Canada. We worked closely
with analysts at the BC Ministry of Health, the Provincial
Health Services Authority, and the BC Centre for Disease
Control in March and April 2020, to provide weekly reports
on projected ventilator access. We collaborated with these
organizations to obtain up-to-date BC specific data and para-
meter values for our model, including both non-COVID-19
critical care use and weekly updated COVID-19 case
projections. The results presented in this paper are based
on the March 19th epidemic projections from the BCCDC,

Fig. 11 Comparison of the expected number of ventilators in
use, for the three numerical approximation methods (PSA, MOL,
and FPA), with an optimal capacity of 621 ventilators under the
epidemic scenario without reduced transmission. Simulation mean and
interquartile range (IQR) values are obtained from 4000 runs
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Fig. 12 Comparison of estimated loss probability, for the three
numerical approximation methods (PSA, MOL, and FPA), with an
optimal capacity of 621 ventilators under the epidemic scenario
without reduced transmission. Simulation mean and 95% confidence
interval (CI) values are obtained from 4000 runs

under different levels of transmission. Simulation results
predict that under a scenario of reduced transmission
of COVID-19—through means such as social distancing,
but also other public health measures and changes in
population behavior—ventilator capacity would likely not
be reached, thereby helping to avert as many as 50 deaths
per day within the time frame of March 16th to April 20th,
2020. Under the COVID-19 projections without reduced
transmission, an additional 173 ventilators would have
been required to ensure that the probability of immediate
patient access to a ventilator is at least 95%. However, with
public health interventions including social distancing, the
current ventilator supply was sufficient. These results were
provided to health system analysts and policy makers to help
inform capacity management decisions, including whether
to expand the current ventilator supply. By drawing on
epidemic projections with different levels of transmission as
input, our model provides policy makers with a quantitative
link between public health measures and critical care access.

Our projections of ventilator access are dependent on the
underlying epidemic projections and need to be interpreted
in the light of the challenges with predicting the epidemic
trajectory [36, 62]. In particular, our results are highly
sensitive to estimates of the peak in the epidemic wave.
Furthermore, public health measures are often implemented
in response to epidemic projections and these measures may
change the course of the epidemic.

Another contribution of this study is the comparison
of PSA, MOL, and FPA under rapidly changing epidemic
demand. Previous studies have focused on evaluating these
numerical methods under sinusoidal demand [3, 17, 20,
22–26, 33, 35]. Our analysis compares the accuracy and
efficiency of these numerical approximation methods for

projecting ventilator access under the rapid growth in
the March 19th COVID-19 projections without reduced
transmission. With the current ventilator supply, FPA
results closely approximate the simulated loss probability
throughout the duration of the projection. In comparison,
MOL results underestimate the peak loss probability within
this time frame and PSA results overrespond, predicting
capacity would be reached about a week early. The
FPA estimate of the number of ventilators required to
meet access targets is closer to the simulation capacity
requirement than the PSA and MOL estimates. However,
FPA underestimates capacity requirements by 15 ventilators
(2.5%). The comparative accuracy of FPA is manifest,
because it improves MOL estimates by iterating to capture
the time-dependent interaction between capacity, access,
and utilization [3, 33]. However, FPA updates still rely on
steady-state formulae, and its accuracy is not guaranteed for
highly time-dependent systems. Our results demonstrate the
extent of the accuracy of FPA under epidemic-type demand.
Although FPA requires more computational time than PSA
and MOL, it is still substantially faster than DES.

Epidemic projections are frequently updated during
the COVID-19 pandemic, and efficient model analysis
is important for timely support of decision making. We
developed a hybrid capacity optimization search by drawing
on our comparison of numerical approximations. Since FPA
was the most accurate for projecting ventilator access under
the current capacity, we used FPA to find a proximate initial
value for an iterative simulation-based capacity search.
By starting at this point, the optimal capacity range was
identified in only three iterations of a modified RSM
search. Our hybrid approach combines the accuracy of
DES with boosted efficiency from FPA, which addresses
the computational challenges of loss model capacity
optimization under rapidly growing epidemic demand.

Overall, this study provides valuable insight for current
and future epidemic capacity planning. Our comparison
of numerical approximation methods motivates the further
use of FPA in epidemic queue modeling and capacity
optimization. Our hybrid search procedure addresses the
computational challenges of optimizing loss models under
rapidly growing demand. This enables further application
of loss models to inform epidemic capacity planning in the
context of patient-centred access indicators.

As the COVID-19 pandemic progresses, our analysis
can be further updated using the latest case projections,
parameters for ventilator use, and treatment protocols. By
using case projections from epidemic models that incorpo-
rate vaccination, our model could link vaccine uptake to
the utilization of critical care resources. The queue model
can be adapted to other geographic regions by incorporating
location-specific critical care data. Future work could con-
sider modeling additional medical resources, for example
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ICU beds and respiratory therapists, and staff schedul-
ing could be informed by increasing the time granularity
of capacity optimization. More sophisticated optimization
techniques could be incorporated to provide greater compu-
tational efficiency to address these extensions. Our frame-
work is widely applicable to many critical care resources
that can face surge demand.
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Appendix

Response Surface Methodology

We used a modified response surface methodology (RSM)
procedure to solve the capacity optimization problem in
Eq. 18, which identifies the minimum ventilator capacity
required to meet at target on the DES loss probability.
Our approach is based on the RSM framework in Nicolai
and Dekker [48]; however, we made several modifications

based on our problem context. This appendix describes
the algorithmic details of our implementation; higher level
discussion is in Subsection 4.2.

In our RSM application, the response function is the
maximum simulation loss probability as a function of the
number of ventilators c. We denote the iterative estimates of
the required ventilator capacity by ci and the iterative radii
of the successive regions of interest by ri , for i = 0, 1, 2, ....
We begin with initial estimated capacity c0 and radius r0 =
round(0.1 c0). The target loss probability is denoted by α.
The details of our implementation are as follows:

Iterate the following over i = 0, 1, 2, ..., until ri ≤ 5 or
|ci − ci−1| ≤ 5:

1. Use DES to estimate the maximum loss probability
at each ventilator capacity value in a one dimensional
central composite experimental design [48]. This design
involves five estimates made at the center value ci ,
and one estimate made at each of the values: ci − ri ,
round(ci − 0.5 ri), round(ci + 0.5 ri), and ci + ri . For
each capacity value, the maximum loss probability is
estimated using 200 simulation runs.

2. Using these estimated points, perform a least-squares
regression fit to a second-order model,

max
t∈T

βc(t) = b0 + b1c + b2c
2 .

3. If the estimated coefficients satisfy b̂0 = b̂1 = b̂2 = 0,
then set ri+1 = 2 ri and move to the next iteration.
This check increases the region of interest if the DES
estimate of the response function is zero. Note that
the response function is asymptotic to zero for a large
number of ventilators.

4. If the overall regression fit is statistically significant
(F-statistic has p-value at most 0.05), then set

d = b̂21 − 4 b̂2(b̂0 − α)

z1 = −b̂1 − √
d

2 b̂2

z2 = −b̂1 + √
d

2 b̂2

ci+1 =

⎧⎪⎪⎨
⎪⎪⎩

z1, if d ≥0 and z1 ≥ 0 and b̂2 ≥ 0

z2, if d ≥0 and
(
z1<0 or b̂2 < 0

)
b̂1

2 b̂2
, if d < 0

(19)

ci+1 = round(ci+1)

ri+1 = round(0.5 ri),

and move to the next iteration.
5. If the overall regression fit is not statistically significant

(F-statistic has p-value greater than 0.05), then double
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the number of runs per DES evaluation, until all are
statistically significant.
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