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Abstract

The outbreak of the severe acute respiratory syndrome coronavirus 2 started in Wuhan,

China, towards the end of 2019 and spread worldwide. The rapid spread of the disease can

be attributed to many factors including its high infectiousness and the high rate of human

mobility around the world. Although travel/movement restrictions and other non-pharmaceu-

tical interventions aimed at controlling the disease spread were put in place during the early

stages of the pandemic, these interventions did not stop COVID-19 spread. To better under-

stand the impact of human mobility on the spread of COVID-19 between regions, we pro-

pose a hybrid gravity-metapopulation model of COVID-19. Our modeling framework has the

flexibility of determining mobility between regions based on the distances between the

regions or using data from mobile devices. In addition, our model explicitly incorporates

time-dependent human mobility into the disease transmission rate, and has the potential to

incorporate other factors that affect disease transmission such as facemasks, physical dis-

tancing, contact rates, etc. An important feature of this modeling framework is its ability to

independently assess the contribution of each factor to disease transmission. Using a

Bayesian hierarchical modeling framework, we calibrate our model to the weekly reported

cases of COVID-19 in thirteen local health areas in Metro Vancouver, British Columbia

(BC), Canada, from July 2020 to January 2021. We consider two main scenarios in our

model calibration: using a fixed distance matrix and time-dependent weekly mobility matri-

ces. We found that the distance matrix provides a better fit to the data, whilst the mobility

matrices have the ability to explain the variance in transmission between regions. This result

shows that the mobility data provides more information in terms of disease transmission

than the distances between the regions.
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Author summary

Mathematical modelling was at the forefront of the fight against COVID-19. Many models

were used to study the disease dynamics and the effectiveness of intervention strategies to

control the disease spread. Due to the high infectiousness of COVID-19 and the high rate

of human mobility, understanding the disease spread between regions became important.

Many of the previously developed models for studying disease dynamics between regions

described human mobility based on either the distances between the regions or using

other forms of mobility data. In addition, some of these models can only be used to study

the spread of COVID-19 from an epicentre to neighbouring regions/cities. These models

are suitable for only the early stages of the disease outbreak. We developed a hybrid grav-

ity-metapopulation modelling framework for studying the spread of diseases between

regions. Our model provides the flexibility of using the distances between the regions and

mobile device data as a proxy for human mobility between regions. Furthermore, our

framework is suitable for studying disease dynamics at any epidemic stage. It accounts for

disease spread from each region to the remaining regions, irrespective of the number of

reported cases in each region and their population sizes.

This is a PLOS Computational Biology Methods paper.

Introduction

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which

started in the city of Wuhan, Hubei province, China [1] has since spread all over the world

with over 585 million reported cases and 6.4 million reported deaths, as of August 2022 [2]. In

human populations, the virus can be transmitted through the inhalation of infectious droplets

in aerosols, exposure to infectious respiratory fluids, coughing, sneezing, and having physical

contact with an infected individual. It can also be transmitted indirectly when a susceptible

individual comes in contact with a contaminated surface, such as door handles or other com-

monly shared surfaces or objects [3–5]. SARS-CoV-2 is the casual agent for the coronavirus

disease 2019 (COVID-19), and is estimated to be more infectious compared to other coronavi-

ruses such as the severe acute respiratory syndrome (SARS) and the Middle East respiratory

syndrome coronavirus (MERS) [6, 7]. The COVID-19 disease was declared a public health

emergency by the World Health Organization (WHO) on January 20, 2020 [8] and a pandemic

on March 11, 2020 [9].

Due to the fast spread of COVID-19, during the early stages of the pandemic, governments

around the implemented non-pharmaceutical interventions (NPIs) such as movement/travel

restrictions, wearing of facemasks, closure of schools and businesses, physical distancing, etc.

[10–14], to limit the spread of the disease. Although, the implementation of these NPIs helped

in slowing down the spread of COVID-19, the disease still continues to spread under these

restrictions. In addition, these NPIs have significant social and economic effects around the

world [15–17], and could not be put in place for too long. The development of safe and effec-

tive COVID-19 vaccines brought some relief and were introduced to replace stringent NPIs

[18, 19]. The first set of COVID-19 vaccines became available towards the end of 2020 [20].

These vaccines provide significant protection against the earlier strains of SARS-CoV-2 virus
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[21–23]. However, the emergence of highly infectious mutant strains such as Omicron variant

led to the continuous spread of the disease.

The first case of COVID-19 was reported in Wuhan, China, in December 2019 [24]. On the

12th of January 2020, the first case of the disease outside of China was confirmed in Thailand

[25]. By January 30, 2020, COVID-19 has spread to 18 countries outside of China with a total

of 7,818 confirmed cases worldwide [25]. The first confirmed case of COVID-19 in Africa was

reported on February 14, 2020 [26, 27], in North America, January 21, 2020 [28], and in

Europe, January 24, 2020 [29]. COVID-19 has spread more rapidly and widely around the

world than previous outbreaks of coronaviruses. This spread can be attributed to globalization,

settlement and population characteristics, and high human mobility [30]. Several studies have

looked at the effect of human mobility on the spread of COVID-19 [31–33]. In Kraemer,

Moritz UG, et al [31], real-time human mobility data was used to investigate the role of case

importation in the spread of COVID-19 across cities in China. The impact of human mobility

network on the onset of COVID-19 in 203 countries was studied in [32]. They used exponen-

tial random graph models to analyze country-to-country spread of the disease. Their study

suggested that migration and tourism inflow contributed to COVID-19 case importation, and

that a mixture of human mobility and geographical factors contribute to the global transmis-

sion of COVID-19 from one country to another. Human mobility data collected via mobile

devices such as cell phones, smartwatches, e-readers, tablets etc., have also been used to study

the spread of COVID-19 [34–37]. In [34], county-level cell phone mobility data collected over

a period of 1 year in the US was used to study the spatio-temporal variation in the relationship

between COVID-19 infection and mobility. They found that in the spring 2020, sharp drop in

mobility often coincide with decrease in COVID-19 cases in many of the populous counties.

Mathematical models have been used to study the relationship between the spatio-temporal

spread of COVID-19 and human mobility [37–45]. A city-based epidemic and mobility model

together with multi-agent network technology and big data on population migration were

used to simulate the spatio-temporal spread of COVID-19 in China [45]. In [46], a stochastic,

data-driven metapopulation model was used to study the initial wave of COVID-19 in Bel-

gium, and also to study different re-opening strategies. Their model incorporates the mixing

and mobility of different age groups in Belgium. Another stochastic metapopulation model

was used to study the spread of COVID-19 in Brazil [43]. This model assumes that epidemics

start in highly populated central regions and propagate to the countrysides. For many states,

they found strong correlations between the delay in epidemic outbreaks in the countrysides

and their distance from central cities. In [47], an SEIR country-wide metapopulation model

was used to study the spread of COVID-19 in England and Wales. The model was used to pre-

dict the COVID-19 epidemic peak in England and Wales, and also to study the effect of differ-

ent non-pharmaceutical intervention strategies on the predicted epidemic peaks. Similarly, in

[48] a stochastic SIR model was applied to describe the spatio-temporal spread of COVID-19

across 33 provincial regions in China and to also evaluate the effectiveness of various local and

national intervention strategies. Their model incorporates an outflow mobility index for all the

regions and the proportion of travelers between regions. More discussions on human mobility

and COVID-19 transmission can be found in the systematic review article [49]. The relative

contribution of mobility data to the observed variance in the COVID-19 transmission rates

between regions still remains an unexplored problem.

We develop a hybrid gravity-metapopulation modeling framework for studying the spread

of COVID-19 within and between different regions. An important feature of our framework is

the ability to determine human mobility based on the distances between the regions or

through empirical data such as those collected through mobile devices. In addition, our frame-

work allows for the explicit incorporation of factors that affect disease transmission, such as
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facemasks, physical distancing, contact rates, etc., into a time-dependent disease transmission

rate and the assessment of the contribution of each of these factors to actual disease transmis-

sion. As an illustration, we use a Bayesian hierarchical modeling framework to calibrate our

model to the weekly reported cases of COVID-19 in the thirteen local health areas (LHAs) of

Fraser health authority (Fraser Health), British Columbia (BC), Canada, from July 2020 to Jan-

uary 2021. The study area comprises 1.9 million population in the eastern sections of the

Greater Vancouver area. We estimate region-specific scaling parameters for computing base-

line disease transmission rates for each region, and a parameter for quantifying the contribu-

tion of mobility to disease transmission. In addition, we estimate a time-dependent piece-wise

constant scaling parameter to account for the cumulative effect of the remaining factor that

affect disease dynamics, which are not explicitly included in our model. We consider two main

model structures in our example, which are determined by the mobility matrices used: one

with a distance matrix (computed using the distances between the regions, based on the popu-

lation weighted centroid) and another with time-dependent mobility matrices computed from

mobile device data. The results from these two scenarios are used to test the hypothesis of

whether the time-dependent mobility matrices, computed from mobile device counts, provide

more information about human mobility, with respect to disease transmission between the

regions than the distances between the region.

Materials and methods

Mathematical model

We develop a hybrid gravity-metapopulation model to study the dynamics of COVID-19,

within and between regions. The model stratifies the population of each region into six com-

partments: susceptible (S), exposed (E), pre-symptomatic infectious (P), symptomatic infec-

tious (I1 and I2), and recovered (R). Individuals in the pre-symptomatic infectious

compartment are infectious (can transmit the disease) but do not show symptoms yet. Similar

to [50, 51], we divided the infectious compartment into two classes so that the recovery time

follows a Gamma distribution rather than an exponential distribution. This way, a symptom-

atic infectious individual spends the first half of their infectious period in I1 and the other half

in I2. We assume that there is no re-infection in our model due to relatively low infections

across the study period as the size of the susceptible population is far greater than the size of

the recovered population. In addition, we assume that all the individuals infected during our

study period will not lose their COVID-19 immunity and be reinfected within this period [52].

Furthermore, asymptomatic cases were not considered as testing guidelines during the study

period were symptom-based.

A schematic diagram of the model illustrated for four (4) regions is shown in Fig 1, where

the gray circles on the left represent the regions, while the black arrows show the interactions

and movements of individuals between the regions. On the right, we have an illustration of the

population dynamics in each of the regions, where the subscript j represents the jth region. The

black arrows here show the transition of individuals through the different stages of COVID-19

at the rates indicated beside the arrows. The red dashed arrows indicate disease transmission.

Observe that there is a red dashed arrow extending from each of the remaining three regions

into region j, these arrows account for the contributions of infectious individuals in the three

regions to disease transmission in the jth region. The ordinary differential equations (ODEs)

for the model are given by (see Fig 1 for model schematic diagram and definition of state
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variables):

dSj
dt

¼ � bjCj Sj;

dEj
dt

¼ bjCj Sj � h1 Ej;

dPi
dt

¼ h1 Ej � h2 Pj;

dI1
dt

¼ h2 Pj � 2g I1j;

dI2j
dt

¼ 2 g I1j � 2 g I2j;

dRj

dt
¼ 2 g I2j;

ð1Þ

where βj� βj(t) is the time-dependent disease transmission rate for region j. We aim to define

the transmission rate (βj) as a function of the different factors that affect disease transmission.

This way, we would be able to evaluate the contribution of each of these factors to the overall

disease transmission. Therefore, we define βj(t) as

bjðtÞ ¼ exp ðc0j þ c1 mjðtÞ þ gðtÞÞ: ð2Þ

Fig 1. Schematic of the model. An illustration of our hybrid gravity-metapopulation model for four regions. Interactions and movements between the

regions (left) and stratification of the population of each region based on disease stages (right). Model compartments are defined as follows: Susceptible

(Sj); exposed (Ej); pre-symptomatic infectious (Pj); symptomatic infectious (I1j and I2j); and recovered (Rj) for region j. Our model assumes that there

are no re-infections. The black arrows show the movement of individuals from one region to another (left) and the transition of individuals through the

different stages of COVID-19 at the rates indicated beside the arrows (right). The red dashed arrows indicate disease transmission (see (1) for more

details).

https://doi.org/10.1371/journal.pcbi.1011123.g001
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Here, c0j is the scaling parameter for the baseline disease transmission rate for region j, c1 is

the scaling parameter used to remove biases from the time-series mobility data, and g(t) is a

time-dependent piece-wise parameter used to account for other factors that affect disease trans-

mission other than human mobility (e.g. facemask, social distancing, contact rates, etc.), which

are not explicitly incorporated into the model. Movement within the jth region is captured by a

time-series mobility data represented by mj(t). This data is used as a proxy for the time-depen-

dent contact rate in the region. We have defined our disease transmission rate, βj(t), as an expo-

nential function to ensure that its value remains positive due to the way the time-series

mobility data and the function g(t) are to be incorporated into βj(t). This definition will ensure

that the estimated model parameters are identifiable (see Bayesian inference section for more

details). Based on the definition of βj(t) in (2), ec0j is the baseline disease transmission rate for

region j, while ec1mjðtÞ incorporates the effect of human mobility within the region into the trans-

mission rate. Lastly, eg(t) accounts for the effect of other factors that affect disease transmission,

which are not explicitly incorporated into the model, on the disease spread. Although, the for-

mulation in (2) explicitly incorporates only human mobility into the disease transmission rate,

this formulation can be extended to include other factors that affect disease transmission such

as facemaks, physical distancing, etc. See more details in the Discussion section.

The parameter Cj�Cj(t) in (1) is used to incorporate infectious interactions within the jth

region, and their contribution to disease transmission in the region. In terms of a homoge-

neous single population model, this parameter would represent the probability of making an

infectious contact in the population. Here, Cj is defined as

CjðtÞ ¼
1

N̂ j

ð1 � yÞðPj þ I1j þ I2jÞ þ y
XM

i¼1

pji ðPi þ I1i þ I2iÞ

" #

; ð3Þ

where 0� θ� 1 is a parameter used to measure the effective contribution of human mobility

to disease transmission in all the regions. Here, θ = 0 implies that there are no infectious con-

tacts due to mobility as defined by the intra-regional mobility matrix (π), and the regions are

essentially uncoupled from each other. On the other hand, θ = 1 means that all the infectious

contacts in the system are due to human mobility. The parameter N̂ j is the adjusted population

size for region j, which incorporates the changes in the population size of the region due to

movements in and out of the region. We define N̂ j by

N̂ j ¼ ð1 � yÞNj þ y
XM

i¼1

pji Ni; ð4Þ

where M is the total number of regions under consideration and Nj is the baseline population

size of the jth region. The first term in (3) given by ð1 � yÞðPj þ I1j þ I2jÞ=N̂ j accounts for all

the infectious contacts made by the residents of region j who are not moving within the region,

while the second term, ðy=N̂ jÞ
PM

i¼1
pji ðPi þ I1i þ I2iÞ, accounts for all the infectious contacts

made in region j by the residents of the region who are moving within the region and the visi-

tors from other regions. In (3) and (4), πji is the probability that an individual who migrated

into region j, originated from region i, given that he/she is from one of the other regions under

consideration. We compute this probability using two different approaches. The first approach

uses the distances between the regions. In this case, πji is given by

pji ¼
f ðdijÞ

PM
i¼1
f ðdijÞ

; with f ðdijÞ ¼
1

ð1þ dijÞ
k ; ð5Þ
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Where dij� dji is the distance from region i to region j, k 2 Rþ and M is the total number of

regions considered. The second approach used to compute the probability πji involves using

mobile device data.

The model parameters, their descriptions, and values are provided in Table 1. The esti-

mated parameters are presented in the Results section.

As an illustration of concept, we consider the thirteen (13) local health areas (LHA) of Fra-

ser health authority, British Columbia (BC), Canada. These regions include the communities

of Abbotsford, Agassiz/Harrison, Burnaby, Chilliwack, Delta, Hope, Langley, Mission, Maple

Ridge/Pitt Meadows, New Westminster, South Surrey/White Rock, Surrey and Tri-Cities. Fra-

ser health authority (Fraser Health) is the largest of the five regional health areas in BC, with

12 acute care hospitals and providing health care to over 1.9 million people [65]. It has a width

of 150 km. Fig 2 shows a map of Fraser Health with the 13 health regions shaded. The popula-

tion sizes of the regions are detailed in Table C in S1 Text. We use a Bayesian hierarchical

modeling framework to calibrate our model to the weekly reported cases of COVID-19 in

these 13 LHAs, from July 2020 to January 2021. From the model calibration, we estimate the

parameters c0j, c1 and g(t), which are used to construct and study the time-dependent disease

transmission rate for each region, and to study the dynamics of the time-dependent piece-wise

parameter g(t). We also estimate the parameter θ, used to quantify the effect of mobility, both

within and between the regions, on disease transmission in the regions.

Data

Human population move between regions for many reasons including work, leisure, family

visits, health reasons, e.t.c. The main goal of this work is to develop a mathematical modeling

framework for studying and understanding the effect of human mobility on the spread of

COVID-19 within and between regions. We consider the period from July 1, 2020 to January

27, 2021, inclusive. Although, movement restriction was imposed in Fraser Health during

Table 1. Model parameters, their descriptions, and values. The estimated parameters are presented in the Results section. The population sizes for the regions are pre-

sented in Table C in S1 Text.

Parameter Description Value References

βj(t) Time-dependent disease transmission rate for region j — Computed using

(2)

c0j exp(c0j) is the baseline disease transmission rate for region j — Estimated

c1 Scaling parameter for the time-series mobility data — Estimated

g(t) Time-dependent piece-wise scaling parameters used to account for the effect of other factors that affect

disease transmission

— Estimated

h1 Rate of transitioning from exposed to pre-symptomatic infectious 1/5 (days−1) [53–55]

h2 Rate of transitioning from pre-symptomatic infectious to symptomatic infectious 1 (days−1) [54, 56–58]

γ Infection recovery rate 1/5 (days−1) [54, 57, 58]

θ Measures the effective contribution of mobility to disease transmission — Estimated

dij Distance from region i to region j See Fig 3 Computed using

[59]

πji Probability that an individual moving in region j is from region i See Figs 3 & 4 Computed using

(5)

Nj Baseline population size for region j See Table C in S1

Text.

[60]

N̂ j
Adjusted population size for region j — Computed using

(4)

https://doi.org/10.1371/journal.pcbi.1011123.t001
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some part of this period, we used the mobility data collected through mobile device counts as a

proxy for quantifying movements between the regions and the contact rate within each region.

We quantify mobility between the regions using two approaches. The first approach uses

the physical distances between the regions, based on population weighted centroid (left panel

of Fig 3) and the formula in (5) to calculate the probability that an individual moving in region

j, who came from one of the 13 regions, originated from region i (πji). The premise of using

physical distance between regions is based on the concept of geographic distance decay, where

spatial and social interactions decrease as the distance between regions increases [59]. The dis-

tances between our regions of interest are given in the left panel of Fig 3, while probabilities πji
computed from these distances are presented in the right panel.

The diagonal entries of the probability matrix (π) represents the probability that an individ-

ual moving in a region is a resident of that region. It is important to note that the probability

matrix is not symmetric, even though the distance matrix (left panel of Fig 3) is symmetric. In

addition, each row of the probability matrix sums to 1. The second approach used to construct

Fig 2. Map of the local health areas in Fraser Health, British Columbia (BC), Canada. The population size of each region is given in Table C in S1

Text. The base layer of the map can be found in https://catalogue.data.gov.bc.ca/dataset/health-authority-boundaries for the regions and https://www.

naturalearthdata.com/downloads/110m-cultural-vectors/ for the country. Their respective licenses are avaliable at https://www2.gov.bc.ca/gov/content/

data/open-data/open-government-licence-bc and https://www.naturalearthdata.com/about/terms-of-use/.

https://doi.org/10.1371/journal.pcbi.1011123.g002
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the probability matrix (π) is based on mobile device counts and uses Telus mobility (TELUS)

data.

TELUS is a Canadian national telecommunications company that has network coverage in

99% of the populated areas of Canada. TELUS Insights provides anonymized geo-intelligence

data, which reflects population location and mass movement patterns based on information

about locations and population movement of TELUS mobile device users [66]. These data

have helped answer a range of questions around location and public mobility patterns within

Canada, including in infrastructure planning, health services, roads, and transit routes.

As TELUS subscribers use their mobile devices, they connect to various cellular towers for

telecommunication services. These connections are used to determine the users’ locations

based on the nearest tower that relays signals to their devices. Every Telus user with their

mobile network active would be included in the TELUS data, except the subscriber opt-out

[67]. This network data provides insights into movement patterns and trends across Canada.

To provide a layer of privacy, all the mobility data provided by TELUS are de-identified, aggre-

gated into large data pools, rounded-up to the nearest 10 counts and all results are extrapolated

to represent the entire population of a given region. This ensures that the data cannot be traced

back to individual TELUS subscribers. The results of the TELUS application programming

interface (API) implementation, which provide the numbers of mobile devices moving within

and between geographical locations of interest and the neighbourhood that a mobile device

resides in, depend on cellular tower locations at the time of the analysis.

We generate the mobility data for each region using a one-day bucket size and 120-minute

minimum dwell time. We filtered for “non-residents”, “moving residents” and “residents”,

which represent, respectively, the daily number of mobile devices residing in an LHA and

spending at least two hours in another LHA (movement between regions), the daily number of

mobile devices residing in an LHA and spending over two hours outside their census track

within the LHA (movement within a region), and the total number of mobile devices residing

in an LHA. To construct the weekly mobility matrices, we consider the “non-residents” and

“moving residents” data. For each region and for a specified time interval (weekly), we

Fig 3. Distance matrices. Physical distances (in km) between the local health areas (LHAs) based on population-weighted centroid (left) [59] and the

probability matrix (π) computed using (5) (right). πji is the probability that an individual who came from one of the 13 regions to region j, originated

from region i.

https://doi.org/10.1371/journal.pcbi.1011123.g003
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compute the number of mobile devices from the other 12 regions that visited the region and

stayed there for at least 2 hours during the visit. This gives us the mobile device count for

movement into the region (off-diagonal entries). For movement within the regions (diagonal

entries), we used the “moving residents” data, from which we computed the number of mobile

devices registered to a region and moving within the region. These information are used to

construct a mobility matrix of device counts within the specified time interval for each region.

We normalize each row of the matrix with the total number of devices in the row. This way,

the ith element of the jth row represents the fraction of mobile devices that came into the jth

region (from the 13 regions) that originated from the ith region. These fractions can also be

interpreted as the probability that an individual moving within the jth region (whom originated

from one of the 13 regions) is from the ith region (πji). Using this approach we compute the

probability/mobility matrices for each week from July 1, 2020 to January 27, 2021. The com-

puted matrices for week 1 (July 1–7, 2020) and 30 (January 21–27, 2021) are shown in Fig 4,

while the matrices for the remaining weeks are presented in Figs (B—F) in S1 Text. The dis-

tance matrix (right panel of Fig 3) and the constructed mobility matrices are used to describe

the interaction between individuals from different regions. We considered two main scenarios

in our Bayesian inference based on the distance and mobility matrices and investigated

whether the mobility data is more informative, in terms of disease transmission than the dis-

tances between the regions.

We also used the Telus mobility data to compute the weekly mobility rate for the move-

ments within each region. To compute these rates, we sum the daily device count in each

region for “non-residents” and “moving resident”, and divide it by the sum of the “residents”

and “non-residents” device count for our entire study period. This gives us the proportion of

mobile devices moving in each region with respect to the total number of devices in the region

during our entire study period. For each week in our study period, we sum the computed pro-

portion of mobile devices and divide by 7 to get the weekly average proportion of mobile

devices moving in each of the regions, as shown in Fig 5. These mobility rates are used as

Fig 4. Mobility matrices. Probability matrix (π) computed from the Telus mobility data for week 1 (left) and week 30 (right), corresponding to July

1–7, 2020 and January 21–27, 2021, respectively. πji is the probability that an individual who came from one of the 13 LHAs to region j, originated from

region i. Mobility matrices for the remaining weeks are presented in Figs (B—F) in S1 Text.

https://doi.org/10.1371/journal.pcbi.1011123.g004
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Fig 5. Weekly mobility rates. Weekly time-series mobility rates for each region from July 2020—January 2021, computed from the Telus mobility

data.

https://doi.org/10.1371/journal.pcbi.1011123.g005
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proxy for the contact rates in the regions and are represented by mj(t) in the disease transmis-

sion rate (βj(t)) defined in (2). We observe from Fig 5 that there is a sharp decline in mobility

rate around the first week of September 2020 in most of the regions. Similarly, there is another

decline in mobility rate around the first week on November. This decline is associated with the

implementation of public health measures in BC.

We calibrate our model to the weekly reported cases of COVID-19 in the thirteen local

health areas of Fraser Health, BC, obtained from the British Columbia Centre for Disease Con-

trol (BCCDC). We extracted these data from a line list generated by BCCDC Public Health

Reporting Data Warehouse (PHRDW), based on symptom onset date or reported date where

symptoms onset date is not available. The collected case data spans the period from July 2020

to January 2021, inclusive, and was incorporated into the model likelihood based on the com-

puted disease incidence as shown in (6). The collected weekly reported cases of COVID-19 for

the 13 regions are shown in Fig A in S1 Text. Similar to [50], our model incidence is computed

as the number of individuals in the pre-symptomatic population (P), transitioning to the

symptomatic infectious compartment (I1).

Bayesian inference

Our hybrid gravity-metapopulation model (1) is fitted to the COVID-19 cases in all the thir-

teen regions using a Bayesian hierarchical modeling framework. Bayesian inference is a statis-

tical technique for data analysis and parameter estimation, which is based on the Bayes’

theorem. It has been applied to problem in many fields ranging from biology, physics, sport,

epidemiology, ecology, and engineering, among others [68–70]. A Bayesian hierarchical

modeling framework is one where the prior distribution of some of the model parameters

depend on other parameters to be estimated. It allows the incorporation and estimation of

model parameters at individual and population levels (see [71, 72] for more information on

Bayesian hierarchical models). We implement our Bayesian inference model with the RStan

package in R version 3.6.3 [73]. Stan is a free and open-source probabilistic programming lan-

guage for statistical inference implemented in C++. It performs Bayesian inference on arbi-

trary user-defined models through Markov Chain Monte Carlo (MCMC), and can be invoked

through other programming languages such as Python, Matlab, Julia and R. [74]. RStan is the

R interface to Stan, which provides full Bayesian inference via the No-U-Turn sampler

(NUTS), a variant of Hamiltonian Monte Carlo (HMC), approximate Bayesian inference via

automatic differentiation variational inference (ADVI), and penalized maximum likelihood

estimation via L-BFGS optimization [73].

In our Bayesian inference model, we construct the likelihood for the jth region as

casesjðtÞ � NegBinðincidencejðtÞÞ;cÞ; ð6Þ

where NegBin(�) is the negative binomial distribution, casesj(t) and incidencej(t) are the

weekly reported cases of COVID-19 and the incidence computed from the model (1), respec-

tively, for region j. Here, ψ is the over-dispersion parameter. Using Bayesian inference frame-

work implemented in Rstan gives us the flexibility to incorporate our prior knowledge into the

model parameters and the ability to evaluate probabilistic statements of the data based on the

model. In addition, this framework allows us to incorporate hierarchical structure into the

model parameters, with the benefit of understanding variations in the parameters at individual

and population levels. It enables us to construct the posterior distribution for the population

mean and variance of the model parameters and those of the individual parameters for each

region, which are conditioned on the population mean and variance. We have used a negative-

binomial distribution to model the weekly reported cases of COVID-19 because of its

PLOS COMPUTATIONAL BIOLOGY A hybrid gravity-metapopulation model of COVID-19 with empirical mobile device data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011123 May 12, 2023 12 / 24

https://doi.org/10.1371/journal.pcbi.1011123


effectiveness and convenience in modeling nonnegative over-dispersed data. Uninformative

priors were implemented in the Bayesian inference framework.

We incorporate the time-series mobility data (Fig 5) into our modeling framework using an

exponential scaling approach for the disease transmission rate. The disease transmission rate is

given by (2), where c0j � N þð0; 1Þ is the scaling parameter for the baseline transmission rate

for the jth region (ec0j is the baseline transmission rate) and c1 � N þð0; 1Þ is the scaling param-

eter used to remove biases from the time-series mobility data (mj(t)). Here, ec1mjðtÞ models the

time-varying effect of mj(t) on the disease transmission rate (βj) for region j. The time-depen-

dent piece-wise constant parameter g(t) is used to account for other factors that affect disease

transmission, which are not explicitly accounted for in the model. This parameter is estimated

every four weeks (except for the last interval which has 2 weeks). We also estimated the total

prevalence of COVID-19 in all the 13 regions at the beginning of our study period. Similar to

[50, 54], when building our Bayesian inference modeling framework, we simulated the inci-

dence for our model (1) using known parameters values and then tested the ability of our

framework to recover the values. We inspect the resulting posterior distribution for biases and

their coverage of the true parameters.

Throughout this article, we used the Variational Bayes (VB) method with the meanfield
algorithm implemented in RStan [75, 76] for our inferences, from which we estimate the total

initial prevalence in all the 13 region and a parameter, θ, used to quantify the effective contri-

bution of mobility to disease transmission in the regions (see the formulations in (3) and (4)).

We estimate a fixed value of the parameter g(t) for every four weeks, starting from the begin-

ning of our study period, and for the last two weeks. Thereby making it a time-dependent and

piece-wise parameter. To ensure that the estimated parameters are identifiable and that the

estimated values of g(t) from the second interval onward are relative to that of the first interval,

we set g(t) = 0 for the first four weeks (first sub-interval). In addition, we rescaled the time-

series mobility data using the first week’s mobility rate as a reference for the remaining rates.

This was done by subtracting the mobility rate for the first week from those of the subsequent

weeks. This way, the rescaled mobility rate for the first week is 0, while those for the remaining

weeks are centered around 0. We used a Bayesian hierarchical modeling framework to esti-

mate the parameters c0j and g(t). We construct their population posterior distributions, which

are used as priors for estimating the region specific c0j for j = 1, . . ., 13, and the interval specific

g(t), respectively. The remaining parameters of the model are fixed and are as presented in

Table 1.

We consider two main scenarios in our model calibration: one with a fixed distance matrix

(computed from the distances between the regions, see Fig 3) and another with weekly mobil-

ity matrices (computed from Telus mobility data, see Fig 4 and Figs (B—F) in S1 Text). These

two matrices are used to quantify mobility between the 13 regions. Performing inference based

on these two scenarios enabled us to understand the effect of mobility on the posterior predic-

tive distributions of the model and to determine which of the two mobility quantifiers best rec-

reates the observed case data. It would also help us to identify, which of the two approaches

provides more information on human mobility in terms of disease transmission. The two sce-

narios were ranked by comparing their leave-one-out predictions and standard errors, com-

puted using the leave-one-out cross-validation (LOO) method [77–79], and using the widely

applicable information criterion (WAIC) method [80, 81]. We compared the Variational

Bayes (VB) method to the adaptive Hamiltonian Monte Carlo method No-U-Turn sampling.

The results from both methods are found to produce comparable estimates of the posterior

distribution with significant reduction in total computation time when VB is used [82]. For

the case of a fixed distance matrix, the mean and/or median ELBO usually converges in
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5, 000–6, 000 iterations of the stochastic gradient ascent algorithm, while it converge in 11,

000–12, 000 iteration for the weekly mobility matrices case (see [76, 83, 84] for more informa-

tion about ELBO in the variational Bayes method).

Results

We considered two main scenarios when fitting our model to the weekly reported cases of

COVID-19 (see Methods). Results for the two scenarios, for selected regions (Agassiz/Harri-

son, New Westminster, Maple Ridge/Pitt Meadows and Surrey), are presented in Fig 6. We

selected these regions based on their population sizes and geographical locations, to show the

diversity in reported cases and population sizes in the regions considered, and the model’s

ability in predicting cases irrespective of these factors. The results for the remaining regions

are presented in Figs G and H in S1 Text.

For each model scenario, we present the posterior predictions of the weekly cases of

COVID-19 in each region (columns 1 & 3 of Fig 6). We compute the time-dependent disease

transmission rate, βj(t), using the estimated parameters and the formula in (2). These rates are

presented in blue for the fixed distance matrix scenario (column 2 of Fig 6) and in gold for the

weekly mobility matrices scenario (column 4 of Fig 6), together with the contribution of

mobility to the transmission rate, ec1mjðtÞ (green) with 50% credible interval (CrI) (darker

bands) and 90% CrI (lighter bands).

We observe from these results that our model is able to capture the trends and reported

cases of COVID-19 in each of the regions with a high degree of accuracy for both model sce-

narios. In addition, we see that there are significant changes in the computed disease transmis-

sion rate over time, which has a similar trend for all the regions. Even though there are no

much changes in the time-series mobility data, its effect on the disease transmission rate for

each region is still noticeable.

The mean estimate for the initial total prevalence in the 13 regions is 47.61 (90% CrI: 44.82

—50.31) for the distance matrix scenario and 50.19 (90% CrI: 47.37—53.04) for the weekly

mobility matrix scenario. The mean estimate of the parameter used to quantify the effect of

mobility on disease transmission in the regions (θ) for the distance matrix scenario is 0.53

(90% CrI: 0.44—0.60) and 0.90 (90% CrI: 0.72—0.98) for the scenario with weekly mobility

matrices. This implies that movement between the regions contribute to a mean fraction of

0.53 and 0.90 of the total reported cases of COVID-19 in the regions for the distance and

mobility matrix scenarios, respectively. The scaling parameter used to remove biases in the

time-series mobility data (c1) was estimated as 1.51 (90% CrI: 0.90—2.10) for the distance

matrix and 2.11 (90% CrI: 1.52—2.69) for the mobility matrix scenario.

We estimated the scaling parameters for the baseline disease transmission rate, c0j for j = 1,

. . ., 13, using Bayesian hierarchical modeling framework. These parameters are used to com-

pute the baseline disease transmission rate for each region defined by ec0j for j = 1, . . ., 13. The

mean estimate for the population mean and variance are 0.45 (90% CrI: 0.35—0.54) and 0.18

(90% CrI: 0.12—0.26), respectively, for the distance matrix and 0.21 (90% CrI: 0.05—0.36) and

0.35 (90% CrI: 0.24—0.47), respectively, for the mobility matrix scenario. The mean estimate

for c0j, for j = 1, . . ., 13 with 90% credible interval (CrI) are presented in Tables A (distance

matrix) and B (mobility matrix) in S1 Text. The estimated distribution for the baseline disease

transmission rates for the regions are presented in Fig 7. We observe from the results in this

figure that the predicted distributions for the larger and more urbanized regions with dense

populations are similar for the distance and mobility matrix scenarios. These regions include

Abbotsford, Burnaby, New Westminster, Surrey, and Tri-Cities. On the other hand, the pre-

dictions for the less densely populated smaller regions are relatively different for the two
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scenarios. In addition, the variances in the distributions for the smaller regions are larger than

those of the bigger regions with larger populations.

The time-dependent piece-wise parameter, g(t), was also estimated using a Bayesian hierar-

chical modeling framework with population mean and variance estimate with 90% credible

interval given by -0.33 (-0.52, -0.14) and 0.30 (0.16, 0.47), respectively, for the distance matrix

scenario, and -0.28 (-0.45, -0.10) and 0.32 (0.19, 0.50), respectively, for the weekly mobility

matrix scenario. The mean estimates with 90% credible interval for the interval-specific

parameters (g2–g8) are given in Tables A (distance matrix scenario) and B (mobility matrix sce-

nario) in S1 Text. It is important to emphasize that we have set g1 = 0 (week 1–4) to ensure that

Fig 6. Observed and estimated COVID-19 cases. Weekly reported cases of COVID-19 and model prediction (columns 1 and 3). Disease transmission

rate, βj(t) and the contribution of mobility to disease transmission, ec1mjðtÞ (green curves in columns 2 and 4). Model types: fixed distance matrix (blue)

and weekly mobility matrices (gold). Black dots are the weekly reported cases of COVID-19, the solid lines are the mean estimates of cases/parameters,

the darker bands are the 50% CrI, while the lighter bands are the 90% CrI. Similar results for the remaining regions are presented in Figs G and H in S1

Text.

https://doi.org/10.1371/journal.pcbi.1011123.g006

PLOS COMPUTATIONAL BIOLOGY A hybrid gravity-metapopulation model of COVID-19 with empirical mobile device data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011123 May 12, 2023 15 / 24

https://doi.org/10.1371/journal.pcbi.1011123.g006
https://doi.org/10.1371/journal.pcbi.1011123


the model parameters are identifiable, and to estimate g2, . . ., g8 relative to g1. The distributions

for the time-dependent effect of other factors that affect disease transmission, other than

mobility, on the disease transmission rate, are given in Fig 8. We observe that the constructed

distributions for the two scenarios agree well.

Lastly, we compare the estimated expected leave-one-out predictions and their standard

errors, for the two model scenarios, computed using the leave-one-out cross-validation (LOO)

method [77–79] and the widely applicable information criterion (WAIC) method [80, 81].

The comparison is summarized in Table 2, where the distance matrix scenario is ranked

better than the mobility matrix scenario, in terms of their ability to capture the case data. Even

Fig 7. Baseline disease transmission rate. The distributions for the baseline disease transmission rate, ec0j , for each region computed using the

estimated parameters c0j for j = 1, . . ., 13 (see Tables A and B in S1 Text for the estimates of c0j). Scenarios: fixed distance matrix (blue) and weekly

mobility matrices (gold).

https://doi.org/10.1371/journal.pcbi.1011123.g007
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though the distance matrix scenario captures the case data better than the weeekly mobility

matrix scenario, the difference in the fits for the two approaches is not much.

Discussion

An important feature of our modeling framework includes the ability to explicitly incorporate

factors that affect disease transmission into the transmission rate. This formulation allows us

to effectively access the contributions of these factors to disease transmission in our model. In

the example presented in this article, due to lack of adequate data, only time-series mobility

data was incorporated explicitly into the disease transmission rate. The effect of other factors

Fig 8. Contribution of other factors to disease transmission. The distributions for the contribution of other factors that affect disease transmission

(eg(t)) to the transmission rate (β(t)), computed every four weeks and for the last two weeks: g1 = 0 (weeks 1–4), g2 (weeks 5–8), g3 (weeks 9–12), g4

(weeks 13–16), g5 (weeks 17–20), g6 (weeks 21–24), g7 (weeks 25–28), g8 (weeks 29 & 30). Scenarios: fixed distance matrix (blue) and weekly mobility

matrices (gold). The estimated means with 90% credible interval are presented in Tables A and B in S1 Text.

https://doi.org/10.1371/journal.pcbi.1011123.g008
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that affect disease transmission was accounted for using a time-dependent piece-wise parame-

ter. We attempted to incorporate the effect of facemasks into the model but could not get ade-

quate data for facemask usage in each of the regions we considered. In this case, the disease

transmission rate was formulated as follows

bjðtÞ ¼ expðc0j þ c1 mjðtÞ þ c2 f ðtÞ þ gðtÞÞ; ð7Þ

where c0j for j = 1, . . ., 13 are region-specific scaling parameters used to compute the baseline

disease transmission rate for each region (ec0j is the baseline transmission rate for region j).
The parameters c1 and c2 are covariates for the mobility and facemask usage rates, respectively,

and g(t) is a time-dependent piece-wise parameter that is used to incorporate the effect of

other factors that affect disease transmission other than mobility and facemask. This formula-

tion can always be extended to explicitly account for other factors that affect disease transmis-

sion based on data availability.

Our model captures the trends and reported COVID-19 cases in each region (see Fig 6, and

Figs G and H in S1 Text). In addition, the results of the two model scenarios agree well,

although, there is a slight different in the estimated time-dependent disease transmission rates

and the contribution of mobility to disease transmission (columns 2 & 4) for some regions.

There are significant changes in the computed disease transmission rate over time, which may

be attributed to the intervention strategies implemented by the government during this period.

Even though there are no much changes in the time-series mobility data, its effect on the dis-

ease transmission rate is still apparent for each region. The estimated total initial prevalence of

COVID-19 in all the regions for the two scenarios agree well, as well as the estimates for the

time-dependent piece-wise parameter (g(t)), used to incorporate the effect of other factors that

affect disease transmission into the transmission rate (see Fig 8). However, the estimated effect

of mobility on disease transmission is significantly different for the two scenarios. The mean

estimate of this parameter was 0.53 (90% CrI: 0.44–0.60) for the distance matrix scenario and

0.90 (90% CrI: 0.72—0.98) for the weekly mobility matrix scenario. This can be interpreted as

mobility contributing to 53% and 90% of the cases in the regions for the distance and mobility

matrices scenarios, respectively. These results show that the weekly mobility data provides

more information, in terms of disease transmission, than the distances between the regions.

Note that the mobility referred to here is for both within and between the regions. To confirm

that indeed the weekly mobility data provides more information, we considered a third sce-

nario, where we used a fixed mobility matrix computed using the mobility data for the entire

study from July 2020 to January 2021. For this scenario, we estimated the effect of mobility on

disease transmission as 0.60 (90% CrI: 0.52—0.70) (see Fig (I-K) and Table D in S1 Text). As

expected, the fixed mobility matrix does not provide more information about disease transmis-

sion than the weekly mobility matrices, even though it does better than the distance matrix.

Table 2. Model comparison using leave-one-out cross-validation (LOO) and the widely applicable or Watanabe-Akaike information criterion (WAIC). Model rank-

ing (in descending order) is shown in the first column. The difference between the expected log pointwise predictive density (ELPD) for each scenario and that of the best

scenario with standard errors are shown in the second column. In the third column, we have the Bayesian LOO estimate of the expected log pointwise predictive density

(ELPD LOO) and its standard error. The LOO information criteria (LOOIC) and its standard error are given in the fourth column. Lastly, the computed Watanabe-Akaike

information criterion (WAIC) for each model is shown in the fourth column.

Scenario ELPD difference (SE) ELPD LOO (SE) LOOIC (SE) WAIC (SE)

Distance matrix 0.0(0.0) −1537.8(34.4) 3075.6(68.9) 3074.9(68.8)

Mobility matrix −9.5(6.9) −1547.3(36.2) 3094.6(72.4) 3093.4(72.3)

https://doi.org/10.1371/journal.pcbi.1011123.t002
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The constructed distributions for the baseline disease transmission rate for the two model

scenarios are similar for some of the regions and significantly different for other regions.

These distributions are similar for the larger and more urbanized regions with dense popula-

tion (Abbotsford, Burnaby, New Westminster, Surrey and Tri-Cities) and significantly differ-

ent for the less densely populated smaller regions (see Fig 7). The difference in the predicted

distributions for these two groups of regions may be attributed to their population size and

mobility in the regions. Lastly, we compared the results obtained from the two scenarios using

the leave-one-out cross-validation (LOO) and the widely applicable information criterion

(WAIC) methods. This comparison ranks the distance matrix results better than those of the

weekly mobility matrices, although, the computed LOO and WAIC for the two scenarios are

very similar (see Table 2). We considered these two model scenarios in order to test the

hypothesis of whether the time-dependent mobility matrices, computed from the mobile

device data, provide more information about human mobility between the regions in terms of

disease transmission than the distances between the regions. Based on our results, we conclude

that even though the distance matrix provides a better fit to the data, the weekly mobility

matrices have the ability to explain the variance in transmission between regions over time.

The model for when the distance matrix is used is considered a gravity model, while the sce-

nario where the weekly mobility matrices are used is referred to as a metapopulation model.
Hence, our hybrid gravity-metapopulation model.

Unlike in other models used to study the effect of human mobility on disease spread, where

mobility is described based on either the distances between regions or using mobile devices

data or other forms of mobility data only [37, 45, 47], our hybrid gravity-metapopulation

modeling framework provides the flexibility of switching between the two data types. In addi-

tion, our framework provides an approach for studying the spread of diseases between all the

regions of interest, rather than from an epicenter or a large city to its neighboring smaller cities

[43, 45], with the ability to quantify the effective contribution of mobility to disease spread

between the regions. The models used to study disease spread from an epicenter to neighbor-

ing regions/cities are only suitable for studying disease spread at the early stages of the disease

outbreak since there is a much higher probability of disease transmission from a person living

in the epicenter to those living in the neighboring regions as shown in [45]. Also these models

do not account for disease transmission between the smaller neighboring regions. Our model-

ing framework is suitable for studying disease dynamics at any stage of the epidemic and

accounts for disease spread from each of the regions to all the remaining regions, irrespective

of the number of reported cases in each region.

Overall, our modeling framework provides the ability to explicitly incorporate real data on

factors the affect disease transmission into the disease transmission rate, and also allows inde-

pendent assessment of the contribution of these factors to disease transmission in an epidemic.

Furthermore, this framework allows us to quantify the effect of mobility on disease transmis-

sion in the regions. However, this work is not without limitations. We quantified the effect of

mobility on disease transmission in the 13 LHAs of Fraser Health, BC, based on movements

between these thirteen regions only. However, there are movement in and out of these regions

to other parts of BC. Another limitation of this work is that some regions in Fraser Health are

closer to regions in other regional health areas in BC, than they are to other regions in Fraser

Health. For example, Burnaby is closer to Vancouver than it is to many of the LHAs in Fraser

Health. As a result of this, the spread of COVID-19 in Burnaby may be influenced more by the

number of cases in Vancouver than in other regions in Fraser Health, e.g. Hope, Chilliwack

and Agassize/Harrision. In the example presented here, we explicitly incorporated only the

time-series mobility data into the disease transmission rate and accounted for other factors

that affect disease transmission through a piece-wise parameter. An interesting extensions of
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this work would be to incorporate the data for other factors that affect disease transmission

explicitly into the model. This way, the effect of each factor on disease spread can easily be

assessed. Another extension of this model is to include vaccination and the variants of concern

of COVID-19. Since mobility rate varies by age, an exciting extension of this work would be to

stratify the population of each region by age. This way, in addition to assessing the impact of

mobility on disease spread, it would also be possible to assess the contribution of each age

group to disease spread.
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