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Abstract: We propose a new method to estimate the change of the effective reproduction number
with time, due to either disease control measures or seasonally varying transmission rate. We validate
our method using a simulated epidemic curve and show that our method can effectively estimate both
sudden changes and gradual changes in the reproduction number. We apply our method to the COVID-
19 case counts in British Columbia, Canada in 2020, and we show that strengthening control measures
had a significant effect on the reproduction number, while relaxations in May (business reopening) and
September (school reopening) had significantly increased the reproduction number from around 1 to
around 1.7 at its peak value. Our method can be applied to other infectious diseases, such as pandemics
and seasonal influenza.
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1. Introduction

In December 2019, a novel coronavirus (COVID-19) was discovered [1]. COVID-19 is a respiratory
infectious disease caused by the severe acute respiratory syndrome coronavirus, transmitted by contact,
aerosols and inhalation of virus-infected droplets [2,3]. Unfortunately, there were no effective drugs to
treat the disease in 2021 [1]. Therefore, the control protocols were mainly physical isolation, such as
quarantine, contact tracing and social lockdown [4–8]. Therefore, it is crucial to study the effectiveness
of control measures for this disease.

The basic reproduction number R0 is a critical parameter in the analysis of infectious diseases.
It measures the average number of secondary infections caused by a typical infectious individual in
a fully susceptible population. The disease will not cause an epidemic if R0 < 1 [11–13]. As the
epidemic progresses, or when control measures such as social distancing and vaccination are imple-
mented, susceptible individuals are depleted and some of the contacts of the infectious individuals are
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made to already infected individuals, which do not cause transmission. In this case, the threshold for
disease spread is measured by the effective reproduction number Rt, which measures the number of
secondary infections caused by a typical infectious individual in the current population (with some
already infected individuals). Its value is usually calculated as the product of R0 and the average pop-
ulation susceptibility [2, 4, 11]. In the initial stage of disease when the number of infected individuals
is only a tiny fraction of the total population, Rt ≈ R0. Wallinga and Teunis [9] proposed a method
to approximate the effective reproduction number, which studied the average number of reproduction
for patients who are infected on a given day. Note that this is not the same as the number of infections
caused by a patient on a given day. In addition, this method requires the time of infection of patients,
which is difficult to trace. Cori et al. [14] presented a simple method for estimating the effective re-
production number, which is based on the time series of disease occurrence. However, this method’s
effective reproduction number Rt is delayed significantly. Das [4] presented a method for estimating
an approximate Rt by taking into account both the mean generation interval and the instantaneous ex-
ponential growth rate. However, the instantaneous exponential growth rate can only be estimated from
a long enough time period, preventing this method from detecting sudden changes in Rt. In this paper,
we propose a new method to directly calculate the real-time reproduction number through confirmed
cases and evaluate the effectiveness of control measures.

Based on reported cases of COVID-19, we use the back-calculating method [15] to obtain the
number of incidences and the number of infectious patients on each day and then we use them to
estimate the change in reproduction number. Moreover, we derive the impact of control measures from
the change in the reproduction numbers.

We establish the model in Section 2 and verify it using simulations in Section 3. In Section 4, we
show how we applied the model to British Columbia (BC), Canada to obtain their reproduction number
and the impact of control measures on the reproduction number; the results are summarized and future
work is discussed in Section 5.

2. Methods

2.1. Model

In this section, we consider a discrete-time stochastic seir model in a randomly mixed population.
Let S t, Et and It be the number of susceptible, latent and infectious individuals on day t. Because of
the random-mixing assumption, the expected number of new infections on day t is

Zt = βS tIt. (1)

A newly infected patient goes through a latent period L and becomes infectious. Here L is a discrete
random variable with a probability mass function {pi}

∞
i=0, i.e., the probability that the latent period has

a length of i days is pi. This patient then goes through an infectious period X and is diagnosed. Let the
probability mass function of X be {qi}

∞
i=0. Let Qi be the cumulative probability function of X, that is

Qi =

i∑
j=0

q j, 0 ≤ i ≤ ∞. We assume that, once diagnosed, the patient is fully isolated and stops being

infectious. The course of disease Y is the sum of the latent and infectious periods, i.e., Y = L + X. Let
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di be the probability mass function of Y . Then

di =

i∑
j=0

p jqi− j. (2)

By definition, the basic reproduction number, i.e., the average number of secondary infections
caused by a typical infectious individual during the infectious period in a fully susceptible popula-
tion, is

R0 = βE[X],

where E[X] =

∞∑
i=0

iqi is the mean infectious period.

Thus, the effective reproduction number on day t is

Rt = R0S t = βS tE[X] =
Zt

It
E[X]. (3)

Note that the last step is from (1).
Given the mean infectious period E[X], we need to estimate the number of new infections Zt and

the number of infectious individuals It so that we can estimate the effective reproduction number Rt.
Note that Zt and mt have the following relationship

mt =

∞∑
i=0

Zt−idi . (4)

With the mt given, we need to solve Zt. Unfortunately, this is a deconvolution problem, and it is difficult
to solve (see, e.g., [16]). Instead of solving it, we use the following method to approximate Zt. Suppose
that the number of diagnosed cases on day t, namely mt, is observed for days t = 0, 1, . . . ,T . A patient
who is diagnosed on day t + i, 0 ≤ i ≤ T − t was infected on day t if and only if the serial interval Y = i,
i.e.,

Zt =

T−t∑
i=0

mt+idi =

T−t∑
i=0

i∑
j=0

mt+i p jqi− j. (5)

Note that (5) does not solve the deconvolution problem given by (4). However, we will show that
this can give a good approximation for Zt, especially if mt is approximately exponentially growing or
decaying and the change in the exponential growth rate is slow (measured on the time-scale of the
mean serial interval). To see this, assume that Zt = Z0µ

t for a constant µ > 0 (the exponential growth
rate is thus log µ); then, (4) becomes

mt =

∞∑
i=0

Z0µ
t−idi = Z0µ

tg(1/µ) , (6)

where g(x) =
∑∞

i=0 xidi is the probability generating function of the serial interval distribution di. Sub-
stitute this into the right hand side of (5) and assume T � 1; then,

∞∑
i=0

mt+idi = Z0µ
t+ig(1/µ)di = Z0µ

tg(µ)g(1/µ) = Ztg(µ)g(1/µ). (7)
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Table 1. Explanations of nouns appearing in the paper.

Symbols Significance
S t susceptible at time t
Et latent at time t
It infectious at time t
Ct the number of individuals who are infected on day t
L latent period
X infectious period
Y the sum of the latent and infectious periods
qi the probability that the infectious period has a length of i days
pi the probability that the latent period has a length of i days
di the probability mass function of the disease course Y
mt the number of cases reported on day t

Thus, if the change in Zt is slow, i.e., µ ≈ 1, then g(µ)g(1/µ) ≈ 1.
Using a similar approximation, a patient who is diagnosed on day t + i was infectious on day t

because the infectious period X ≥ i. That is,

It =

T−t∑
i=0

mt+iProb{X ≥ i} =

T−t∑
i=0

mt+i(1 − Qi−1). (8)

Thus, from (3),

Rt =

∑T−t
i=0
∑i

j=0 mt+i p jqi− j∑T−t
i=0 mt+i(1 − Qi−1)

E[X]. (9)

The symbols used in this article are described in detail in Table 1.

2.2. Confidence interval

Given the mean infectious period E[X], in order to find the 95% confidence interval of Rt, we will
get a random sample of Zt and It by using the Monte Carlo method. For the patients who are diagnosed
on day t, let Z̃t,t−i be the number of those who are infected on day t − i for i = 0, 1, . . . . Then, the
approximation given by (5) is equivalent to the following two steps:

a) Assume that Z̃t,t−i is multinomially distributed according to

Z̃t,t−i ∼ multinomial(mt, di). (10)

b) The number of individuals who are infected on day t is

Zt =

T−t∑
i=0

Z̃t+i,t. (11)

Note that the mean of (11) is given by (5).
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Similarly, for patients who show symptoms on day t, the number of those who were infected on day
t − i is

C̃t,t−i ∼ multinomial(mt, qi). (12)

Thus, the number of individuals who are infected on day t is

Ct =

T−t∑
i=0

C̃t+i,t. (13)

Note that, here, Ct is a random variable, the mean of which is given by

E[Ct] =

T−i∑
i=0

mt+iqi, (14)

which uses a similar approximation as (5).
The expected number of individuals It who are infectious on day t is the total number of people

who have become infectious but have not been removed from transmission (via recovery or isolation).
Thus, It can be calculated as

It =

t∑
i=0

Ci −

t∑
i=0

mi, (15)

where the first term on the right-hand side is the number of patients who have become infectious before
(or on) day t, while the second term is the number of patients who have been diagnosed and isolated
before (or on) day t.

To generate one sample of Zt and It, for each mt, t = 0, 1, . . . ,T , we use (12) to generate a sample
for C̃t,t−i, and then use (13) to calculate Ct. We then use the calculated Ct to generate a sample of Zt

using (10) and (11), and we use the calculated Ct to generate a sample of It using (10), (11) and (15).
We can then use (3) to calculate a sample of the curve Rt.

We generate 105 samples for Rt. For each t = 0, 1, . . . ,T , we use these samples to estimate the 95%
confidence interval.

3. Model validation

To verify that our model can correctly estimate the reproduction number, we apply (9) to a dataset
generated from stochastic simulations by using the method in Section 2.2 to estimate the 95% confi-
dence interval of the reproduction number.

Non-pharmacological intervention (NPI) measures reduce the transmission rate [17]. The latent
period and infectious period are specific to the disease, and are not affected by NPI measures. Thus,
we consider the following two cases.

Case 1 Seasonal variation in the transmission rate is sometimes approximated by a sinusoidal func-
tion [10, 18, 19]. Here we assume β to be sinusoidal to verify that our method can detect continuous
change in β(t). Specifically,

β = 0.2[cos(
2πt
365

) + 1]. (16)
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In this case, the infectious period is assumed to be gamma-distributed with a shape parameter of 3 and
a rate parameter of 0.2; the latent period is assumed to be gamma-distributed with a shape parameter
of 3 and a rate parameter of 0.3. Note that these choices only serve as a numerical example and are (no
comma) not tied to a specific disease.

Case 2 The transmission rate is assumed to be a step function to simulate a sequence of control
measures that cause sudden change in β, that is,

β =



0.5, t ∈ [0, 40),
0.4, t ∈ [40, 60),
0.3, t ∈ [60, 80),
0.2, t ∈ [80, 100),
0.3, t ∈ [100,∞).

(17)

In this case, the infectious period is assumed to be gamma-distributed with a shape parameter of 3 and
a rate parameter of 0.25; the latent period is assumed to be gamma-distributed with a shape parameter
of 3 and a rate parameter of 0.2.

In both cases, the simulated population size is 106. During the simulated time periods, the number
of infected individuals is only a small fraction of the population size; thus, S (t) ≈ 1 and the effective
reproduction number is approximately the basic reproduction number.

Figure 1 shows the comparison of the estimated reproduction number Rt as a function of time with
the true value for Case 1. Figure 2 shows the comparison for Case 2. In both cases, our method can
correctly estimate the reproduction number. In addition, these figures also show that the confidence
interval narrows with a larger case count.

4. Application to the COVID-19 outbreak in BC, Canada in 2020

Now that we have validated our method, in this section, we apply the method to study the change
of the reproduction number as a function of time for the COVID-19 outbreak in BC, Canada in 2020.

In BC, we consider the following policy changes:

• Provincial state of emergency was declared on March 17;
• Businesses reopened on May 19;
• Provincial state of emergency was declared on July 7;
• Provincial state of emergency was declared on August 5;
• Public K-12 schools reopened on September 10;
• Provincial state of emergency was declared on October 28;
• Provincial state of emergency was declared on December 23.

We used the daily reported case count data for the period of March 1 to December 31, 2020 that
were released from the BC Centre for Disease Control (BCCDC) as a spreadsheet. This spreadsheet
has been taken offline. However, the data can still be accessed via the COVID-19 dashboard on the
BCCDC website [20].

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13849–13863.
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Figure 1. Model validation for Case 1. The top panel shows the simulated epidemic curve
(in log10), while the lower panel shows the comparison of the estimated reproduction number
and its confidence interval with the true value in blue. Note that, when the case count is
low, the confidence interval becomes very large, causing the upper and lower bounds of the
confidence interval to disappear on some days.
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Figure 2. Model validation for Case 2. The top panel shows the simulated epidemic curve
(in log10), while the lower panel shows the comparison of the estimated reproduction number
and its confidence interval with the true value in blue.
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Table 2. The estimated parameters for the gamma-distributed COVID-19 infectious period
in BC, Canada in 2020.

Parameter Mean Sd 95% confidence interval
α 4.791 1.074 (3.133, 7.358)
ε 1.815 0.373 (1.143, 2.610)

To apply our method, we need to know the latent period distribution and the infectious period
distribution. We use the latent period distribution estimated by [21], which is gamma-distributed with
a mean of 5.48 days and a standard deviation of 2.72 days.

On the other hand, regional differences in testing policy and human behavior in voluntary testing
may affect when a patient is diagnosed and isolated, and, in turn, affect the infectious period. In Sub-
section 4.1, we estimate the infectious period distribution in BC from the daily number of diagnosed
cases and symptom onsets.

4.1. Estimate the infectious period

We assume that the patients will be isolated after being diagnosed. Therefore, the end of their
infectious period is marked by diagnosis, not recovery. We assume that the infectious period is gamma-
distributed [22–26], with a shape parameter α and a scale parameter ε.

We digitized and tabulated the daily number of symptom onsets for the period of January 15 to June
7, 2020 from the British Columbia COVID-19 Daily Situation Report released on June 9 [27].

Using an approximation similar to (5), the expected number of patients showing symptoms on day
t can be calculated from the diagnosed cases on day t + i ( mt+i) as

λt =

T−t∑
i=0

mt+iqi. (18)

We assume that Ct is the observed symptom onset count on day t; it follows a Poisson distribution
with the mean λt, i.e.,

Ct ∼ Poisson(λt) (19)

We use the Markov chain Monte Carlo method via the R package “R2jag” to estimate the distri-
bution parameters α and ε. The prior distributions of the parameters are chosen to follow a uniform
distribution with wide intervals:

α ∼ U(0, 10) , ε ∼ U(0, 5) (20)

The results are given in Table 2. Figure 3 shows the point estimate and 95% confidence interval of the
estimated density function of the infectious period distribution.

4.2. Estimate the effective reproduction number

Using the point estimate of the infectious period distribution in Subsection 4.1, we estimate the
reproduction number as a function of time in BC, Canada.

Figure 4 shows both the epidemic curve (reported cases) and the estimated reproduction number.
This figure shows that, since the provincial state of emergency on March 17, the reproduction number
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Figure 3. The point estimates and 95% confidence interval of the probability density function
of the infectious period distribution in BC, Canada.

was controlled to below 1 until the relaxation (business reopening) announced on May 19. The repro-
duction number then increased gradually after the relaxation to 1.76 in June, being largely maintained
until August 1st, at which point it was about 1.60. The strengthening of control measures on August 5
reduced the reproduction number and eventually controlled it to around 1 on September 10. It then in-
creased again to a peak value of 1.67 on October 10. It was then brought back to about unity beginning
on November 13.

5. Concluding remarks

We have developed a novel method to estimate the change of the reproduction number with time.
Using simulated data, we have shown that our method can estimate the change in the reproduction
number due to either seasonal forcing or control measures. This means that our method is widely
applicable to understand the change of the transmission rate.

Applying our method to the COVID-19 outbreak in BC, Canada in 2020 shows that the strengthen-
ing of control measures such as social distancing, restricting gathering and closing schools from March
20 to the end of May successfully reduced the reproduction number to below 1, except for a period in
early April (may be due to clustered cases in long-term care facilities [28], or the gathering activities of
the Easter holiday). However, the reproduction number gradually increased to above 1 after business
reopening in May, even though the case counts did not exhibit an immediate increase. This shows that
our method is very sensitive as a tool to detect the changes in reproduction number. The same increase
also happened after the school reopening in September, which eventually triggered the fast increase
of cases in October and early November. Note that, during this time, the variants of concern had not
shown up yet, that is, no variants of concern appeared in 2020 [29, 30]. Thus, the increase of cases is
mostly likely due to the relaxation of control measures.

Not surprisingly, our estimation yields a narrower confidence interval with a larger case count. Our
method also relies on reliable estimation of the latent and infectious periods, which may be difficult to
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Figure 4. The top panel shows the daily reported cases (in log10). The lower panel shows the
estimated reproduction number and the confidence interval on each day. The vertical lines
show the dates of the implementation of epidemic control measures, where the orange lines
show the declaration of a state of emergency, and the green lines show the dates of relaxation.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13849–13863.



13860

estimate during the early stage of a disease outbreak. However, we have also demonstrated that our
method can be adapted to estimate the infectious period from the daily counts of symptom onset and
diagnosed cases.

Another limitation of our method is that it ignores asymptomatic and pre-symptomatic transmis-
sions, which may be an important factor driving the COVID-19 transmission. However, this may not
significantly affect our method if the ratio of asymptomatic cases to all cases remains roughly constant,
as the proportional fact is canceled in our formulation.

Our method provides a new tool for analyzing host immunity resulting from the effective vaccina-
tions, with and without NPI measures. At the onset of disease spread, the effective vaccination rate
v is the primary factor influencing the number of susceptible individuals. In this case, the effective
reproduction number can be expressed as Rt = β(1 − v)S tE(X), which is similar to (3). If the effec-
tive vaccination rate v is known, our method can estimate the temporal changes in β. However, in the
absence of information about v, it is only possible to estimate the value of β(1 − v), not the individual
parameters β and v.

Our method can be used to study other infectious diseases as well. For instance, it can be used to
investigate the influence of seasonality on the transmission of seasonal influenza, or to examine the
effect of control measures on historical outbreaks, such as pandemic influenza, SARS and Ebola. Fur-
thermore, our method can be applied to the study of vector-borne diseases, including those transmitted
by mosquitoes, by extending our model to consider the disease transmission from person to person,
with mosquitoes as the vectors. However, obtaining the specific changes in β is challenging, as the
infection rate through the vector depends on the change in infected mosquitoes, resulting in a more
complex dependence of β on mosquitoes than the simple S EIR model. Therefore, further research is
needed to address this complexity. Additionally, the same generalization can be applied to sexually
transmitted infections.
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