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Abstract: Public opinion and opinion dynamics can have a strong effect on the transmission rate of
an infectious disease for which there is no vaccine. The coupling of disease and opinion dynamics
however, creates a dynamical system that is complex and poorly understood. We present a simple
model in which susceptible groups adopt or give up prophylactic behaviour in accordance with the
influence related to pro- and con-prophylactic communication. This influence varies with disease
prevalence. We observe how the speed of the opinion dynamics affects the total size and peak size
of the epidemic. We find that more reactive populations will experience a lower peak epidemic size,
but possibly a larger final size and more epidemic waves, and that an increase in polarization results in
a larger epidemic.
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1. Introduction

Infectious disease dynamics, as predicted by classical compartmental models, involve a single
epidemic wave that can be prevented if the basic reproduction number R0 is less than 1 [25]. However,
such models are of limited use in situations where knowledge of disease can alter behaviour that
impacts disease spread. Behaviour-disease models (or disease-behaviour) are intended to address this
limitation [18, 19, 29]. Depending on the model, the behaviour respresented could be vaccination,
social distancing, face-mask wearing, or other activities related to prophylaxis.
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Behaviour-disease models can be roughly divided into two types, those representing lasting
prophylaxis, others transient prophylaxis. Vaccination is an example of lasting prophylaxis because
of the long-term protection received from the choice to vaccinate (where “long-term” indicates that
protection lasts much longer than the typical time course of the epidemic). Face-mask wearing is an
example of transient prophylaxis because the term of protection is nearly identical with the period of
choosing it.

For behaviour-disease models with lasting prophylaxis, as exemplified by [20], we expect that
“every little bit helps”: As we increase the fraction of the population that vaccinates, there is a
monotonic decrease in various measures of epidemic severity. In this context there are important
questions about how decision making undergirding behaviour affects various thresholds that need to be
reached in order to achieve desired levels of lower disease severity.

However, the same monotonic and cumulative patterns do not seem to hold for transient prophylaxis.
That is, merely increasing the fraction of the population that engages in prophylaxis for some time is not
necessarily associated with decreases in severity, at least as measured by multiple waves of infection.
Multiple epidemic waves, or recurrent epidemics, have been observed in models that include a periodic
external forcing, e.g., seasonal changes in behaviour [5, 8], seasonal variations in temperature or
moisture [7], mutation in the pathogen or waning immunity [6], or government lockdowns [26,27] and
other management approaches [1]. Indeed, in the current COVID-19 pandemic, several jurisdictions
across the globe have experienced multiple epidemic waves [4], brought on, at least in part, by changes
in behaviour as governments impose restrictions on movement, and then release them later, in a
repeating pattern.

Prior to the COVID-19 pandemic, transient prophylaxis was shown to have non-monotonic effects
on epidemic severity. For example, [21] developed models where transient behaviour like social
distancing is changed as the result of infection data being spread through media. Transient prophylaxis
can significantly reduce epidemic severity for short-term outbreaks, especially when the infectious
disease has high morbidity and mortality rates. In scenarios such as these, [21] recommend a strategy
where the relevant information is provided as early as possible. However, for long-term outbreaks, the
reporting of infection data to the population can result in higher epidemic severity than no reporting
at all, as measured by final size (the total number of individuals who contracted the disease during the
epidemic).

Another example where transient prophylaxis has non-monotonic effects is given by [24]. They
imposed an SIR model on a spatial network where individuals can choose to social distance by dropping
connections based on information of infection rates in their ‘awareness neighborhood’. They consider
that there is a cost to prophylaxis (social distancing), which is weighed against the economic benefit
of reducing the impact of the epidemic. They look specifically at parameters related to risk attitudes
and size of the awareness neighbourhood. Their finding is that, where final size is concerned, unless
control measures are instituted quickly and effectively, it is better to let an epidemic run its course -
partial controls that do not succeed at suppressing the epidemic lead to worse outcomes (again, with
respect to final size).

Given such non-monotonic effects and their complications on public health decision making, it is
worth developing models involving decision-procedures that underly transient prophylaxis. To that
end, [28] investigated the role of planning horizons in a decision-theoretic model of self-interested
individuals deciding to engage in transient prophylactic behaviour. They found that depending on the
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frequency with which decisions are made and perceptions regarding the risk of infection, engaging
in prophylaxis can prolong epidemics and produce multiple waves of infection. Similar results
were obtained by [22], but in their model susceptible individuals decide whether or not to adopt
prophylactic behaviour using imitation dynamics in an evolutionary game-theoretic framework. In
such a framework, individuals evaluate their risk of infection (and associated costs) by interacting with
susceptible, infectious, or removed individuals.

In short, these and related examples explore the non-monotonic effects on disease severity generated
by transient prophylaxis and various mechanisms that contribute to the switching of behaviour,
including risk perception and awareness of disease information. These mechanisms capture the
response of individuals to actual (or perceived) disease metrics, to which they have access via news,
social media, or interactions with “neighbours”.

We are interested in understanding how multiple waves can arise simply as a consequence of
human opinion dynamics interacting with disease dynamics. In such a model, individuals are less
prescient than those in decision-theoretic or game-theoretic models, and instead change their behaviour
(or not) in response to “conversations” with other individuals, where the influence of prophylactic
voices increases with disease prevalence. We believe this is an important contribution to the literature.
Modern technology makes the rate of communication of individual opinions extremely fast, making
opinion dynamics a potentially significant factor in the time course of epidemics. Moreover, while it
is still unknown just how large an impact social media has [11], it can lead to the intensification of
“echo chambers”, where people primarily listen to (or are presented with, via social media algorithms)
opinions that are the same as their own. One of the consequences of this dynamic is that opinions on
either side, in this case, prophylaxis or not, can lead to a polarized population that is less responsive to
dynamic threats [12, 13]. By approaching a behaviour-disease model from the perspective of opinion
dynamics, we can capture some aspects of opinion polarization.

As we will show, we find that adding a very simple model for human opinion dynamics to a standard
SIR-type compartmental model is enough to get complex epidemic behaviour. In particular, we find
that multiple epidemic waves can arise simply as a result of the coupling between disease and opinion
dynamics - we need not suppose outside interventions, delayed information, misperception, mutations
of the disease, etc.

Our coupled model is both a simplification and an extension of an earlier disease and opinion
dynamics model [30]. In this earlier model, susceptible individuals could adopt one of four levels
of prophylaxis, with only the highest level reducing transmission sufficiently to make R0 < 1. The
motivation for having multiple groups was to have prophylactic behaviour spread in a way akin
to opinion dynamics where groups can exert influence on one another. We were interested in the
case where opinions were spread across a spectrum between extremes on either side of an issue.
In order to represent extreme and moderate opinions on both sides of the opinion spectrum, we
needed a minimum of four groups. Each susceptible group had a transient behaviour associated with
prophylaxis that provided some reduction in the spread rate of the disease; diligence in wearing a face-
mask is an example of such behaviour. One group was very prophylactic (e.g., wearing a face-mask
100% of the time), another somewhat prophylactic (e.g., wearing a face-mask only indoors), a third
somewhat non-prophylactic (e.g., only wearing a face-mask when directly asked to do so), and the
fourth completely non-prophylactic (e.g., refusing to wear a face-mask). We assumed that there was
no cost to prophylaxis. The challenge presented by this original model [30] is that the use of four
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susceptible groups leads to a 6th order system of ODEs for which a comprehensive characterization
of model behaviour is exceedingly difficult. In the present work we reduce the complexity of the
opinion dynamics portion of the model, allowing susceptible individuals only “prophylactic” or “non-
prophylactic” states. The two groups still influence one another, allowing us to investigate opinion
dynamics with disease dynamics in a simpler framework. In addition to this simplification, the
new model has an extension that makes it more behaviourally compelling: We introduce a cost to
prophylaxis. This cost means that the prophylactic group tends to revert to being non-prophylactic
when disease incidence drops, as we would expect with the wearing of face-masks, for example.

In some respects the nuances of human behaviour are more consistent with the earlier model,
e.g., it’s unlikely that a population can be cleanly divided into the non-face-mask-wearers and the
always-face-mask-wearers, but rather have some levels in between. In other respects, the nuances of
human behaviour are more consistent with this new model. Prophylaxis has a cost - wearing a face
mask is at the very least less comfortable than not wearing one - and such cost can be a relevant
consideration in understanding the interaction between behaviour and disease spread [38]. Nuances
regarding representation aside, this newer model is simpler and that simplification allows us a more
exhaustive exploration of parameter space and a more thorough understanding of conditions leading to
multi-wave epidemic behaviour.

2. Model

Our model is a classic SIR (Susceptible-Infective-Removed) model with additional compartments
for opinions. The compartmental diagram is shown in Figure 1. We assume that recovered individuals
are permanently immune. We also assume that the rate at which susceptible individuals are persuaded
to transition between the different behaviours (prophylaxis or non-prophylaxis) depends on the
prevalence of infection (I) in a nonlinear way as defined by influence functions ωi(I) (discussed in
more detail in Section 2.1). The model we present here is both a simplification and an extension of an
earlier opinion and disease dynamics model by [30], in which the susceptibles were divided into four
subgroups, with increasing degrees of prophylactic or non-prophylactic behaviour. The simplification
we assume here is that the population is divided into just two subgroups. Our extension is to include
the cost of prophylactic behaviour in the influence function (see Section 2.1).

The state variables in our model are the population proportions of prophylactic susceptibles, S p,
non-prophylactic susceptibles S n, infectious, I, and removed (dead, or recovered and immune), R. The
model equations are written

Ṡ p = −βpIS p + (ωp(I) − ωn(I))S pS n, (2.1a)
Ṡ n = −βnIS n − (ωp(I) − ωn(I))S pS n, (2.1b)

İ = (βpS p + βnS n − γ)I, (2.1c)
Ṙ = γI. (2.1d)

Note that all populations are scaled by the total population, thus, S p, S n, I, R are all between 0 and 1,
and S p + S n + I + R = 1. For reference, the parameter and variable descriptions are listed in Table 1.
These parameter values are chosen for illustration purposes.

Prophylactic behaviours such as mask wearing, increased hygiene, or social distancing has been
shown to significantly reduce the spread of infectious diseases [35–37]. We thus assume that S n and S p
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Figure 1. Compartmental diagram for the coupled opinion and disease dynamics model.
Variables appear inside boxes; rates appear above arrows. The S n and S p populations are
the susceptibles exhibiting non-prophylactic and prophylactic behaviour, respectively. The
I and R populations are the populations of infective and removed (dead, or recovered and
immune). Note that the transition rates between the S i groups is affected by the size of the I
group through the influence functions ωn(I) and ωp(I).

Table 1. State variables and parameters and the default parameter values used in this paper.
Values given do not reflect a specific infectious disease. Default values are meant to provide
an understanding of model dynamics and the spread of infectious disease in general.

Symbol Definition Default Value
S i Susceptible subpopulation with opinion i ∈ n, p
I Infectious population
R Recovered population
ωi(I) Influence of susceptibles with opinion i ∈ n, p
ω0 Baseline influence when I = 0 0.1
β0 Standard infection rate 0.15
a−1 Prophylactic reduction in infection rate 0.5
γ Recovery rate from infection 0.1
c Cost of prophylaxis 0.01
k Half saturation constant of influence functions 0.1
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individuals become infected at different rates, denoted βn and βp, respectively. Given that prophylaxis
reduces the probability of contracting the disease, we assume

βn = β0, βp =
β0

a
, (2.2)

where β0 is the baseline infection rate for the non-prophylactic population, and a > 1 is the reduction
in the infection rate associated with prophylaxis. Note that in our model we do not represent the
mechanisms that cause this reduction.

2.1. Influence functions

Susceptible individuals may transition between prophylaxis and non-prophylaxis over time, as a
consequence of meaningful interactions through encounters with other susceptible individuals (these
are the S pS n terms in (2.1a) and (2.1b)). This updating of opinions and behaviour is moderated by
influence. The influence, ωi(I), is a factor that increases the rate of interactions between opposite-
minded individuals leading to the adoption of opinion i. For example, the overall rate at which
S j individuals adopt opinion i is given by ωi(I)S iS j, proportional to both the frequency (S iS j) and
effectiveness (ωi(I)) of interactions between prophylactic and non-prophylactic individuals.

The influence functions we develop are based on two main properties of human behavioural
responses to disease. First, research has shown that attitudes shift towards prophylaxis if the threat
of disease is high [9]. Second, when disease prevalence drops, populations tend to revert to familiar,
less costly, non-prophylactic behaviours, though the rate of reversion varies from one jurisdiction to
another [14, 39]. These two behaviours are evident in the [40] opinion poll, which asks Americans
about their fear of the Coronavirus. This graph appears to be high when disease is high and low
when disease is low. There was a dip in fear along with the dip in cases seen mid-summer 2020. We
therefore assume that the influence exerted by S p and S n individuals, ωp andωn respectively, is affected
by the level of infection I. In particular, we take ωp(I) to be a monotonically increasing function of
I, and ωn(I) to be a monotonically decreasing function of I. Second, we assume an ‘influence cost of
prophylaxis’, ωn(0) − ωp(0) = c > 0, which means that non-prophylactic influence dominates when
there is no disease present, and so the population tends to revert to non-prophylaxis. This quantity, c,
captures the cost of, for example, waiting in line for one’s turn to enter a store, purchasing and washing
masks, or giving up social activities involving large gatherings.

We use saturating influence functions developed in previous work [30], with the additional cost term
c:

ωp(I) = ω0

(
1 +

I
k + I

)
− c, (2.3a)

ωn(I) = ω0

 1
I
k + 1

 . (2.3b)

Note that in Equations 2.1, the influence functions do not appear separately but always as their
difference, which is given by

ωp(I) − ωn(I) = ω0

1 +
I

k + I
−

1
I
k + 1

 − c. (2.4)
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Figure 2. The prophylactic influence ωp(I) (solid black) and non-prophylactic influence
ωn(I) (dashed black) plotted as functions of the proportion of the population that is infected.
Susceptibles become prophylactic at an effective rate of (ωp − ωn) shown in blue (colour
online). The net shift of susceptibles is toward prophylaxis once I > Icross, which is the point
at which the dashed and solid black curves intersect and the effective rate curve (blue) is
equal to zero.

Figure 2 shows the two individual influence functions and their difference for the default parameter
values. From (2.4) we can infer that increasing ω0 will cause the positive section of the ωp − ωn curve
(the portion above the axis) to increase, and the negative section to decrease. That is, the net rate of
opinion change increases as ω0 increases.

We require c ≤ ω0 to prevent negative influence in the absence of disease. We assume that
this influence cost of prophylaxis is fixed. Increasing ω0 increases the baseline reactivity of each
subpopulation to the opposing opinion; the rate at which susceptibles become prophylactic in the
presence of disease is also increased. The difference ωp(I) − ωn(I) determines the net rate at which
susceptibles move into the prophylactic subpopulation. The disease level at which the net rate of
adoption of prophylaxis becomes positive is given by

ωn(Icross) = ωp(Icross)⇔ Icross =
ck

2ω0 − c
. (2.5)

Thus, for I < Icross, the prophylactic subpopulation tends to zero, and for I > Icross, the non-
prophylactic subpopulation tends to zero. From (2.5) we see that that increasing ω0 decreases Icross,
resulting in a lower threshold for prophylactic response. Similarly, increasing c or k increases Icross.

2.2. Effective reproductive number

As the susceptible population in our model is divided into two groups with different infection rates,
the transmissibility of the disease depends on the subdivision of susceptibles into prophylactic and
non-prophylactic proportions. The effective reproductive number is thus

re f f (t) =
βnS n(t) + βpS p(t)

γ
. (2.6)
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When re f f > 1 the disease will spread, and when re f f < 1 the disease will die out. By design, the
influence cost of prophylaxis will cause the susceptible population to tend towards non-prophylaxis
in the time limit. Herd immunity is achieved when the susceptible subpopulations are sufficiently
small. Since we have assumed a closed population, this criterion is equivalent to stating that the
removed population is sufficiently large. Since the susceptible population reverts to non-prophylaxis
when disease prevalence is low, we determine the necessary size of R for herd immunity assuming the
entire susceptible population is non-prophylactic. We thus arrive at the herd immunity threshold [25]

R∗ = 1 −
γ

βn
. (2.7)

If R ≥ R∗ herd immunity will be achieved and any infectious individuals remaining in the population
cannot initiate another epidemic wave.

3. Results

To solve the system dynamics we use the ode45 solver in [32]. The population is initialized with
I(0) = 0.01, and a 99:1 non-prophylactic:prophylactic majority. The parameter values used are listed
in Table 1. We explore how adjusting the timing and speed of the prophylactic response, via ω0, affect
the course of the epidemic.

3.1. Relative rates and multiple epidemic waves

We find that multiple epidemic waves can arise simply as a consequence of the interaction between
the disease and opinion dynamics, where the number of waves is determined by the relative rates of
the disease and opinion dynamics. Figure 3 shows the nonlinear relationship between the number of
epidemic waves and increasing values of the two basic rates, β0 and ω0. We see that for fast enough
disease dynamics (β0 large enough), the opinion dynamics cannot respond quickly enough to change
the course of the epidemic, and there is a single wave. For slow enough disease dynamics, there is
no wave at all: This scenario corresponds to the situation where re f f < 1 even in the absence of
opinion dynamics. For intermediate values of β0 however, opinion dynamics can respond to infection
fast enough to alter the course of the epidemic. For our default parameter values we see up to four
epidemic waves before the disease ultimately dies out.

Multiple waves occur when the reactivity of the population to increasing disease prevalence is
fast enough to ensure that herd immunity is not achieved after the first wave. Figure 4 illustrates
this behaviour. In the top plot, we see a simple epidemic with a single wave and herd immunity
achieved (exactly, for the parameter values shown). In the middle and bottom plots, the speed of the
opinion dynamics is increased relative to the disease dynamics by increasing ω0 and holding β0 at the
default value. In other words, the susceptible population is more responsive to the increase in disease
prevalence, and shifts more quickly to prophylaxis. In these scenarios, herd immunity is not achieved
after the first wave, and so a second epidemic wave is observed.

New waves of disease are created as follows. First, the initial epidemic wave must infect
some proportion of the population less than that required for herd immunity. During this initial
infection, opinions in the susceptible population shift towards prophylaxis, reducing disease spread
and decreasing re f f (t). After infection and switching to prophylaxis have sufficiently reduced the size
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Figure 3. Intermediate disease transmission rate with fast opinion dynamics leads to multiple
epidemic waves. Number of epidemic waves as a function of the baseline speed of the
opinion dynamics, ω0, and the non-prophylactic infection rate, β0. Results were obtained
with a grid spacing of ∆β0 = ∆ω0 = 0.03. Dark blue: disease dies out; Light blue: one wave;
Turquoise: two waves; Orange: three waves; Yellow: four waves.

of the non-prophylactic susceptible population, S n, re f f < 1 and the first wave dies out. Once I < Icross

however, the susceptible population will eventually revert to non-prophylaxis. When a sufficiently large
proportion of the population has become non-prophylactic, once again re f f > 1 (since herd immunity
was not achieved through the first wave), and the infection grows again. The result is a second epidemic
wave.

Two different types of second wave are possible, shown in the middle and bottom plots of Figure 4.
In the case ω0 = 0.14, the second wave is small enough so that the Icross threshold is not crossed by the
increasing I subpopulation, and the susceptible population remains largely non-prophylactic. In this
case, there is no shift of opinions towards prophylaxis, and the epidemic dies out simply because the
non-prophylactic population is reduced through transition to the infectious class. If the speed of the
opinion dynamics is increased to ω0 = 0.2 however, the second epidemic wave is much larger, with I
overshooting Icross and the reduction in the non-prophylactic subpopulation achieved through transition
to both the prophylactic as well as the infectious subpopulations. In both cases (ω0 = 0.14 and 0.2),
the removed population that remains after the second wave exceeds the herd immunity threshold, and
so the second wave is the final one.

A key measure of an epidemic’s impact is its final size. To determine final size, we ran simulations
to steady state, that is, to the point where there were no more epidemic waves and the population values
were constant. A comparison of the final size in the single and two-wave epidemics in Figure 4 shows
that the final size of the epidemic increases with increasing responsiveness of the non-prophylactic
subpopulation. Further investigation of this relationship, however, reveals that final size is not a
monotonic function of responsiveness (Figure 5, top), but is instead almost periodic in nature. Final size
decreases with increasing responsiveness (ω0) until the opinion dynamics are fast enough to conquer
the epidemic before herd immunity is achieved. Then, as the population reverts to non-prophylaxis,
a second epidemic wave occurs, resulting in an increase in the final size of the epidemic. Final size
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Figure 4. Second waves may or may not trigger opinion dynamics. Multiple waves are
obtained when the speed of the opinion dynamics ω0 is increased relative to the speed of the
infection dynamics β0. The populations are: S n; blue, S p; green, I; red (right axis),R;black.
The red dashed line indicates Icross and the black dashed line indicates herd immunity. All
parameters except ω0 are at their default values. When ω0 = 0.1033 (top plot) the rate of
switching to prophylaxis results in a single epidemic wave with herd immunity achieved
exactly. When ω0 is increased, the first wave does not confer herd immunity (R plateaus at
a value less than the black dashed line), and a secondary wave of disease breaks out once
a sufficient proportion of the population has reverted to non-prophylactic behaviour. The
second wave can be small enough (middle plot), so that I < Icross throughout, or larger
(bottom plot). On all three plots, the infectious population and the threshold Icross are plotted
on a different scale for visibility (right axis).
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Figure 5. Faster opinion dynamics always decrease peak size but can increase final size.
Final epidemic size (top) and peak epidemic size (bottom) as functions of ω0, with c ≤ ω0 ≤

0.5. Increasing ω0 increases the speed of the prophylactic response. Final size decreases
with increasing ω0 until a new wave appears, at which point final size first increases with
increasing ω0 before decreasing again. Peak size is monotonically decreasing with respect to
ω0.

then initially increases with increasing responsiveness, as the size of the first wave is further reduced,
leading to a larger second wave. Eventually, however, the speed of the opinion dynamics becomes
fast enough to reduce the size of both waves to the point where even after two epidemic waves herd
immunity has not been achieved. Then, a third wave occurs and final size increases yet again.

We point out here that the smallest possible epidemic is achieved with a single wave with the correct
prophylactic response rate. That is, none of the subsequent minima in final size are less than the first
one (Figure 5). Thus, the prophylaxis adoption rate that leads to the smallest total epidemic is the one
that results in a single wave which is of a size just exactly large enough to induce herd immunity in
the population. The reason it takes ever faster opinion dynamics to reduce the final size resulting from
additional disease waves, is that the later waves are smaller in size. Consequently, the I population
is smaller, and the non-prophylactic subpopulation needs to be sensitive to ever smaller I values in
order for the switch to prophylaxis to occur quickly enough to stop the increasing, but small, disease
prevalence.

If we investigate final epidemic size as a function of both responsiveness and infectiousness, that is,
over the (ω0, β0) plane, we find that the observations made above continue to hold (Figure 6). For any
particular opinion dynamics response rate ω0, increasing the speed of the disease dynamics increases
the final size of the epidemic (except, perhaps, with the exception of the ω0 = 0.2 case). For fixed
infectiousness (β0) however, increasing the speed of the opinion dynamics can result in an increase or
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Figure 6. Peak and final size both increase with faster disease dynamics, but only peak
size always decreases with faster opinion dynamics. Final epidemic size (left) and peak size
(right) as functions of the baseline rate of the opinion dynamics ω0, and the non-prophylactic
infection rate β0. Other parameter values are as listed in Table 1.

a decrease in final size. This nonmonotonicity is most prevalent at the intermediate values of β0 we
investigated in Figure 5. In contrast to final size, peak size (Figure 6) decreases monotonically with
increased rates of prophylaxis in response to disease prevalence. It should be noted that peak size refers
to the maximum value of the infectious population at any time and across waves. In our model, this
peak will always occur in the first wave.

3.2. Effect of polarization

A strongly polarized population is one in which there are few individuals with centrist opinions, and
the remaining population is divided fairly evenly between the two extremes of the attitude spectrum
[17]. The advent of social media has increased polarization in societies [16] on many topics including
ones related to disease transmission. Polarization on issues such as mask-wearing likely has strong
effects on disease transmission, and so we ask here how polarization affects epidemic dynamics.

In our two-attitude model we do not have a measure of opinion intensity, and so do not have access
to traditional distributional measures of polarization. Nevertheless, we can explore polarization as
characterised by a very slow rate of change of opinions from one side to the other. In our model,
decreasing the rate at which opinions change, from non-prophylaxis to prophylaxis, corresponds to
either increasing the cost c of adopting prophylactic behaviour, or decreasing the rate of responsiveness
to rising infection levels by increasing k. We investigate both approaches to slowing the rate of change
of opinions.

We see in Figure 7 that peak and final size both increase with increasing polarization, under either
mechanism. Both measures of epidemic severity can be significantly decreased by having a larger
proportion of initially prophylactic individuals. The non-monotonic behaviour for final size in the
S p(0) = 0.6 case is due to the development of a second epidemic wave: The S p(0) = 0.4 and 0.5 cases
only have one epidemic wave.
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Figure 7. Polarization increases both peak and final size Contour plots of the peak and
final size as a function of increasing polarization due to either an increase in the cost
of prophylactic behaviour c (vertical axis) or a decrease in the responsiveness to disease
prevalence through increasing k (horizontal axis). The results depend on the initial proportion
of the population already prophylactic, S p(0) (columns). The remaining parameter values
were fixed at β0 = 0.2, a = 2, and ω0 = 0.04.

3.3. Example: COVID-19

The importance of human behaviour in shaping epidemics has been in evidence during the COVID-
19 pandemic. The differences in patterns of disease prevalence across jurisdictions is at least partly due
to differences in the rate at which non-pharmaceutical prophylactic behaviours are adopted [15]. We
cannot use the data [39] to obtain fitted values for ω0, as there is the confounding effect of government
regulations mandating masks in many places and at different times. Nonetheless, the data are useful to
indicate that the timescales of infection and opinion dynamics can be similar.

The current COVID-19 pandemic confirms our prediction that opinion dynamics coupled with
disease dynamics can result in multiple epidemic waves, a phenomenon observed in numerous
countries around the world [4]. These waves reflect opinion dynamics of individual citizens, and
of countries as a whole as represented by public health restrictions mandated by governments. We do
not, however, observe decreasing peak size in the global data. A number of factors not included in
our model could contribute to increasing peak size: pandemic fatigue, the advent of more contagious
variants, and inconsistencies in the ways in which governments imposed restrictions on the movement
of their citizens. The differences between our predictions and the COVID-19 data indicate that these
additional factors have a strong effect.
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4. Discussion

In this paper we explored the range of epidemic behaviours that are possible with a simple model
that couples opinion and disease dynamics, as well as some of the counter-intuitive implications of
faster and slower opinion dynamics. One interesting example we find is a plausible range of parameter
settings where there are multiple waves of infection. Roughly, if responsiveness to disease spread is
too low and prophylactic behavior is adopted too slowly, we see a single large outbreak as one does
in a typical model of epidemic curves. If responsiveness is sufficiently fast, however, we can see
multiple outbreaks: the opinion dynamics that allow prophylactic behaviour to be adopted quickly
also allow a rapid return to non-prophylactic behaviour, potentially leading to a feedback loop that
seems characteristic of many behaviour disease models. The primary driver seems to be the timing of
behavioural changes relative to disease spread. The basic idea is that multiple waves can occur when
the coupled dynamics allow for a feedback process that has roughly the following steps: i) increase
in disease spread, which leads to ii) adoption of prophylactic behavior, which leads to iii) decrease in
disease spread, which leads to iv) reversion to non-prophylactic behavior, which, if enough susceptibles
remain in the population, leads back to the conditions under which (i) can occur.

Our model and results are an important addition to other possible factors that can contribute to
these timing effects, including external interventions [31], as well as internal considerations, such as
risk perception and memory [23], planning horizons [28], and strategic decision-making [22]. In fact,
the wave patterns we obtain are similar but simpler than the ones observed by [22]: Each epidemic
peak is followed by an almost disease-free interval before emergence of the following peak.

Unlike these other examples, however, our model is also able to capture some aspects of opinion
polarization. We do this by slowing the rate of opinion dynamics relative to disease dynamics. While
some nuances are lost by representing opinions as binary (contra our previous model), the inclusion of
such details are unlikely to change our qualitative finding that polarization means larger epidemics as
measured by both peak and final sizes.

Reflecting more broadly, we know that different disease models can play different roles in informing
public health. For one, they can be used to predict and forecast disease spread, without the need for
physical interventions or observations [33]. For another, they can provide a bridge between patterns
identified by theory and empirical measurement, as exemplified by the well known example of how
rates of disease processes, like transmission and recovery, relate to the basic reproductive number,
which roughly represents the average number of secondary infections per infectious individual [25,34].

In our case, the most relevant contribution is a better understanding of how (transient) behaviours
can have differential non-monotonic effects across important epidemic measures. For example,
consider the difference between peak size, final size, and the number of epidemic waves. From the
perspective of hospitals that have constraints on how many beds they can provide at any given time,
peak size will play a dominant role in sustaining health systems from collapse [2]. Even if the final size
is relatively large, as long as hospitals can provide the relevant care during the peak(s) of an epidemic,
hospitals can avoid triage and related disasters (e.g., having to turn away patients), so even partial
controls are benefical from this perspective. From the perspective of government that is concerned
with general welfare of its population, the final size of an epidemic can be a reflection of the efficacy of
the government’s ability to address a health disaster. Such considerations can be particularly important
during election years, as sitting governments can be scrutinized in this regard by non-sitting candidates.
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Finally, multiple waves can be important to perspectives that focus on public health messaging related
to health policies. Compliance to policies that require wearing face-masks, for example, is more easily
achieved when norms and buy-in from the populace can develop. But multiple waves, in both disease
and behavior, can lead to confusion and behavioural fatigue, which in turn can lead to lower levels
of compliance. What behaviour-disease models like ours show is that interventions that can impact
transient prophylaxis may not have simple downstream consequences, particularly in contrast to lasting
prophylaxis. As a result, extra care has to be taken when assessing interventions when considering
transient prophylaxis in comparison to the lasting prophylaxis counterparts.

A logical next step is to parameterize this model for specific diseases and specific populations
(using, for example, user-initiated data streams [3]), and quantify its ability to predict or explain the
disease dynamics. Just as the parameters characterising different diseases can vary widely, we expect
that populations from different cultures around the world, and under different styles of leadership,
will also respond very differently to the threat of disease. Being able to anticipate how a disease will
progress in one country, could help its neighbours prepare more effectively. This work would also
involve estimating the timing between epidemic waves. While we left this question unanalysed in the
current study, our results in Figure 4 suggest that the inter-wave interval will vary with each subsequent
wave.

Another direction to explore is the role of social media. In addition to the rapid communication of
individual opinions across large geographic scales, and the intensification of polarization processes, it
also facilitates the spread of misinformation [10]. This last feature is a factor that is worth investigating
in future work.

Our model and approach is not without limitations. As an ODE it assumes a well mixed population.
Real populations are not well mixed and not deterministic: The spatial configuration of a population
and somewhat stochastic interactions alter the disease and opinion spread dynamics. So a natural
direction for future work is to investigate how our results are impacted by the introduction of social
structure and stochasticity. Our model is also only valid in the short term, as we ignore births, deaths,
and waning immunity.

In summary, many epidemic models assume that human behaviour is fixed, or that it varies stepwise
as a result of government intervention, and model the ensuing evolution of the epidemic. It is clear,
however, that human behavioural responses to disease incidence vary continuously, especially when
there is continuous media coverage of the epidemic, and that this constantly changing behaviour has
a significant effect on the progress of the epidemic. On the other hand, if behaviour doesn’t change,
as in some polarized populations, there will be needless disease burden and, for a disease that can be
fatal, needless deaths. A concerted effort to study the interaction of disease and opinion dynamics, and
control efforts that take both into account, are badly needed.
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