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Abstract

To understand the diversity of immune responses to SARS-CoV-2 and distinguish features

that predispose individuals to severe COVID-19, we developed a mechanistic, within-host

mathematical model and virtual patient cohort. Our results suggest that virtual patients with

low production rates of infected cell derived IFN subsequently experienced highly inflamma-

tory disease phenotypes, compared to those with early and robust IFN responses. In these

in silico patients, the maximum concentration of IL-6 was also a major predictor of CD8+ T

cell depletion. Our analyses predicted that individuals with severe COVID-19 also have

accelerated monocyte-to-macrophage differentiation mediated by increased IL-6 and

reduced type I IFN signalling. Together, these findings suggest biomarkers driving the

development of severe COVID-19 and support early interventions aimed at reducing

inflammation.

Author summary

Understanding of the diversity of immune responses to SARS-CoV-2 infections is critical

for improving diagnostic and treatment approaches. Identifying which immune mecha-

nisms lead to divergent outcomes can be clinically difficult, and experimental models and

longitudinal data are only beginning to emerge. In response, we developed a mechanistic,

mathematical and computational model of the immunopathology of COVID-19 cali-

brated to and independently validated against a broad set of experimental and clinical

immunological data. To study the drivers of severe COVID-19, we used our model to
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expand a cohort of virtual patients, each with realistic disease dynamics. Our results sug-

gest key processes that regulate the immune response to SARS-CoV-2 infection in virtual

patients and suggest viable therapeutic targets, underlining the importance of a rational,

multifaceted approach to studying novel pathogens using intra-host models.

Introduction

Clinical manifestations of SARS-CoV-2 infection are heterogeneous, with a significant propor-

tion of people experiencing asymptomatic or mild infections that do not require hospitaliza-

tion. In severe cases, patients develop coronavirus disease (COVID-19) that may progress to

acute respiratory distress syndrome (ARDS), which is frequently accompanied by myriad

inflammatory indicators [1]. Mounting evidence points to a hyper-reactive and dysregulated

inflammatory response characterized by overexpression of pro-inflammatory cytokines (cyto-

kine storm) and severe immunopathology as specific presentations in severe COVID-19 [2–6].

An over-exuberant innate immune response with larger numbers of infiltrating neutrophils

[7,8] arrests the adaptive immune response through the excessive release of reactive oxygen

species that leads to extensive tissue damage and depletion of epithelial cells [9]. In addition, T

cell lymphopenia, in particular, is one of the most prominent markers of COVID-19 and has

been observed in over 80% of patients with severe disease [6,10–12]. However, the immune

mechanisms that lead to disparate outcomes during SARS-CoV-2 infection remain to be

delineated.

Cytokines are critically important for controlling virus infections [13,14] and are central to

the pathophysiology of COVID-19, sometimes playing a detrimental role in the context of a

cytokine storm [10]. For example, interleukin-6 (IL-6) can stimulate CD8+ T cell expansion

under inflammatory conditions [15]; however, in hospitalized SARS-CoV-2 patients with lym-

phopenia, IL-6 has been shown to be elevated [16] without an increase in CD8+ T cell counts

[17]. Type I interferons (such as IFNs- α, β [18]) also play a major role in limiting viral replica-

tion by inducing a refractory state in susceptible and infected cells [19–21]. Due to this, it has

been suggested that a delay in mounting an effective IFN response may be responsible for

COVID-19 severity [10] as it is for other highly pathogenic coronavirus (i.e. SARS-CoV and

MERS) infections [13]. Interferon delays/dysregulation contributing to COVID-19 severity

are a known feature of coronavirus infections in humans [22] and type-I interferons are

known to downregulate viral replication in infected and neighbouring cells [22]. The emerging

experimental and clinical pictures of the impact of IFN-I dynamics on SARS-CoV-2 infections

is consistent with both SARS-CoV and MERS [23–26]. Further, retrospective and clinical trials

have shown that earlier administrations of IFN was associated with or significantly improved

survival rates [27,28]. Overall, patients with severe COVID-19 present with lymphopenia

[14,29], and are likely to have increased inflammatory cytokines such as IL-6, granulocyte-

macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor

(G-CSF) [7,17,30].

Because the identification of immune mechanisms responsible for divergent disease out-

comes can be difficult clinically, and experimental models and longitudinal data are only

beginning to emerge, theoretical explorations are ideal [31]. Quantitative approaches combin-

ing mechanistic disease modelling and computational strategies are being increasingly lever-

aged to investigate inter- and intra-patient variability by, for example, developing virtual

clinical trials [32–34]. Such in silico trials enable the theoretical exploration of how multiple

key underlying mechanisms simultaneously impact disease severity [34]. More recently, viral
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dynamics models [35,36] have been applied to understand SARS-CoV-2 within-host dynamics

and their implications for therapy [37–42]. However, there are few comprehensive models that

integrate detailed immune mechanisms and allow interrogation of the dynamics controlling

divergent outcomes, and none have attempted to quantify the high degree of variability in

patient responses to SARS-CoV-2 through modelling.

In this study, we developed a mechanistic mathematical model to describe the within-host

immune response to SARS-CoV-2. We explicitly modelled the interactions between epithelial

cells, innate and adaptive immune cells, and cytokines. The model was fit to various in vitro, in
vivo, and clinical data, analyzed to predict how early infection kinetics facilitate downstream

disease dynamics, and used to create a virtual patient cohort with realistic disease courses. Our

results suggest that mild and severe disease are distinguished by the rates of monocyte differen-

tiation into macrophages and of IFN production by infected cells. In our virtual cohort, we

found that severe COVID-19 responses were tightly correlated with a delay in the peak IFN

concentration and that a large increase in IL-6 was the dominant predictor of CD8+ T cell

depletion. These results provide insight into differential presentations of COVID-19 by sug-

gesting key regulators of severe disease manifestation particularly related to monocyte differ-

entiation and IL-6 concentrations. Importantly, these key mechanisms suggest promising

avenues of experimental research into the mechanisms of immunopathology in COVID-19.

Results

Modelling the immune response to SARS-CoV-2 and the impact of delayed

IFN on infection dynamics

To study the dynamics of SARS-CoV-2 infection and the development of COVID-19, we con-

structed a computational biology model of host-pathogen interactions (Eqs. S1-S22, with vari-

ables and parameters summarized in S1 Table and schematic in Fig 1). The model includes

susceptible lung epithelial cells (S) that encounter virus (V) and become infected (I) before

turning into damaged or dead cells (D) due to viral infection or immune involvement. The

immune response is orchestrated by cytokines that act to stimulate the immune cell subsets

present in the tissues and recruit cells from the bone marrow and circulation (Fig 1A). We

have chosen to model type I IFN, IL-6, G-CSF, and GM-CSF because of their roles in viral

resistance, inflammation, recruitment and differentiation, respectively. Upon infection, lung

epithelial cells secrete type I IFNs (F) that cause adjacent cells to become resistant to infection

(R) and decrease the production of newly infected cells [43]. Through stimulation by infected

and dead cells, alveolar (lung tissue-resident) macrophages (MFR) become inflammatory mac-

rophages (MFI), which also arise through monocyte (M) differentiation following stimulation

by GM-CSF (G) or IL-6 (L) [44]. Neutrophils (N) are recruited to the infection site by G-CSF

and release reactive oxygen species (ROS) causing bystander damage to infected and suscepti-

ble cells [45,46]. CD8+ T cells (T) are subsequently recruited to the infection site following a

delay to account for antigen presentation, with expansion modulated by type I IFN and IL-6

concentrations. See Materials and methods for a complete description.

Because the model has several parameters that are undetermined biologically and insuffi-

cient data exists to confidently estimate their values, we used a stepwise approach to parameter

estimation (see Materials and methods and S1–S5 Figs). We chose this approach to ensure that

individual aspects of a given biological interaction could be better understood in isolation and

to help reduce the degrees of freedom at each stage of parameter fitting. We first confirmed

that we could recapitulate early infection viral kinetics with a reduced version of the full model

(‘viral model’). For this, we excluded immunological variables (i.e. only including Eqs 6–9)

and estimated parameters relating to viral kinetics by fitting to viral load data from macaques
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[47] and then viral load in humans hospitalized in Singapore [48] and Germany [49] (see

Materials and methods). The resulting model dynamics were in good agreement to these early

infection data (see S6 Fig for the macaque and Fig 2 for the human SARS-CoV-2 viral dynam-

ics) and demonstrate a rebound in epithelial lung tissue as the viral load and infected cells

decrease.

We then isolated the IFN dynamics to assess clinical and experimental findings suggesting

that delaying IFN results in more severe presentations in highly pathogenic coronavirus infec-

tions including SARS-CoV-2 [10,13,14]. Using the parameters obtained from the ‘viral model’

(Eqs 6–9; S1 Table), we then simulated the impact of IFN with the ‘IFN model’ (Eqs 10–16 and

Fig 3). We examined the predicted dynamics in response to delayed IFN by simulating with

and without a fixed delay for IFN production from infected cells. Our results suggest that

delaying type I IFN production by 5 days yields a roughly 10-fold increase in tissue damage

with tissue remaining on day 3 decreasing from 3.9 × 107 cells/ml to 6.5 × 106 cells/ml (Fig 3B),

Fig 1. Immune response to SARS-CoV-2 infection model schematic. The model in Eqs. S1-S22 reduced to A) cell

dynamics B) cytokine production dynamics and C) cytokine binding kinetics. Unique lines represent induced cell

death (double line), recruitment (dashed line), cell type change or production (solid line), and cytokine production

(square arrow). Cell and/or cytokines along joining lines denote a causal interaction. A) Virus (V) infects susceptible

lung epithelial cells and creates either infected (I) or resistant (R) cells depending on the concentration of type I IFN.

Infected cells then either die and produce new virus or are removed via inflammatory macrophages (MFI) or CD8+ T

cells (T) that induce apoptosis to create dead cells (D). Neutrophils (N) cause bystander damage (death) in all epithelial

cells and are recruited by individually G-CSF and IL-6 concentrations. CD8+ T cells are recruited by infected cells and

their population expands from IFN signalling. T cell recruitment is inhibited by IL-6 concentrations. Monocytes (M)

are recruited by infected cells and GM-CSF and differentiate into inflammatory macrophages based on the individual

concentrations of GM-CSF and IL-6. Tissue-resident macrophages (MFR) also become inflammatory macrophages

through interaction with dead and infected cells. Dead cells are cleared up by inflammatory macrophages and also

cause their death. B) Type I IFN is produced by infected cells, inflammatory macrophages and monocytes. G-CSF is

produced solely by monocytes and GM-CSF is produced by monocytes and macrophages. IL-6 is produced by

monocytes, inflammatory macrophages and infected cells. C) Cytokine receptor binding, internalization and

unbinding kinetics considered for each cell-cytokine interaction.

https://doi.org/10.1371/journal.ppat.1009753.g001
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caused by the increase in infected cells and subsequent lack of resistant cells. IFN dynamics

were within the observed ranges of systemic IFN- α concentrations from clinical cohorts of

hospitalized COVID-19 patients [51] (S7A Fig). As patient IFN-α measurements are only

taken after hospitalization and in plasma, there are currently no known sources of early SARS-

CoV-2 infection IFN dynamics in humans.

Immunologic determinants of mild and severe disease

Next, to investigate the mechanisms that differentiate mild versus severe disease, we simulated

the full model (Eqs. S1-S22) using two different parameter sets. Mild disease dynamics were

Fig 2. Viral dynamics model fit to human viral data from hospitalized patients in Singapore and Germany. A

reduced version of the full model (all cytokine and immune cells set to 0, Eqs 6–9) was fit to data from hospitalized

patients, after initial estimation from viral loads in macaques [47] (S6 Fig) to estimate preliminary viral kinetic

parameters. A) Virus (V) infects susceptible cells (S) making infected epithelial cells (I) which then die to produce dead

cells (D) and new virus. B) Viral load data (log10(copies/mL) from eight human patients (three from Singapore S5, S6

and S18, and five from Germany, G1, G2, G5, G6, G7) were digitized from previous results [50], and parameters from

the viral dynamics submodel were estimated using a non-linear squares optimization routine. β, dI, V0 and dV were

estimated from the reduced viral dynamics model in A) (see Methods and S1 Table). Individual patient measurements

are depicted by coloured circles. Solid black line: average model prediction; grey shaded region: predicted standard

deviation from average. S (time axis) indicates the day of symptom onset.

https://doi.org/10.1371/journal.ppat.1009753.g002

Fig 3. Delayed type I IFN response impacts heavily on tissue survival in reduced model. A) Submodel (Eqs 10–16)

with all non-IFN cytokines and immune cell interactions set to zero and only considering interactions between virus

(V), type I IFN, and susceptible (S), infected (I), resistant (R), and dead (D) epithelial cells. B) Predictions from the

simplified model without delayed IFN production (solid lines) versus with a constant delay (τF = 5 days) (dotted lines).

Grey circles (left panel): viral loads from SARS-CoV-2 infection in humans in Singapore [48] and Germany [49],

digitized from Goyal et al. [50] overlayed with predicted viral dynamics. C-D) Predicted dynamics of infected and dead

cells, and unbound and bound IFN concentrations from the simplified model without delayed IFN production (solid

lines) versus with a constant delay (τF = 5 days) (dotted lines).

https://doi.org/10.1371/journal.ppat.1009753.g003
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recreated using estimated parameter values (S1 Table) such that the virus decay rate (dV) and

the infected cell death rate (dI) were recalculated to ensure that the maximum death rate of the

virus and infected cells did not exceed the value obtained from the reduced viral dynamics

model fit (Fig 2). Simulating mild disease, we predicted that all cell populations and cytokines

rapidly return to homeostasis, with the immune response effectively clearing virus within 10

days (Fig 4 and S8 Fig).

Because severe SARS-Cov-2 infection results in lower levels of IFN [51] and increased

monocytes [52], we recapitulated severe disease by modulating model parameters relating to

these processes, i.e., the rates of IFN production from infected cells, pF,I, and macrophages,

ZF;MFI
, were decreased, and the rate of monocyte recruitment from the bone marrow by

infected cells, pM,I, was increased. With these changes, the model predicted a dramatic shift in

disease response characterized by a cytokine storm (elevated IL-6, GM-CSF and G-CSF), high

ratios of innate to adaptive immune cells, and a marked reduction in healthy viable lung tissue

(Fig 4A), whereas changes in viral load remained relatively consistent with mild disease.

In addition, there was a notable increase in the number of inflammatory macrophages (Fig

4B), IL-6, GM-CSF and, importantly, a delayed and reduced IFN peak (Fig 4C). In comparison

to mild disease, inflammatory macrophages and neutrophils remained elevated for at least 30

days after initial infection (Fig 4B). Comparing mild and severe disease highlighted differences

in the area under the curve (AUC) of macrophages (6 × 104 cells/ml versus 3 × 1011 cells/ml)

and neutrophils (2 × 108 cells/ml versus 3 × 1013 cells/ml) over 30 days. Interestingly, inflam-

mation remained high in the severe disease scenario despite the virus being cleared slightly

faster (~1 day) than in the case of mild disease (Fig 4A). Further, the peak of inflammatory

macrophages increased from ~104 cells/ml to ~106 cells/ml in severe scenarios compared to

mild scenarios. The model also accurately predicted that CD8+ T cell dynamics were lower in

severe cases, which is indicative of lymphopenia and similar to clinical observations from

patients with severe COVID-19 [14,23]. Despite varying only three parameters (pF,I, pM,I,

and ηF,MF) to generate disparate dynamics, the immune cell and cytokine dynamics were

Fig 4. Predicting mild and severe COVID-19 dynamics. Mild disease (solid lines) dynamics obtained by using

baseline parameter estimates (S1 Table) while severe disease dynamics (dashed lines) were obtained by decreasing the

production rate of type I IFN (PF,I) and increasing the production of monocytes (pM,I) and their differentiation to

macrophages (ZF;MFI
). A) Viral load and lung cells concentrations (susceptible, resistant, infected, and dead cells). Solid

black line with error bars indicates human data [50] (see Fig 2). B) Immune cell concentrations (inflammatory

macrophages, monocytes, neutrophils, and CD8+ T cells). C) Unbound cytokine concentrations (free IL-6, GM-CSF,

G-CSF, and type I IFN). Time evolution of all model variables is shown in S8 Fig (including bound cytokine and

alveolar macrophages).

https://doi.org/10.1371/journal.ppat.1009753.g004
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qualitatively in line with clinical observations for IFN-α [51], IL-6 [51,53], and G-CSF [30]

(S7B–S7F Fig).

Macrophages, CD8+ T cells, IFN and IL-6 regulate response to SARS-CoV-

2 infection

To further understand how the host immune system regulates the response to SARS-CoV-2

infection, we conducted a local sensitivity analysis by varying each parameter individually by

±20% and comparing a set of metrics (see Materials and methods) chosen to provide a com-

prehensive understanding of each parameter’s impact on the host-pathogen dynamics (S9

Fig). This analysis identified 17 sensitive parameters (Fig 5A) relating to virus productivity (p,

δV,N, β, �F,I), CD8+ T cell induced epithelial cell apoptosis (δI,T), macrophages, monocyte and

CD8+ T cell production (pMFI ;L
, pM,I, pT,I), IL-6 (pL;MF; kBL ; kintL), G-CSF (kBC ), and IFN (pF,I,

pF,MF, klinF ; kBF ; kintF ). Viral load, uninfected cells (tissue), unbound IL-6 and unbound IFN

dynamics after 20% decreases in parameters values were found to be similar to those in the

original mild disease simulation (Fig 5B–5E).

Decreasing the rate of IL-6-induced monocyte differentiation into inflammatory macro-

phages (pMF,L) increased the peak concentration of both IL-6 and IFN (Fig 5D and 5E). Nota-

bly, changes to parameters that increased the bound IFN concentration, i.e. increasing the

Fig 5. Parameters driving COVID-19 severity. A local sensitivity analysis was performed by varying each parameter

±20% from its originally estimated value (mild disease parameters in Fig 4) and simulating the model. Predictions were

then compared to baseline considering: Maximum viral load (max(V)), maximum concentration of dead cells (max

(D)), minimum uninfected live cells (min(S+R)), maximum concentration of inflammatory macrophages (max(MFI)),

maximum number of CD8+ T cells (max(T)), maximum concentration of IL-6 (max(LU)), maximum concentration of

type I IFN (max(FU)) and the total exposure to type I IFN (FU exposure). A) Heat map shows the magnitude of the

change of each metric from a 20% decrease in the parameter value compared to baseline (i.e. model simulation with no

change in the parameter values), where blue signifies the maximum value observed in the output metric and red

signifies the minimum value observed (i.e. maximum decrease in that metric). The most sensitive parameters are

shown here, for the complete parameter sensitivity results, see S9 Fig. The explicit value of the maximum increase and

maximum decrease of each metric is given in the table below. B)-E) time-series dynamics of viral load, tissue

(uninfected cells), and unbound IL-6 and IFN given 20% decreases in the noted parameters. Colours of the curves

correspond to the colouring of the heatmap in A. Maximal(minimal) concentrations, as in A, are noted in grey boxes.

E) is coloured according to IFN exposure. Base: original mild parameters (Fig 4).

https://doi.org/10.1371/journal.ppat.1009753.g005
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binding and production rates (kBF and pF,I) and decreasing the internalization and clearance

rates (klinF and kintF ) induced significant changes in most metrics (Fig 5A), in particular

decreases in klinF caused an increase in the minimum tissue and IFN (Fig 5C and 5E). The

duration of extensive tissue damage (>80% damaged) increased with IFN potency (�F,I) (S9

Fig). Less significant changes in the maximum dead cells and minimum tissue can also be seen

in the viral infectivity (β) and IL-6 binding kinetic (kintL and kBL) parameters. See S9 Fig for

complete sensitivity analysis results.

Changes to viral infectivity can be considered linked to two separate, but indistinguishable

effects in our model, namely different densities of cellular ACE2 receptors between individuals

and changes to viral infectivity through mutations. This would translate to a higher virus infec-

tivity (β) in the model. To predict how increases to viral infectivity (β) values would impact

disease trajectories, we varied (β) between 0% and 50% from its original estimated value and

assessed predicted outcomes. Although we observed some heterogeneity in response, overall

we found that increased infectivity alone is not sufficient to induce significant changes to dis-

ease severity (Fig 6), as tissue, cellular, and cytokine concentrations were not dramatically

altered from the base case.

In silico knockout investigations predict the impact of immune status on

disease outcomes

To better understand the individual contributions of innate immune cell subsets to disease tra-

jectories, we performed a set of in silico experiments in which neutrophil, monocyte, or macro-

phages were completely removed through knockout (Fig 7). For each scenario, we set the

initial cell population to zero (i.e. either N0 = 0, MF0 = 0, or M0 = 0) and also fixed the

relevant production rates to be zero (i.e. for the neutrophil knockout N�prod ¼ c
max
N ¼ pN;L ¼ 0;

for the macrophage knockout aI;MF ¼ pMFI
¼ pMFI ;L

¼ 0; and for the monocyte knockout

M�
prod ¼ c

max
M ¼ pM;I ¼ 0). In the case of neutrophils, the model predicts that completely

Fig 6. Moderate increases to viral infectivity are not predicted to significantly impact immunological outcomes. A

range of viral infectivity rates (β) from 0% (base) to 50% increase were simulated. All other parameters were fixed to

their value in S1 Table. The resulting model dynamics for viral load, inflammatory macrophages, CD8+ T cells,

unbound IL-6 and unbound IFN were compared, and no significant changes in kinetics were predicted.

https://doi.org/10.1371/journal.ppat.1009753.g006
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removing neutrophils leads to large increases in viral loads, IL-6 concentrations, while depress-

ing macrophages. Similarly, monocyte knockout was predicted to result in significant increases

to peak IL-6 concentrations compared to mild disease, whereas macrophage knockout resulted

in the collapse of neutrophil numbers and extremely suppressed IL-6 concentrations. Overall,

the previously found characteristics of disease severity, including low numbers of unaffected

lung tissue cells and large populations of inflammatory macrophages, were not exhibited in

any of the knockdown in silico simulations. Given that there is already systemic dysregulation

in the severe case, we chose to focus on the mild disease for the knockout simulations to inves-

tigate the impact of isolated dysregulation (knockdown and knockout) on immunological tra-

jectories. A comparison of the knockout experiment to severe disease simulations can be

found in S10 Fig.

Virtual patient cohort identifies heterogeneity in immune dynamics and

severity

To better understand the clinical variability in SARS-CoV-2 infection severity [1], we next gen-

erated a cohort of 200 virtual patients (see Materials and methods and Fig 8). Here, we make

the distinction between a “virtual twin” (i.e., a digital representation of a single clinical patient)

and a virtual patient/cohort (multiple patients) generated as explained below. To create each

in silico patient, seven patient-specific parameters were sampled from normal distributions

with means corresponding to their respective fixed values and standard deviations inferred

from clinical observations (Table 1). In doing this, we assumed intrinsic interindividual het-

erogeneity in monocyte to macrophage differentiation, production of IL-6 by macrophages,

Fig 7. Effects of neutrophil, monocyte, and macrophage knockout on mild disease courses. We performed in silico

knockout experiments in the mild disease scenario (Fig 4, blue solid lines) by considering complete monocyte

knockout (i.e. no monocyte recruitment and M(0) = 0; dark pink dash-dot line), complete macrophage knockout (i.e.

not inflammatory macrophage creation via antigen stimulation or monocyte differentiation; light pink dotted line) and

complete neutrophil knockout (i.e. no neutrophil recruitment and N(0) = 0; pink dashed line). Dynamics of the in

silico knockout are plotted for the A) viral load, B) uninfected cells, C) inflammatory macrophages, D) neutrophils, E)

CD8+ T cells relative to uninfected cells and F) unbound IL-6.

https://doi.org/10.1371/journal.ppat.1009753.g007
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recruitment of monocytes by the presence of infected cells, and production of IFN by infected

cells, macrophages and monocytes, respectively.

Parameters were chosen based on their impact on maximum IL-6 and IFN levels as well as

tissue damage observed in the sensitivity analysis (pMFI ;L
, pL,MF, pF,I, pM,I, and �F,I; Fig 5). In

addition, we designated patient-specific parameters accounting for alternate pathways through

which IFN is affected by innate immune cells (ηF,MF and pF,M). For the production of IL-6 by

macrophages and monocyte to macrophage differentiation via IL-6 stimulation, standard devi-

ations were inferred from IL-6 levels in non-mechanically ventilated patients (mild) and from

mechanically ventilated patients (severe) [53] (S7D Fig). Standard deviations for the produc-

tion of IFN by infected cells were determined from the 95% confidence interval for IFN-α
from Trouillet-Assant et al. [51] (S7A and S7B Fig), and, lastly, the standard deviation for the

Fig 8. Algorithm for generating virtual patients. Parameters in the model were first obtained through fitting to data

(S1 Table). 1) Parameters relating to macrophage, IL-6 and IFN production (pMFI ;L
, pL,MF, pF,I, pM,I, ηF,MF, �F,I, and

pF,M) were generated from normal distributions with mean equal to their original fitted values and standard deviation

informed by experiment observations (see Section S6.1). 2) The model evaluated is then simulated on this parameter

set to obtain y(t, p). 3) A simulated annealing algorithm is then used to determine a parameter set that optimises the

objective function J(p) (Eq 17). 4) Optimizing the objective function provides a parameter set for which the patient

response to SARS-CoV-2 will be within the physiological ranges. This patient is then assigned to the cohort and this

process is continued until 200 patients have been generated. Physiological ranges are noted in the bottom box for viral

load [37], IFN [51], IL-6 [53] and G-CSF [30].

https://doi.org/10.1371/journal.ppat.1009753.g008
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production of IFN by macrophages was obtained from the 95% confidence interval in Sheahan

et al. [54] (S7C Fig). The variation in virtual patient responses was then constrained by experi-

mental and clinical viral loads, IFN, neutrophil, IL-6, and G-CSF (Fig 8). The resulting cohort

dynamics were within ranges for IFN and IL-6 measurements in asymptomatic to severe

COVID-19 patients in the literature [11,17] (S11 Fig).

To quantify disease severity, we introduced an inflammation variable, C, that measured

maximum IL-6, neutrophils and tissue damage (Eq 18) and then compared it to individual

characteristics of each virtual patient’s disease. We evaluated each virtual patient’s maximum

IL-6, CD8+ T cells, and neutrophils; minimum percentage of healthy lung tissue; the time to

peak IFN; and total IFN exposure (area under the curve or AUC) within 21 days of infection.

Ordering patients by their value of C and plotting the corresponding values for different char-

acteristics showed a clear separation between those with mild disease (C� 3) and those with

severe disease (C> 3) (Fig 9A).

In these virtual patients, we investigated predicted disease severity over a range of initial

virus exposure doses (V0 = 0.1, 1, 4.5, 8). By comparing outcomes with respect to several

immunological biomarkers (e.g. peak IL-6 concentrations, time to IFN peak etc.), we found

that virtual patients who were predicted to experience mild COVID-19 in our base case (expo-

sure dose of 4.5 log10 viral copies/mL) experienced mild disease irrespective of the exposure

dose size (Fig 9B). In particular, those predisposed to experience severe disease were predicted

to experience poor outcomes regardless of inoculation (Fig 9Bc). We observed that patients

that had severe disease responses for an inoculation of V0 = 4.5 log10(copies/mL) (i.e. patients

150 to 200) had little to no change in their IFN, IL-6 or neutrophil dynamics under changing

inoculation size (Fig 9Ba and 9Bb). However, patients who were prone to have less severe dis-

ease responses (i.e. patients 1 to 100) had larger variations in their immune dynamics, in par-

ticular IL-6 (Fig 9Ba).

Our model further predicted that patients with higher inflammation had higher IL-6, neu-

trophil, and inflammatory macrophage concentrations (Fig 9Aa–9Ac), which is somewhat to

be expected given that IL-6 is a component of the inflammatory marker C. While the IFN

exposure was not significantly stratified byC (Fig 9Ad), the peak of IFN (Fig 9Ae) and CD8+

T cell levels (Fig 9Af) were strongly negatively correlated with the inflammation marker

(R = −0.85, p< 1 × 10−9, see Materials and methods). IL-6 was most noticeably correlated

with C (R = 0.91, p<1 × 10−9), with a distinct upper bound in the concentration (~80 pg/ml)

achieved in 50% of the virtual cohort (Fig 9Aa). There appeared to be a transition phase in

inflammation driven by inflammatory macrophage levels where patients with mild inflamma-

tion (C< 2.5) had low counts (less than 4 × 104 cells/ml) compared to patients with more

Table 1. Virtual patient-specific parameter values. Seven parameters in the model were deemed patient-specific and were drawn from a normal distribution with mean

the parameter value obtained either through fitting or from the literature (S1 Table). The standard deviation (Std Dev) for each normal distribution was informed by values

in the literature (see Materials and methods and Supplementary Information Sections S6.1). Initial parameter sampling and new parameters generated through the simu-

lated annealing optimization, were bounded within the interval range noted. All other parameters in the model were fixed to their original value (S1 Table).

Param Units Description Mean Ref Std Dev Ref Range

pMFI ;L
1/day Monocyte to macrophage differentiation by IL-6 1.7 [55] 2.2 [7] [0, 9.9]

pL;MFI
pg/ml/day IL-6 production by inflammatory macrophages 1872 [56] 2.2 [7] [1863, 1880]

pF,I pg/ml/day IFN production by infected cells 2.82 [57] 1.9 [53] [0, 12.2]

pM,I 1/day Monocyte recruitment rate by infected cells 0.22 [58] 0.08 [59] [0, 0.63]

ZF;MFI
109cells/ml IFN by infected cells 0.0012 [57] 10−5 [60] [0, 4.7 × 10−4]

�F,I pg/ml IFN production of CD8+ T cells 0.004 [61] 10−5 [54] [0, 5.34 × 10−4]

pF,M pg/ml/day IFN production by monocytes 3.56 [62,63] 0.013 [62] [3.4, 3.6]

https://doi.org/10.1371/journal.ppat.1009753.t001

PLOS PATHOGENS COVID-19 virtual patient cohort suggests immune mechanisms driving disease outcomes

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009753 July 14, 2021 11 / 33

https://doi.org/10.1371/journal.ppat.1009753.t001
https://doi.org/10.1371/journal.ppat.1009753


severe inflammation (C� 2.5) who had higher levels (p = 1.46 × 10−6; Fig 9Ac). Despite this,

patients with moderate inflammation exhibited increased disease markers including delayed

IFN peaks and lower CD8+ T cells, compared to patients with mild inflammation (C� 2.5).

A distinct jump in the timing of the IFN peak in the virtual cohort (p<1 × 10−5) was found

to be correlated with inflammation (Fig 9Ae), as patients with lower (mild) inflammation

Fig 9. Virtual cohort of SARS-CoV-2 infected patients. 200 virtual patients were generated by sampling parameters

related to macrophage, IL-6, and IFN production (pMFI ;L
, pL,MF, pF,I, pM,I, ηF,MF, �F,I, and pF,M) from normal

distributions with mean equal to their original values and standard deviation inferred from clinical observations (Fig

8). Each virtual patient had a distinct parameter set optimized to that patient’s dynamics in response to SARS-CoV-2

infection which corresponded to physiological intervals reported in the literature (see Materials and methods). A)

Infection and immune response metrics (blue) in individual patients were compared to inflammatory variableC

(green). Each point represents an individual patient, ordered according toC. The correlation coefficient (R) and p-

value are indicated for each, with α<0.05 denoting significant correlations. B) The effect of exposure dose V0 on

maximum IL-6 (a), maximum neutrophil counts (b) and inflammation markerC (c) for V0 = 0.1, 1, 4.5 and 8

log10(copies/ml). In a and b, rows are coloured according to each virtual patient’s inflammation marker value; virtual

patients were ordered by the value ofC from the baseline scenario in A (V0 = 4.5 log10(copies/ml)). C) Correlations

between maximal IFN, IL-6, and T cell concentrations for each patient (circles). Circle colours correspond to the

maximal T cell concentration of each patient. D) Parameters most correlated to the IFN peak time were the rates of

macrophage production via a) IL-6 (pMFI ;L
) and the b) IFN production by infected cells (pF,I). Individual patient values

for these parameters are plotted as circles coloured by the patient’s corresponding day of IFN peak (see color bar).

Patients were ordered by their inflammation marker C.

https://doi.org/10.1371/journal.ppat.1009753.g009
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(C� 2.5) had peaks at day 2 compared to day 6 in patients with higher (severe) inflammation

(C>2.5). Grouping virtual individuals by their time to IFN peak suggests that those with IFN

peaks before day 3 of infection also had fewer macrophages (p<1 × 10−5) and larger numbers

of CD8+ T cells (p<1 × 10−5). Overall, delays in IFN peak did not cause significant changes to

viral load but were sufficient to cause major tissue damage (100x reduction in viable tissue

remaining) and over-heightened immune responses (4x increase in maximum IL-6 and

GM-CSF concentrations).

Further, examining the relationship between each virtual patient’s maximum IL-6, IFN,

and CD8+ T cell concentrations (Fig 9C) identified a weaker correlation between the maxi-

mum concentration of CD8+ T cells and IFN (R = 0.24, p = 0.0008) as opposed to with IL-6

(R = −0.86, p< 1 × 10−9). As expected, we also found a positive correlation (R = 0.67,

p = 1.58 × 10−8) between the time to peak IFN concentration for each patient and the IFN pro-

duction rate from infected cells (Fig 9Db). Interestingly, the time to peak IFN for each patient

was also strongly related to their rate of IL-6-stimulated monocyte differentiation into macro-

phages (Fig 9Da). Low IFN production rates were predicted to be the major factor responsible

for significantly delayed IFN peaks over 6 days after infection, whereas IFN peaks within 3

days of infection were largely caused by lower rates of monocyte to macrophage differentiation

(Fig 9Da).

Discussion

Serial immunological measurements from COVID-19 patients are only beginning to be col-

lected, and the ability to assess initial infection kinetics and the drivers of the ensuing disease

course remains limited. The data-driven mechanistic mathematical model and virtual patient

cohort developed here is an important platform contributing to investigating immunological

drivers of COVID-19. In particular, to recreate severe dynamics, it was sufficient to vary only

two processes in the model: the rates of type I IFN production from infected cells and macro-

phages, and the rate of monocyte recruitment by infected cells. This suggests that the distinc-

tion between severe and mild disease may be driven by a limited set of causal regulators that

warrant subsequent study. The effect on IFN production may be further exacerbated by auto-

immunity against type I IFNs, which has been shown to correlate to life-threatening COVID-

19 pneumonia in 2.6% of women and 12.5% of men [18].

Our results show that delaying type I IFN production is sufficient to cause major tissue

damage and heightened immune responses, yet it has little impact on peak viral loads. In the

severe disease simulation, the viral load was cleared marginally faster (~1 day) in comparison

to the mild disease simulation. This finding is supported by recent clinical evidence suggesting

that the rate of viral decline may be predictive of disease severity [6,64]. This therefore suggests

that viral loads alone may not be a necessary attribute to obtain severe tissue damage. Instead,

our model predicts that increases in tissue damage occur through heightened innate immune

responses. Further, increases to the viral infectivity rate β, which replicate changes in ACE2

expression between individuals and/or viral mutations causing increases in infectivity, were

not predicted to significantly change disease trajectories. This observation is consistent with

early SARS-CoV-2 variants, particularly D614G, where a spike protein mutation increased

infectivity but did not significantly alter disease outcomes [65] (similar conclusions are emerg-

ing for the alpha (B.1.1.7) variant [66,67]). As noted in Table 2, these results suggest future

experiments using mutated viral variants, and a separate mechanistic modelling study examin-

ing a gradient of ACE2 expression along the respiratory tract and/or within organ systems to

understand how within-host variation in ACE2 receptor expression impacts heterogeneity in

PLOS PATHOGENS COVID-19 virtual patient cohort suggests immune mechanisms driving disease outcomes

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009753 July 14, 2021 13 / 33

https://doi.org/10.1371/journal.ppat.1009753


the same virus. Future work will explore the potential immunopathological effects of newer

variants of concern.

Neutrophil and monocyte knockout simulations suggested that excessive suppression of

neutrophils early in infection may lead to future hyperinflammation even in otherwise mild

COVID-19. The peak ratio between CD8+ T cells and infected cells remained virtually

unchanged across the neutrophil, monocyte, and macrophage knockouts we considered,

which is indicative of the link between IFN, infected cells, and CD8+ T cells in our model.

Evaluating SARS-CoV-2 infection in a cohort of 200 virtual patients revealed several immu-

nological responses potentially leading to differential disease presentation. Notably, a distinct,

emergent switch in the type I IFN response corresponded with late IFN peaks and more severe

disease (i.e., higher inflammation C). This supports previous findings that connect a delay in

type I IFN with more severe presentations of highly pathogenic coronaviruses infections

including SARS-CoV, MERS-CoV, and SARS-CoV-2 [10,13,14], and provides a rational expla-

nation for the finding from a retrospective cohort study that early IFN therapy is associated

with better responses [28]. Of note, varying the initial viral inoculum did not impact disease

outcomes in virtual patients predicted to have either mild or severe disease. These results seem

to suggest that it is an individual’s intrinsic immunological response that dictates the severity

of COVID-19. Further, the inflammation marker C can also be applied to patient data, similar

to other proposed metrics (e.g. CytoScore [68]).

In our cohort, virtual patients with mild disease tended to achieve peak IFN concentrations

approximately 2 days after infection compared to those with severe disease who exhibited

higher inflammation and later IFN responses peaking after 5 days. This switch in IFN timing

was caused by a 3-fold increase in the rate of monocyte-to-inflammatory macrophage differen-

tiation and decreased production rate of IFN by infected cells. The initial delay of IFN produc-

tion was caused by increased monocyte-to-macrophage differentiation and this delay was

Table 2. Summary of model hypotheses, effects, possible experiments to test each hypothesis, and available experimental and/or clinical evidence in agreement with

prediction.

Effect/metric Predicted effect(s) on

disease heterogeneity

Hypothesis generated Possible experiments Experimental and/or clinical

evidence

Viral dose at

exposure

COVID-19 severity largely

dependent on an

individual’s propensity for

severe disease

Heterogeneity in viral loads and

immunopathology in COVID-19 are

determined by patient-intrinsic

immune responses

Inoculation escalation studies in animal

model measuring lung histology, weight

loss, and longitudinal cytokine profiles

pre- and post-infection

- -

Viral infectivity rate

(β)

Minimal Small increases in viral infectivity

alone are not drivers of COVID-19

severity

Measure disease outcomes in animal

model after infection by viral variants

with point mutations in spike protein

(e.g. D614G)

D614G mutation increases

infectivity but not COVID-19

severity [65,70]

IFN exposure (area

under the IFN time-

curve)

No association IFN timing is more crucial to disease

severity than exposure

Comparison of outcomes with and

without IFN receptor inhibition;

treatment with IFN initiated at varying

points after infection (measure: lung

histology, weight loss, longitudinal

cytokine profiling, differential gene

expression)

Known for SARS-CoV and MERS

[13,14]; early IFN therapy

associated with better responses

(retrospective cohort study) [28]

Time to IFN peak

concentrations

High correlation Impaired/slow monocyte-to-

macrophage differentiation rates in

severe cases

Evaluate longitudinal gene expression

and cell dynamics of monocyte and

dendritic cell subsets after infection

using RNAseq and flow cytometry

- -

Time to IFN peak

concentrations

High correlation IFN production is dysregulated/

impaired in severe cases

Kinetic experiments measuring IFN

expression after infection

Anti-IFN mechanisms in SARS-

CoV-2 [71,72]; weak induction of

IFN signaling by SARS-CoV-2

[73]

https://doi.org/10.1371/journal.ppat.1009753.t002
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exacerbated by reduced IFN production from infected cells, suggesting that the timing of the

IFN peak in a patient may allow for improved stratification into treatment arms designed to

target one or both of these responses. The finding that IFN binding was predictive of the dura-

tion of lung tissue damage suggests that virus-intrinsic properties and their ability to inhibit

receptor mediated binding and endocytosis could delay IFN production and cause down-

stream increases in IL-6 and GM-CSF, resulting in severe disease. Our results further suggest

that lymphopenia is tightly correlated with maximum IL-6 concentration and less dependent

on the timing of IFN.

Models by design require simplifying complex dynamics to highlight critical underlying

structures, which should then be experimentally or clinically verified. For instance, some

unmodeled cytokines have overlapping function and cellular sources to those explicitly mod-

elled here; thus, model predictions may be representative of broader synergistic effects [68]

and other cytokines could also be targets of interest. Also, as this work is focused on acute, pri-

mary infections, our model does not account for antibody production and we chose not to

explore questions related to vaccination efforts nor the potential for cross-reactivity given

exposure to other seasonal coronaviruses. Interestingly, recent evidence suggests that antibod-

ies to other seasonal coronaviruses do increase in SARS-CoV-2 but that this does not provide

protection [69]. Extending this model in the future to incorporate antibody production and

addressing persistent or secondary infection could help shed light on questions about vaccine

escape. There are also certain limitations to our virtual cohort simulations. As the true varia-

tion of these parameters in humans is unknown and in some cases impossible to measure, we

used variation in related data sets for their kinetics. As such, the virtual cohort represents a

prognostic guide, and future experiments would be needed to validate the findings in human

patients before formal conclusions can be drawn.

Importantly, our approach suggests future avenues of experimental studies through a

hypothesis-generation and prediction paradigm, suggesting key mechanisms as promising

avenues of investigation (Table 2).

Indeed, the ability of our model to recapitulate severe disease by, in part, regulating

monocyte differentiation raises the possibility that patients with low monocyte levels [7] may

benefit from treatments that better regulate monocyte differentiation. This is in line with

recent studies identifying distinct transcriptional factors as regulators of differentiated

monocyte fates in inflammatory conditions [74,75], and clinical observations that monocyte

dysregulation is present in severe COVID-19 [76,77]. It also raises the possibility that modu-

lation by exogenous cytokines, including macrophage colony-stimulating factor in combina-

tion with IL-4 and tumour necrosis factor-alpha (TNF-α), may be able to direct monocyte

differentiation in favour of monocyte-derived dendritic cells and reduce this response [74].

Recently, the neutralization of both TNF-α and IFN-γ has been found to benefit patients

with COVID-19 or other cytokine storm-drive syndromes by limiting inflammation and tis-

sue damage [78]. Given that TNF-α also has a secondary benefit on monocyte differentia-

tion, our results support the viability of this avenue of treatment. Caution should be noted,

however, given that some previous attempts to regulate host responses by IL-6 blockade have

proven unsuccessful [79]. Together, our findings support the idea that early interventions

aimed at reducing inflammation are more likely to be beneficial for patients at risk of pro-

gressing to severe COVID-19 than attempts to inhibit cytokine storm later in the disease

course, given that early IFN responses were found to provoke better controlled immune

responses and outcomes in our virtual cohort. It will be essential to characterize both the

timing and mechanisms of proposed therapeutic interventions to develop effective treat-

ments to mitigate severe disease.
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Materials and methods

Mathematical model of the immune response to SARS-CoV-2

Our model (Eqs. S1-S22) was developed to examine heterogeneous SARS-CoV-2 infection

dynamics and explore the immunological drivers of disease severity. The complete model is

provided in the Supplementary Information Section S1 along with all variable and parameter

descriptions provided in S1 Table, Section S2. Throughout, cytokine and immune cell interac-

tions and effects were described by Hill functions as

Bh

Bh þ gh
; ð1Þ

where B is the interacting compound, γ its half-effect value, and h the Hill coefficient [80,81].

Further, for a given cytokine X and cell population Y, the production (recruitment/differentia-

tion) rate of X by Y was denoted by pX,Y and the rate of production of Y by X by pY,X. The half-

effect concentration (i.e. γ in Eq 1) of cytokine X on cell population Y was represented by �X,Y

and the half-effect concentration of cell Y affecting cytokine X was given by ηX,Y. The natural

death rate of cell Y was denoted by dY, and the rate of induced death of cell Y by cell Z by δY,Z.

Lastly, the carrying capacity concentration of cell Y was denoted by Ymax, and regeneration or

proliferation rates by λY.

We modelled virus (V) as produced by infected cells at rate p and cleared via exponential

clearance at rate dV, which accounts for all contributions to viral degradation except macro-

phage- and neutrophil-mediated clearance. Immune-mediated viral clearance via phagocytosis

by inflammatory macrophages [82] and neutrophil extracellular traps (NETs—extracellular

chromatin fibres produced by neutrophils to control infections) [45,46] was considered to

occur at rates dV;MFI
and δV,N, respectively. Susceptible epithelial cells (S) grow logistically with

per capita proliferation rate λS and carrying capacity Smax, and become infected (I) at rate β.

The damage inflicted on epithelial cells by neutrophils was modelled using a Hill function (Eq

1) [81], where neutrophils kill/damage epithelial cells at rate δN through the release of NETs

and other antimicrobials proteins [45,46]. The constant ρ (0< ρ< 1) was included to modu-

late bystander damage of uninfected cells (S and R).

For the purposes of our study, we only considered type I IFN dynamics (primarily IFN-α,

β). Type I IFN (FU and FB) reduces the infectivity and replication capability of viruses by stim-

ulating cells to become resistant to infection [22]. These resistant cells (R) proliferate at a rate

equivalent to susceptible cells (λS). The concentration of bound IFN (FB) modulates the crea-

tion of infected and resistant cells [19,21,83,84], where increasing the concentration of IFN

causes more cells to become resistant to infection and less to become productively infected (I).
The potency of this effect is controlled by the half-effect parameter �F,I. Following the eclipse

phase (which lasts τI hours), productively infected cells (I) were modelled to produce virus

before undergoing virus-mediated lysis at rate dI. Although various immune cell subsets con-

tribute to infected cell clearance, we limited our investigation to macrophages and effector

CD8+ T cells which induce apoptosis at rates δI,MF and δI,T, respectively.

The accumulation of dead cells (D) was assumed to occur through infected cell lysis dI, neu-

trophil damage/killing of epithelial cells δN, macrophage phagocytosis of infected cells δI,MF,

macrophage exhaustion δMF,D, and CD8+ T cell killing of infected cells δI,T. These dead cells

disintegrate relatively quickly [85] at rate dD, and are cleared through phagocytosis by macro-

phages [86] at rate δD,MF.

Resident alveolar macrophages (δFR) are considered to be replenished at a logistic rate

inversely proportion to viral load with maximal rate of λMF and half-effect �V,MF (i.e. as the

virus is cleared, the inflammatory macrophage pool replenishes the alveolar macrophage
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population in the lung). We modelled the transition of alveolar macrophages to inflammatory

macrophages (MFI) as dependent on infected and dead cells, with a maximal rate of aI,MF. Res-

ident macrophages die naturally at a rate dMFR
or due to the clearing of dead cells (exhaustion)

[86] at rate δMF,D.

Inflammatory macrophages were modelled as produced by three distinct pathways (acting

individually or in concert): 1) stimulated tissue-resident macrophages aI,MF, (2) GM-CSF-

dependent monocyte differentiation, with maximal production pM,G and half effect �G,M, and

(3) IL-6-dependent monocyte differentiation, with maximal production rate pMFI;L
and half-

effect �L;MFI
. We assumed that inflammatory macrophages die naturally at rate dMFI

or from

clearing dead cells at a rate δMF,D.

We have previously shown that endogenous cytokine concentrations are not at quasi-equi-

librium at homeostasis [87]. Therefore, to describe the pharmacokinetics and pharmacody-

namics of cytokine binding and unbinding, we leveraged the framework established in Craig

et al. [87] (Fig 1C) for IFN (FB and FU), IL-6 (LB and LU), GM-CSF (GB and GU), and G-CSF

(CB and CU). In its general form, this pharmacokinetic relationship is expressed as

dYU

dt
¼ Yprod � klinYU � kB XA � YBð Þ YUð Þ

POW
þ kUYB; ð2Þ

dYB

dt
¼ � kintYB þ kB XA � YBð Þ YUð Þ

POW
� kUYB ð3Þ

where YU and YB are free and bound cytokines, Yprod is the rate of endogenous cytokine pro-

duction, kB and kU are the respective binding and unbinding rates, kint is the internalization

rate of bound cytokine, and klin is the elimination rate. Here, POW is a stoichiometric con-

stant, A is a scaling factor and X is the sum of all cells modulated by the cytokine with

XA ¼ p̂YMWK10nX: ð4Þ

where p̂ is a constant relating the stoichiometry between cytokine molecules and their recep-

tors, K is the number of receptors specific to each cytokine on a cell’s surface and 10n is a factor

correcting for cellular units (see Eqs. S19-S22). The molecular weight was calculated in the

standard way by dividing the cytokine’s molar mass (MM) by Avogadro’s number (YMW =

MM/6.02214 × 1023).

We considered unbound IL-6 (LU) to be produced from productively infected cells, inflam-

matory macrophages, and monocytes, with bound IL-6 (LB) resulting from binding to recep-

tors on the surface of neutrophils, CD8+ T cells and monocytes. Unbound GM-CSF (GU) was

assumed to be produced from inflammatory macrophages and monocytes and bind to recep-

tors on monocytes to create bound GM-CSF (GB). GM-CSF can be produced by CD8+ T cells

[88], but this was excluded because it was insignificant to the full system’s dynamics. Unbound

G-CSF (CU) is secreted by monocytes, with bound G-CSF (CB) produced via binding to neu-

trophil receptors. Lastly, because unbound type I IFNs (FU) are known to be produced by mul-

tiple cell types in response to viral infection, including lymphocytes, macrophages, endothelial

cells and fibroblasts [83], we modelled its unbound production from infected cells, infiltrating/

inflammatory macrophages, and monocytes, and its binding to receptors on both CD8+ T cells

and infected cells (Fig 1B).
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The pharmacokinetics and pharmacodynamics of G-CSF on neutrophils (N) were taken

directly from Craig et al. [87]:

dN
dt
¼ N�prod þ c

max
N � N�prod

� � CBF � C�BF
CBF � C�BF þ �C;N

 !

NR: ð5Þ

Neutrophil recruitment of bone marrow reservoir neutrophils (NR) was modelled to occur

via the bound fraction of G-CSF [89] (CBF = CB(t)/(ACN(t))) at rate N�prod which increases

towards its maximal value c
max
N as a function of increasing G-CSF. During the acute phase of

inflammation, endothelial cells produce IL-6 leading to the attraction of neutrophils [90]. This

was modelled as recruitment with maximal rate pN,L and half-effect parameter �D,L. Neutro-

phils die at rate dN.

Monocytes (M) are recruited by bound GM-CSF [91], similar to neutrophils (Eq 5), with

bone marrow monocytes (MR) recruited at a homeostatic rate M�
prod. In the presence of

GM-CSF, this rate increases towards c
max
M . Monocytes are also recruited by the presence of

infected cells at a maximal rate of pM,I with half-effect �I,M, and subsequently disappear through

differentiation into inflammatory macrophages (as above) or death at rate dM.

CD8+ T cells are recruited through antigen presentation on infected cells as a function of

infected cell numbers at rate pT,I The constant delay (τT) accounts for the time taken for den-

dritic cells to activate, migrate to the lymph nodes, activate CD8+ T cells, and the arrival of

effector CD8+ T cells at the infection site. CD8+ T cell expansion occurs in response to bound

IFN at a maximal rate pT,F with half-effect �F,T, and CD8+ T-cell exhaustion occurs with high

concentrations of IL-6 [16,17], with half-effect �L,T, and apoptosis occurs at rate dT.

Estimating early infection dynamics (‘viral model’)

In an attempt to reduce the degrees of freedom during parameter estimation, we deployed a

step-wise approach by isolating subsections of the model. This approach helps mitigate poten-

tial issues with parameter identifiability, given that ours is a large, nonlinear model [92–94]

and allows us to estimate parameters from multiple data sources [87,95,96]. Other methodolo-

gies, including Bayesian computation, are alternative approaches in this context. To begin

estimating parameter values from data, we set all immune populations and cytokine concen-

trations in the full model (Supplementary Information Eqs. S1-S22) to zero (MFR = MFI =

M = N = T = LU = LB = GU = GB = CU = CB = FU = FB = 0). This gives

dV
dt
¼ pI � dVV; ð6Þ

dS
dt
¼ lS 1 �

Sþ I þ D
Smax

� �

S � bSV; ð7Þ

dI
dt
¼ bS t � tIð ÞV t � tIð Þ � dII; ð8Þ

dD
dt
¼ dII � dDD: ð9Þ

We also assumed there were no resistant cells (R = 0) due to the absence of an IFN equation.

This resulted in a simplified ‘viral model’ that considers only virus (V) infection of susceptible
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cells (S) which creates infected cells (I) after τI days, which the die through lysis, creating dead

cells (D).

Type I interferon dynamics during early infection (‘IFN model’)

To study infection dynamics driven uniquely by IFN, we extended Eqs 6–9 by introducing the

IFN mechanisms from Eqs. S1-S22, i.e. setting other cytokine and immune cell populations to

zero (MFR = MFI = M = N = T = LU = LB = GU = GB = CU = CB = 0), giving

dV
dt
¼ pI � dVV; ð10Þ

dS
dt
¼ lS 1 �

Sþ I þ Rþ D
Smax

� �

S � bSV; ð11Þ

dI
dt
¼
bS t � tIð ÞV t � tIð Þ�F;I

�F;I þ FB
� dII; ð12Þ

dR
dt
¼ lS 1 �

Sþ I þ Rþ D
Smax

� �

Rþ
bS t � tIð ÞV t � tIð ÞFB

FB þ �F;I
; ð13Þ

dD
dt
¼ dII � dDD; ð14Þ

dFU

dt
¼ c

prod
F þ

pF;II
I þ ZF;I

� klinFFU � kBF T� þ Ið ÞAF � FBð ÞFU þ kUF
FB; ð15Þ

dFB

dt
¼ � kintFFB þ kBF T� þ Ið ÞAF � FBð ÞFU � kUF

FB; ð16Þ

where cells become resistant (R) through IFN (FU and FB). The parameter c
prod
F was introduced

to account for the production of IFN by macrophages and monocytes not explicitly modelled

in this reduced system but included in the full system (i.e. pF,M and pF,MF in Eq. S17). Previ-

ously-fit parameters were then fixed to their estimated values (S1 Table) and the value of c
prod
F

was determined by solving dFU/dt = 0 at homeostasis (i.e. V = I = 0), giving c
prod
F ¼ 0:25.

Model calibration and parameter estimation

Model parameters (S1 Table) were obtained either directly from the literature, using the

half-life formula (Eq. S23), through fitting effect curves (Eqs. S24-S25) or sub-models (Eqs.

S26-S56) to in vitro, in vivo, and clinical data, or by calculating the value that ensured that

homeostasis was maintained (Eqs. S57-S70) in the absence of infection. All fitting procedures

were performed using MATLAB 2019b functions fmincon or lsqnonlin [97]. Full details are

given in the Supplementary Information, and a brief summary is provided below.

Initial concentrations of all unbound cytokines (LU,0, GU,0, CU,0 and FU,0), susceptible cells,

resident macrophages, monocytes, neutrophils, and CD8+ T cells (S0, MFR,0, M0, N0 and T0)

were estimated from plasma and lung tissue concentrations in humans [87,98–104] (Section

S3.1-S3.2). Parameters for cytokine binding and unbinding kinetics (Eqs 2–4), such as the

molecular weight (MM), binding sites per cell (K), binding/unbinding rates (kB and kU), inter-

nalization rates for GM-CSF, G-CSF and IFN (kint), and cytokine clearance rates (klin), were
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estimated both from known values in the literature [84,87,105–115] and previous modelling

work [87,116,117] (Section S3.3-S3.5). The stoichiometric constants POW and p̂ were both

equal to 1 for all cytokines, except for G-CSF for which POW = 1.4608 and p̂ ¼ 2 as previously

estimated by Craig et al. [87]. Neutrophil and monocyte reservoir dynamics, monocyte differ-

entiation, macrophage activation, and CD8+ T cell recruitment and expansion parameters

were primarily estimated from previous mathematical modelling studies [87,118] as well as

known values [55,58,81,119] (Section S3.6-S3.8). Immune cell death rates were taken directly

from the literature [59,95,120] or estimated from recorded half-lives [60,85,86,121,122] using

Eq. S23 (Section S3.9).

To estimate the rates of virus production, decay, infectivity, and infected cell lysis (p, dV, β
and dI respectively) in early infections, we initially fit Eqs 6–9 to viral load measurements from

SARS-CoV-2 infection in macaques [47] where eight adult rhesus macaques inoculated with

4 × 105 TCID50/ml (3 × 108 genome copies/ml) SARS-CoV-2 [47] (S6 Fig). These parameter

values then informed our estimations from hospitalized individuals (Fig 2). We used two data

sets of SARS-CoV-2 shedding in the absence of effective treatment from patients in Singapore

[40] (n = 3) and patients in Germany [49] (n = 5). In Singapore, samples were obtained with

nasopharyngeal swabs whereas viral loads were measured directly from sputum in Germany.

Given the heterogeneity in viral loads from human patients (since available human SARS-

CoV-2 viral load data is generally measured from the day of onset of symptoms or after hospi-

talization without knowing the viral exposure size), Goyal et al. [37] estimated the lag between

initial inoculation and first viral measurement for each patient. We used their estimates of

the lag and viral production rate p, as well as the estimates for dV, β, and dI from fitting the

macaque date (S6 Fig) to estimate the viral parameters dV, β and dI for the human SARS-CoV-

2 viral load data. Viral loads below 2 log10(copy/ml) were assumed to be negligible [37]. Esti-

mated parameters for viral decay (dV) and cell lysis (dI) were used as an upper bound for

parameter values in the full model to account for additional viral clearance and cell killing of

the immune system.

A subset of parameters was obtained through fitting sigmoidal effect curves (Eqs. S24-S25)

curves to in vitro and in vivo experiments. These include the IFN inhibition of viral infection

and replication [54] (�F,I; Section S4.1.1), the half-effect neutrophil concentration for epithelial

cell damage [123] (IC50,N; Section S4.1.2), and the half-effect concentrations for monocyte pro-

duction and differentiation through GM-CSF signalling [124] (�G,M and �G;MFI
; Section S4.1.3)

see S1 Fig. Other parameters obtained through effect curves were the half-effects for IL-6 pro-

duction by monocytes [125] and the effect of IL-6 on monocyte differentiation [44] (ηL,M and

�L,M; Section S4.1.4), and the half-effect of IFN on CD8+ T cell [61] (�F,T; Section S4.1.5) and

IL-6 on CD8+ T cell expansion [126] (�L,T; Section S4.1.6; S2 Fig).

These parameters were then fixed, and remaining parameters were estimated by fitting

time-dependent sub-models of Eqs. S1-S22 to relevant data. The proliferation rate of epithelial

cells (λS; Section S4.2.1), the internalization rate of IL-6 (kintL ; Section S4.2.2), and the rate

of neutrophil induced damage (δN; Section S4.2.3) were fit to corresponding time-series mea-

surements [127–129] using exponential rate terms (S2 Fig). Clearance and phagocytosis of

infected cells and extracellular virus by inflammatory macrophages (δI,MF and δV,MF; Section

S4.2.4-S4.2.5) were fit to in vitro experiments [86,130] (S2 Fig). Production of IFN by macro-

phages (pF,MF; Section S4.2.6) was obtained by fitting to data measuring IFN-α production

[62] (S3 Fig). The parameters regulating the rate of the resident macrophage pool replenish-

ment (λMF and �V,MF; Section S4.2.7) were estimated from our in vivo observations of resident

macrophages during influenza virus infection (S3 Fig). GM-CSF production by monocytes

(pG,M; S3 Fig, Section S4.2.8), IFN production by infected cells (pF,I; Section S4.2.9), and IL-6
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production by infected cells and macrophages (pL,I and pL,MF; Section S4.2.10-S4.2.11) were all

obtained from fitting reduced versions of Eqs. S1-S22 to in vitro experiments [56,57,131,132]

(S4 Fig).

Lastly, any remaining parameters values were obtained by ensuring that homeostasis was

maintained in absence of infection (S5 Fig; Section S5). Parameters calculated from homeosta-

sis include the half-effect monocyte concentration for G-CSF production (ηC,M), the produc-

tion rate of IL-6 and GM-CSF by inflammatory macrophages (pL,MF and pG,MF), the

production rate of monocytes by GM-CSF (pM,G), and the half-effect inflammatory macro-

phage concentration for IFN production (ηF,MF). For some parameters it was not possible to

obtain an estimation from the literature, and for these we either set their value equal to an

already estimated parameter (�L;N ; pC;M; pF;MFI
; ZG;MF;), or qualitatively estimated it (�I,M, ρ, see

S1 Table).

For the ‘IFN model’ (Eqs 10–16), parameters related to virus (p, dV, β and dI), epithelial cell

proliferation (λS and Smax), and IFN (pF;I; ZF;I; klinF ; kBF ; AF; kUF
and �F,I) were fixed to those

in S1 Table.

Numerical simulations

All ODE models were solved using ode45 in MATLAB, and delay differentiation equations

(i.e. Eqs. S1-S22) were solved using ddesd in MATLAB.

Sensitivity analysis

We performed a local sensitivity analysis for the full model (Eqs. S1-S22) by individually vary-

ing each parameter by ±20% from its estimated value and quantifying the effect on the model’s

output. This change was recorded and used to evaluate different metrics representing the

inflammatory response to SARS-CoV-2, namely maximum viral load, maximum number of

dead cells, minimum uninfected tissue, maximum number of inflammatory macrophages,

maximum number of CD8+ T cells, maximum unbound IL-6, maximum unbound IFN, the

total exposure (AUC) to type I IFN, number of days the percent of damaged tissue was >80%,

and time of unbound type I IFN peak. We quantified the fraction of undamaged tissue by (S +

R)/Smax. For each parameter simulation, we recorded the value of the different metrics listed

(i.e. maximum viral load etc.). For each metric, we then determined the maximum increase

and decrease for that metric, and assigned the grid point for that parameter value a colour

based on a linear grid of possible values for that metric.

Virtual patient generation

We next created a virtual cohort of patients to extend the sensitivity analysis in Fig 5 and fur-

ther interrogate on the causes driving responses for the most sensitive parameters (particularly

certain IFN, IL-6, and immune cell related parameters). To generate a cohort of 200 virtual

patients, we followed frequently-used quantitative systems pharmacology techniques similar to

those of Allen et al. [32] and our previous studies [94,96] wherein individual virtual patients

were created by sampling a parameter set p from parameter distributions then simulating the

model to verify that each individual’s trajectory was realistic. A subset of parameters (pMFI ;L
,

pL,MF, pF,I, pM,I, ηF,MF, �F,I, and pF,M) was designated as patient-specific after considering the

results of the sensitivity analysis (Fig 5 and S9 Fig) and standard deviations inferred from clini-

cal observations (Supplementary Information Section 6.1). Patient-specific parameters were

selected using the mvnrand function in Matlab, which samples from a multivariate normal dis-

tribution. To avoid the inclusion of unrealistic dynamics, patient parameter sets were then
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optimized using simulated annealing using the simulannealbnd function in Matlab to ensure

predictions fell within physiological ranges for viral load [47], IL-6 [6,53], IFN-α [51], and

G-CSF [30] (Fig 8). Posterior distributions from this generation procedure are provided in

S10 Fig.

The upper ui and lower li bounds for V, LU, FU and CU were based off these physiological

ranges from Munster et al. [47] (viral loads), Herold et al. [53] (IL-6 concentrations), Trouil-

let-Assant et al. [51] (IFN dynamics), and Liu et al. [7] (G-CSF concentrations) as described in

Supplementary Information Section S.6.1. Intervals for each patient-specific parameter set

were restricted to four standard deviations from the mean or zero if the lower bound was nega-

tive. Given an initial patient specific parameter set p, we used simulated annealing to minimize

J(p), i.e.

min
p

J pð Þ ¼ minp

X

i
max Mi pð Þ �

li þ ui

2

� �2

� ui �
li þ ui

2

� �2

; 0

 !" #

; ð17Þ

where Mi(p) is the model output i evaluated at parameter set p corresponding to the upper and

lower bound li and ui (Fig 8).

To quantify disease severity for each patient, we introduced an inflammation variable (C)

to account for the combined changes in IL-6 (LU), neutrophils (N), and damaged tissue (S +

R), each normalized by the virtual cohort’s average. In this way, Cmeasures an individual’s

relative change from the cohort’s baseline, and quantifies the contributions of IL-6, neutro-

phils, and tissue damage on comparable scales. For a given patient j, the inflammation marker

is given by

C
j
¼

maxtðL
j
UðtÞÞ

1

n

Pn
j¼1

maxt Lj
U tð Þ

� �� �þ
maxtðNjðtÞÞ

1

n

Pn
j¼1

maxt Nj tð Þð Þð Þ
þ

Smax � mint Sj tð Þ þ Rj tð Þð Þ
1

n

Pn
j¼1

Smax � mint Sj tð Þ þ Rj tð Þð Þð Þ
; ð18Þ

where n is the total number of patients in the cohort, and Lj
U ; Nj; Sj, and Rj are the unbound

IL-6, neutrophils, and susceptible and resistant epithelial cell count, respectively. The threshold

value for severe diseases (C = 3) was determined given the distinct “jump” in the delay in peak

concentrations (Fig 9).

Statistical analyses

The Pearson correlation coefficient (R) was used to measure the degree of interaction between

two variables, with a significance level of α< 0.05 indicating rejection of the hypothesis that

there is no relationship between the observed variables. In addition, we used two-sample two-

sided t-tests (number of patients < 40) and z-tests (number of patients� 40) at the α< 0.05

significance level to test the hypothesis that there were no differences between sample means.

Supporting information

S1 Text. Supplementary information file.

(PDF)

S1 Fig. Effects of neutrophils on lung epithelial cells, GM-CSF on monocyte production

and differentiation, the relationships between monocytes and CD4+ T cells with IL-6, and

the influence of IFN on T cell expansion. A) Using the measurements by Knaapen et al.

[123], the inhibitory effect curve E (Eq. S25) was fit to the cell viability of RLE cells under

various concentrations of H2O2. B) The stimulatory effect curve E (Eq. S24) was fit to the

dose response measurements of blood monoculture cells (3 × 103 cells/dish) with various
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concentrations of murine recombinant GM-CSF (IU/ml) [124]. C) The stimulatory effect

curve E (Eq. S24) was fit to measurements for the monocytic myeloid cell count as a function

of GM-CSF [133] D) Eq. S27 fit to time course data of IL-6 production from monocytes [125].

E) IL-6 stimulation of monocyte differentiation to macrophages modelled by the inhibitory

effect curve E (Eq. S24) fit to the percentage of CD14+ cells (macrophages) as a function of

the number of fibroblasts measured by Chomarat et al. [44]. F) Stimulatory effect curve E

(Eq. S24) for IFN-γ stimulation on CD8+ T cells fit to measurements of the signalling in CD8

+T cells for varying doses of IFN-γ [61]. Data (black) is plotted as either circles (D & E) or

mean and standard deviation error bars (A-C&F); solid blue line: corresponding fit.

(TIF)

S2 Fig. Dynamics of IL-6 on T cell expansion, epithelial cell growth, IL-6 internalization,

neutrophil-induced damage, and macrophage phagocytosis. A) Effect curve (Eq. S24) for

the IL-6 effect on T cell expansion fit to measurements CD4+ T cells from dilutions of IL-6 by

Holsti and Raulet [126]. B) Exponential growth curve fit to the growth of A549 cells [127] C)

The internalization rate of IL-6 (Eq. S30) fit to the fraction of internalized IL-6 [128]. D) Expo-

nential decay fit to cell viability after H2O2 administration [129]. E) The macrophage clearance

of apoptotic material (Eqs. S31-S33) was fit to the percentage of macrophages that had

engulfed material over 25 hours [86]. F) The phagocytosis rate of extracellular virus by macro-

phages was obtained by fitting Eqs. S34-S35 to the uptake of virus by macrophages measured

by Rigden et al. [130]. Data (black) is plotted as either circles (A & F) or mean and standard

deviation error bars (B-E); solid blue line: corresponding fit.

(TIF)

S3 Fig. Monocyte expansion and type I IFN production by monocytes, alveolar macro-

phage replenishment after viral infection, and GM-CSF production by monocytes. A)

Eq. S37 fit to time course of proliferation of monocytes in culture [62]. B) Fit of Eqs. S38-S39

to the production of IFN-α by monocytes after 24 hours with RSV as a function of the number

of days of pre-culturing (1, 2, 4 or 7) [63]. C) Correlation between infectious virus titre and

RT-PCR copy number for influenza A and B measured by Laurie et al. [134] The relative

TCID50 compared to the RNA copies is plotted for each virus strain and the mean as a black

dashed line. D-E) Fit of Eqs. S40-S42 to viral loads [135] and alveolar macrophages from

experimental influenza infections. F) The production of GM-CSF from stimulated monocytes

was recorded by Lee et al. [131] Using a simplified version of the full model (Eqs. S43-S46), we

obtained the production rates for monocytes and GM-CSF. Data (black) is plotted as either

circles/stars (B&F) or mean and standard deviation error bars (A, D-E); solid blue line: corre-

sponding fit.

(TIF)

S4 Fig. Production of IFN and IL-6 by infected cells and macrophages. A) Concentration

of IFN-β released by alveolar epithelial cells in response to stimulation with influenza virus

recorded at 8, 16 and 24 hours [57]. B-C) IL-6 production by infected cells in response to A)

H5NA and B) H7N9, measured by Ye et al. [132] Data (black) is plotted as mean and standard

deviation error bars with the corresponding fit (Eqs. S51-S54) in solid blue. D) IL-6 produc-

tion by macrophages (Eq. S56) in response to stimulation with LPS of varying dosage sizes.

Shibata et al. [56] measured the production of IL-6 for different dosages of LPS and fitting the

production rate to this data to obtain pL,MF, ηL,MF.

(TIF)

S5 Fig. Homeostatic disease-free system regulation. A) To confirm that parameters in the

model represented realistic immunocompetent individuals in the disease-free scenario, Eqs.
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S1-S22 were simulated where V0 = 0 and parameters were given by the homeostasis Eqs.

S57-S70. The initial concentration of G-CSF was perturbed and compared to simulations of

the model at homeostasis. Simulations at homeostasis are represented by solid lines (purple)

and perturbed simulations as dashed lines (pink). B) The maximum residual between variables

and their initial conditions at day 50 was measured to confirm that the system was stable for

perturbations in all immune cells and cytokines.

(TIF)

S6 Fig. Viral dynamics model fit to macaque viral data from Munster et al. [47] A reduced

version of the full model (all cytokine and immune cells set to 0, Eqs 6–9) was fit to data from

macaques [47] to estimate preliminary viral kinetic parameters. A) Virus (V) infects suscepti-

ble cells (S) making infected epithelial cells (I) which then die to produce dead cells (D) and

new virus. B) Comparison of predicted viral dynamics compared to observations from 6 ani-

mals, with susceptible cell kinetics (left) with predictions of infected and dead cells over time

(right). We estimated β, p, dI, V0 and dV from the reduced model in A) fit to data from Mun-

ster et al. [47] measuring the viral load in macaques after challenge with SARS-CoV-2.

(TIF)

S7 Fig. Model validation against human cytokine and immune cell measurements during

SARS-CoV-2 infection. A) IFN dynamics of the reduced model (Fig 3 Main Text) overlaid

with patient IFN-α2 plasma concentrations from Trouillet-Assant et al. [100] The solid line

(purple) represents the unbound IFN dynamics from the reduced model (Eqs. 27–33). Indi-

vidual patient IFN-α2 measurements are plotted as grey circles for IFN-positive patients

(n = 21), patients with no IFN measurements (IFN-negative; n = 5) have not been plotted.

Healthy volunteer IFN-α2 concentrations are indicated by a grey area. B-F) Mild (solid line)

and severe (dashed line) dynamics (Eqs. 27–33 corresponding to simulations in Fig 4 Main

Text and S8 Fig compared to corresponding measurements in humans. B-C) Plasma IFN-α
and IL-6 in COVID-19 critically ill patients (n = 26) obtained by Trouillet-Assant et al. [100]

overlaid with mild and severe unbound IFN (FU(t)) and mild and severe unbound IL-6 (LU(t))

IFN-negative patients (yellow stars) had no IFN-α measurements and IFN-positive patients

(grey points) had non-zero IFN-α measurements. Healthy volunteer concentrations are indi-

cated by a grey area. D) IL-6 levels in patients requiring (“Yes”) and not requiring mechanical

(“No”) ventilation obtained by Herold et al. [53] overlaid with mild and severe unbound IL-6

dynamics. E) IL-6 concentration in Moderate (“M”) and severe (“S”) COVID-19 patients

obtained by Lucas et al. [6]. F) G-CSF plasma concentration obtained by Long et al. [30] in

symptomatic “S” and asymptomatic “AS” COVID-19 patients overlaid with corresponding

mild and severe model dynamics. G-I) Neutrophils, monocytes and CD8+ T cells in moderate

and severe COVID-19 patients normalized by health care worker (HCW) baseline measure-

ments obtained by Lucas et al. [6]. Violin plots are given for the measurements plotted in D-I.

(TIF)

S8 Fig. Predicting mild and severe COVID-19 dynamics (all model variables). Extension of

results of mild and severe disease dynamics in Fig 4 Main Text. Mild disease (solid lines)

dynamics obtained by using baseline parameter estimates (S1 Table) while severe disease

dynamics (dashed lines) were obtained by decreasing the production rate of type I IFN, pF,I,

and increasing the production of monocytes, pM,I, and their differentiation to macrophages,

ηF,MF. A) Lung cells concentrations (susceptible cells S(t), resistant cells R(t), infected cells I(t),

dead cells D(t) and virus V(t)). Solid black line with error bars indicates macaque data (see Fig

2 Main Text). B) Immune cell concentrations (resident macrophages MFR(t), inflammatory

macrophages MFI(t), monocytes M(t), neutrophils N(t) and T cells T(t)). C) Bound and
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unbound cytokine concentrations (IL-6 unbound LU(t) and bound LB(t), GM-CSF unbound

GU(t) and bound GB(t), G-CSF unbound CU(t) and bound CB(t), type I IFN unbound FU(t)

and bound FB(t)).

(TIF)

S9 Fig. Full analysis of parameters driving COVID-19 severity. A local sensitivity analysis

was performed by varying each parameter ±20% from its originally estimated value and simu-

lating the model. Predictions were then compared to baseline considering: Maximum viral

load (max(V)), maximum concentration of dead cells (max(D)), minimum uninfected live

cells (min(S+R)), maximum concentration of inflammatory macrophages (max(MFI)), maxi-

mum number of CD8+ T cells (max(T)), maximum concentration of IL-6 (max(LU)), maxi-

mum concentration of type I IFN (max(FU)), the total exposure to type I IFN (FU exposure),

the number of days damaged tissue was >80% (time (S + R)/Smax)<0.2), and the day type I

IFN reached its maximum (day max(FU)). The heatmaps show the fold change of each metric,

where blue signifies the minimum value observed and red signifies the maximum value

observed, or by the number of days, where light to dark pink signifying increasing number of

days from zero. The most sensitive parameters are shown in Fig 5 in the Main Text.

(TIF)

S10 Fig. Effects of neutrophil, monocyte, and macrophage knockout on mild disease

courses compared with severe disease dynamics. We performed in silico knockout experi-

ments in the mild disease scenario (Fig 4; solid black line) by considering complete monocyte

knockout (i.e. no monocyte recruitment and M(0) = 0; dark pink dash-dot line), complete

macrophage knockout (i.e. not inflammatory macrophage creation via antigen stimulation or

monocyte differentiation; light pink dotted line) and complete neutrophil knockout (i.e. no

neutrophil recruitment and N(0) = 0; pink dashed line). Blue solid lines correspond to mild

diseases courses; black solid lines: severe disease. Dynamics of the in silico knockout are plot-

ted for the A) viral load, B) uninfected cells, C) inflammatory macrophages, D) neutrophils, E)

CD8+ T cells relative to uninfected cells and F) unbound IL-6. This figure is an extension of

Fig 7 in the Main Text.

(TIF)

S11 Fig. Parameter distributions of virtual cohort parameters. Virtual patients were gener-

ated by sampling from normal distributions for a subset of model parameters and optimizing

parameters using simulated annealing to confirm realistic disease trajectories (see Fig 4).

Resulting distributions for each parameter (purple histograms) are shown compared to esti-

mated values for an average patient (dotted black vertical line). The average of the virtual

cohort is also plotted (dashed purple line).

(TIF)

S12 Fig. Cohort dynamics compared to observed clinical physiological ranges. Virtual

patients were generated so that viral load, IFN, G-CSF and IL-6 concentration were within

physiological ranges obtained in the literature. The physiological ranges (Fig 9) of A) human

SARS-CoV-2 viral loads [37], B) IL-6 concentrations from patients [53] plotted against the vir-

tual cohort dynamics (grey lines).

(TIF)

S1 Table. Parameter values used in the Main Text. Parameters have been grouped into: (a-e)

cell related, (f-k) cytokine related parameters, and (l) initial conditions. Relevant references are

given for parameters directly estimated from the literature (“Direct estimate”). Parameters

obtained through fitting to data in the literature have the appropriate figure noted and data
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referenced (“Fit Fig, data”). Remaining parameters were estimated from homeostasis calcula-

tion (“Homeostasis”) or qualitatively estimated (“Estimated”). Parameters whose value was

taken from another parameters estimation has that parameter noted. Viral load is reported as

log(virion copies/ml) and cells have been noted in 109 cells/ml. Time t is in days. The final

sub-table (m) is a list of the variables in the model.

(PDF)
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