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Abstract

Background

Our understanding of the global scale of Severe Acute Respiratory Syndrome Coronavi-

rus 2 (SARS-CoV-2) infection remains incomplete: Routine surveillance data underesti-

mate infection and cannot infer on population immunity; there is a predominance of

asymptomatic infections, and uneven access to diagnostics. We meta-analyzed SARS-

CoV-2 seroprevalence studies, standardized to those described in the World Health

Organization’s Unity protocol (WHO Unity) for general population seroepidemiological

studies, to estimate the extent of population infection and seropositivity to the virus 2

years into the pandemic.
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Methods and findings

We conducted a systematic review and meta-analysis, searching MEDLINE, Embase, Web

of Science, preprints, and grey literature for SARS-CoV-2 seroprevalence published

between January 1, 2020 and May 20, 2022. The review protocol is registered with PROS-

PERO (CRD42020183634). We included general population cross-sectional and cohort

studies meeting an assay quality threshold (90% sensitivity, 97% specificity; exceptions for

humanitarian settings). We excluded studies with an unclear or closed population sample

frame. Eligible studies—those aligned with the WHO Unity protocol—were extracted and

critically appraised in duplicate, with risk of bias evaluated using a modified Joanna Briggs

Institute checklist. We meta-analyzed seroprevalence by country and month, pooling to esti-

mate regional and global seroprevalence over time; compared seroprevalence from infec-

tion to confirmed cases to estimate underascertainment; meta-analyzed differences in

seroprevalence between demographic subgroups such as age and sex; and identified

national factors associated with seroprevalence using meta-regression. We identified 513

full texts reporting 965 distinct seroprevalence studies (41% low- and middle-income coun-

tries [LMICs]) sampling 5,346,069 participants between January 2020 and April 2022,

including 459 low/moderate risk of bias studies with national/subnational scope in further

analysis. By September 2021, global SARS-CoV-2 seroprevalence from infection or vacci-

nation was 59.2%, 95% CI [56.1% to 62.2%]. Overall seroprevalence rose steeply in 2021

due to infection in some regions (e.g., 26.6% [24.6 to 28.8] to 86.7% [84.6% to 88.5%] in

Africa in December 2021) and vaccination and infection in others (e.g., 9.6% [8.3% to

11.0%] in June 2020 to 95.9% [92.6% to 97.8%] in December 2021, in European high-

income countries [HICs]). After the emergence of Omicron in March 2022, infection-induced

seroprevalence rose to 47.9% [41.0% to 54.9%] in Europe HIC and 33.7% [31.6% to 36.0%]

in Americas HIC. In 2021 Quarter Three (July to September), median seroprevalence to

cumulative incidence ratios ranged from around 2:1 in the Americas and Europe HICs to

over 100:1 in Africa (LMICs). Children 0 to 9 years and adults 60+ were at lower risk of sero-

positivity than adults 20 to 29 (p < 0.001 and p = 0.005, respectively). In a multivariable

model using prevaccination data, stringent public health and social measures were

associated with lower seroprevalence (p = 0.02). The main limitations of our methodology

include that some estimates were driven by certain countries or populations being

overrepresented.

Conclusions

In this study, we observed that global seroprevalence has risen considerably over time and

with regional variation; however, over one-third of the global population are seronegative to

the SARS-CoV-2 virus. Our estimates of infections based on seroprevalence far exceed

reported Coronavirus Disease 2019 (COVID-19) cases. Quality and standardized seroprev-

alence studies are essential to inform COVID-19 response, particularly in resource-limited

regions.
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Author summary

Why was this study done?

• Serosurveys, or studies capturing information on Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) antibody prevalence, help us understand true rates of

infection, vaccination, and indicators of immunity in the population against the virus

causing Coronavirus Disease 2019 (COVID-19) and inform public health decision-

making.

• Previous global systematic reviews of seroprevalence have highlighted a lack of stan-

dardization in study methods and fewer datasets in some regions like low- and middle-

income countries.

• Recently, in part via WHO’s Unity studies, the quantity and quality of available sero-

prevalence data has increased, providing the opportunity to understand the true extent

of exposure to SARS-CoV-2 and differences by demographic groups, region, and time.

What did the researchers do and find?

• We meta-analyzed standardized SARS-CoV-2 seroprevalence studies to estimate the

proportion of the global population with antibodies against SARS-CoV-2, the virus

causing COVID-19.

• By September 2021, global SARS-CoV-2 seroprevalence from infection or vaccination

was 59.2%, 95% CI [56.1% to 62.2%].

• Overall seroprevalence rose steeply in 2021 due to infection in some regions (e.g., 26.6%

[24.6 to 28.8] to 86.7% [84.6% to 88.5%] in Africa) and vaccination and infection in oth-

ers (e.g., 9.6% [8.3% to 11.0%] to 95.9% [92.6% to 97.8%] in Europe high-income coun-

tries [HICs]). After the emergence of Omicron in March 2022, infection-induced

seroprevalence rose to 47.9% [41.0% to 54.9%] in Europe HIC and 33.7% [31.6% to

36.0%] in Americas HIC.

What do these findings mean?

• Seroprevalence has increased over time, with heterogeneity in dynamics and data

robustness between regions.

• Estimates of COVID-19 infections based on seroprevalence data far exceed reported

cases.

• It remains important to continue investing in serosurveillance to monitor the COVID-

19 pandemic and prepare for future potential emerging viruses.
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Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respira-

tory Syndrome Coronavirus 2 (SARS-CoV-2) virus, continues to severely impact population

health and healthcare systems. The 604 million cases and 6.5 million deaths reported as of Sep-

tember 7, 2022 [1] underestimate the global burden of this pandemic, particularly in low- and

middle-income countries (LMICs) with limited capacity for contact tracing, diagnostic testing,

and surveillance [2].

Seroprevalence studies estimate the prevalence of SARS-CoV-2 antibodies. These studies

are crucial to understand the true extent of infection overall, by demographic group, and by

geographic area, as well as to estimate case underascertainment. As anti-SARS-CoV-2 antibod-

ies are highly predictive of immune protection [3,4], seroprevalence studies are also indicative

of population levels of humoral immunity and therefore important to inform scenario model-

ing, public health planning, and national policies in response to the pandemic. Although sero-

prevalence provides crucial information on population-level infection dynamics, it is

important to note that it does not imply protection against infection and therefore is not an

appropriate measure to gauge progress towards herd immunity.

During 2021, many regions have experienced third and fourth waves of SARS-CoV-2 infec-

tion [1]; concurrently, some countries have vaccinated most residents, while others remain

unable to achieve high vaccine coverage due to challenges with supply and uptake [5]. A new

wave of well-conducted seroprevalence studies, including many in LMICs, provides robust

estimates of seroprevalence in late 2020 and into 2021 [6–8]. Synthesizing these studies is cru-

cial to understand the shifting global dynamics and true extent of SARS-CoV-2 infection and

humoral immunity. While previous global systematic reviews of seroprevalence have been

conducted [9–12], these have included only studies that sampled participants in 2020 and

pooled seroprevalence across all time points. These meta-analyses also highlight the impor-

tance of improved standardization and study quality to enable more robust analysis [9–11].

Estimates of seroprevalence can be difficult to compare systematically across different set-

tings due to variations in design aspects including sampled populations, testing and analytical

methods, timing in relation to waves of infection, and study quality and reporting. The World

Health Organization’s Unity Initiative (henceforth “WHO Unity”) aims to help produce har-

monized and representative seroprevalence study results in accordance with global equity

principles [2]. The WHO Unity population-based, age-stratified seroepidemiological investi-

gation protocol (the SEROPREV protocol) [2] provides a standard study design and laboratory

approach to general population seroprevalence studies. WHO Unity and its partners have sup-

ported the implementation of SEROPREV by providing financial and technical resources,

including a well-performing serologic assay. SEROPREV has been implemented in 74 coun-

tries globally and in 51 LMICs as of September 2021 [2]. Synthesizing results aligned with the

standard SEROPREV protocol improves study comparability, enabling further analysis of

these comparable studies to answer key questions about the progress of the pandemic globally.

This systematic review and meta-analysis synthesized seroprevalence studies worldwide

aligned with the SEROPREV protocol, regardless of whether the study received support from

WHO. Our objectives were to (i) estimate changes in global and regional seroprevalence over

time by WHO region and country income level; (ii) assess the level of undetected infection, by

global and regional case ascertainment over time by calculating the ratio of seroprevalence to

cumulative incidence of confirmed cases; and (iii) identify factors associated with seropositiv-

ity including demographic differences by 10-year age band and sex through meta-analysis, and

study design and country-level differences through meta-regression.
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Methods

Search strategy and study selection

We conducted a systematic review of seroprevalence studies (hereafter “studies”) published

from January 1, 2020 to May 20, 2022, reported according to the Preferred Reporting Items

Systematic review and Meta-Analyses (PRISMA) guideline [13] (File A in S1 Materials). We

designed a primary search strategy in consultation with a health sciences librarian in MED-

LINE, Embase, Web of Science, and Europe PMC using key terms such as SARS-COV-2,

COVID-19, seroprevalence, and serology (full strategy and complete list of search terms in File

B in S1 Materials). We attempted to mitigate possible publication bias by including both pub-

lished articles and unpublished literature such as grey literature, preprints, institutional

reports, and media reports. For our secondary search and article capture strategy, we invited

submissions to our database through the open-access SeroTracker platform and recommenda-

tions from international experts, including literature compiled through the WHO Unity stud-

ies initiative. In order to access timely evidence and mitigate challenges with publication delay,

we also contacted WHO Unity study collaborators that had not yet made results available to

the general public prior to our inclusion dates, to upload their aggregate results to the open

access Zenodo research data repository [14]. We accepted these templates up to 20 May 2022

in line with our primary search strategy and screened them according to the same criteria as

other sources captured in our primary search. This systematic review and meta-analysis proto-

col was registered with PROSPERO (CRD42020183634) prior to the conduct of the review

(File C in S1 Materials) [15], and searches and extractions conducted per the previously estab-

lished SeroTracker protocol [16].

Studies were screened, data extracted, and critically appraised in duplicate, with these tasks

shared by a team of 13 study authors (listed in Research Contributions section under data

curation). We have study team members proficient in English, French, Portuguese, Spanish,

and Cyrillic languages—articles in all other languages were translated using Google Translate

where possible. Conflicts were resolved by consensus. Inclusion and exclusion criteria aligned

with the SEROPREV standardized protocol for general population seroprevalence to minimize

possible bias introduced by interstudy heterogeneity and other measures of study quality such

as poor assay performance and/or sampling methods (full protocol criteria described in File D

and E in S1 Materials). We included cross-sectional or longitudinal cohort studies with the

objective of estimating SARS-CoV-2 seroprevalence in the general population. Restricting

inclusion to direct population samples such as household surveys would have led to very little

data in some regions and times, as these studies are expensive and difficult to conduct. Thus,

household and community samples were included, as well as studies where a robust sampling

frame was described that approximates to a wider population, such as individuals attending

medical services (blood donors, pregnant mothers, primary care attendees) or residual sera

taken from patients for a variety of other investigations. Finally, we also included people resid-

ing in slum dwellings, and some patient populations in humanitarian settings where the

patient population in question was extensive enough to be considered a proxy sample frame

(evaluated on a case-by-case basis). Both random and nonrandom (i.e., convenience, sequen-

tial, quota) sampling methods were included. Convenience samples must have a clear and

defined sampling frame, i.e., studies recruiting volunteers were not included.

Studies had to use serological assays with at least 90% sensitivity and 97% specificity as

reported by the manufacturer or study authors through an independent evaluation of the test

used (File D in S1 Materials), unless conducted in vulnerable countries as defined in the Global

Humanitarian Response Plan (HRP) [17]. We employed exception criteria for HRP countries

to ensure representativeness in countries where sometimes lower-performing assays were the
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only accessible option due to ongoing humanitarian emergencies. Studies employing dried

blood spots as a specimen type must meet this threshold as determined through study author-

conducted sensitivity and specificity validation using dried blood spots. Multi-assay testing

algorithms were included if the combined sensitivity and specificity met these performance

thresholds, using standard formulas for parallel and serial testing [18]. Complex multiple test-

ing strategies (3+ tests used) were reviewed on a case-by-case basis by 2 study members. To

accommodate these limitations and ensure study inclusion equity, we included all assay types

from HRP countries regardless of their reported performance values, as long as the authors

reported an assay that was independently validated from either an in-house evaluation or a

WHO-approved head-to-head evaluation [19–21]. Finally, algorithms employing a commer-

cial or author-designed binding assay followed by confirmatory testing by virus neutralization

assay were included as they constitute the gold standard in serological evaluation [22].

We excluded studies sampling specific closed populations (such as prisons, care homes, or

other single-institution populations), recruiting participants without a clear sampling frame

approximating the target population or testing strategy, and studies that excluded people pre-

viously diagnosed with or vaccinated against COVID-19 after initial sampling.

Data extraction, synthesis, and analysis

From each study, we extracted seroprevalence estimates for the overall sample and stratified by

age, sex, vaccination status, and timing of specimen collection according to the prespecified

protocol. We extracted information on study population, laboratory assay used, any correc-

tions made in estimating seroprevalence (e.g., for population or assay performance), seroprev-

alence, and denominator. Standardized results uploaded to Zenodo by Unity study

collaborators additionally included information on the proportion of asymptomatic seroposi-

tive individuals.

Our procedure for the standardized, aggregate early data results submitted by Unity collab-

orators was to direct study authors to input their results into a formulated standard Excel tem-

plate designed to match the same data extracted during routine published study extraction. A

blank version of the Excel template is available for reference [23]. These templates were

uploaded directly into R for analysis in tandem with other studies included in the meta-analy-

sis. Templates were verified by 2 independent reviewers, and we conducted follow-up to com-

plete information with study investigators where needed. In instances where data from early

reporting templates we had received were published prior to May 20, 2022, or a partial dataset

was previously published, we ensured to de-duplicate these data for analysis. We evaluated

cases of duplicated results on a case-by-case basis, prioritizing the authors published version

by default but made exceptions where data were more complete, robust, or up-to-date in the

submitted templates. Once authors published or preprinted their results, a link to the full

source was added to the Zenodo repository.

We critically appraised all studies using a modified version of the Joanna Briggs Institute

(JBI) checklist for prevalence studies (File F in S1 Materials) [24]. To assess risk of bias, a deci-

sion rule assigned a rating of low, moderate, or high risk of bias based on the specific combina-

tion of JBI checklist ratings for that study [25]. This decision rule was developed based on

guidance on estimating disease prevalence [26,27] and was validated against overall risk of bias

assessments derived manually by 2 independent reviewers for previously collected seropreva-

lence studies in the SeroTracker database, showing good agreement with manual review (intra-

class correlation 0.77, 95% CI 0.74 to 0.80; n = 2,070 studies) [25]. Early results from templates

were screened and evaluated for risk of bias using the same criteria as studies captured through

routine screening processes.
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We classified seroprevalence studies by geographical scope (local [i.e., cities, counties], sub-

national [i.e., provinces or states], or national), sample frame, sampling method, and type of

serological assay (File G in S1 Materials). Where an article or source material contains multi-

ple, methodologically distinct serosurveys, we split the article into multiple “studies”—for the

purpose of this review, “study” means a distinct estimate. Where multiple summary estimates

were available per study, we prioritized estimates based on estimate adjustment, antibody iso-

types measured, test type used, and antibody targets measured (full details: File H in S1 Materi-

als). We included multiple estimates per study when broken down by time frame in our

analysis over time.

Countries were classified according to WHO region [28], vulnerability via HRP status [17],

and World Bank income level [29].

We anchored each estimate to the date halfway between sampling start and end (“sampling

midpoint date”) to best reflect the time period of the study. To select the most representative

and high-quality studies for analysis, we used only subnational or national studies rated low or

moderate risk of bias to estimate seroprevalence in the general population over time and iden-

tify factors associated with seroprevalence (subdataset 1). We used only national studies rated

low or moderate risk of bias to estimate case ascertainment (subdataset 2).

To explore possible causes of heterogeneity among study results, we constructed a Poisson

generalized linear mixed-effects model with log link function using the glmer function from

the lme4 package in R [30–32]. Independent predictors were defined a priori as WHO region,

income group, geographic scope, sample frame, pandemic timing, age, cumulative confirmed

cases, and average public health and social measure (PHSM) stringency index [33]. To focus

on factors associated with seroprevalence from infection, we included studies where less than

5% of the national population was vaccinated 2 weeks before the sampling midpoint date. We

included all a priori predictors in the final model, and to evaluate the importance of each rele-

vant predictor, we compared the Akaike information criterion (AIC) of the final model to all

models dropping a single predictor at a time (full details on the model and predictor defini-

tions: File H in S1 Materials).

To estimate seroprevalence in the general population, we first produced monthly country-

level estimates by meta-analyzing seroprevalence in each country, grouping studies in a

12-week rolling window considering the infrequent availability of seroprevalence studies in

most countries (rma.glmm from R package metafor) [34,35]. We then produced monthly

regional estimates by taking weighted averages of country estimates by population, ensuring

that country contributions to these estimates are proportional to country population. We strat-

ified these estimates by the expected key sources of heterogeneity among study results: region,

income class, and time. We pooled HIC and LMIC together in the Eastern Mediterranean

(EMR) and Western Pacific regions (WPR) due to the lower number of studies, and in the

Africa (AFR) and South-East Asia regions (SEAR) (the only 2 HICs in these regions had no

studies).

We produced monthly global estimates where estimates were available for a majority of

regions, calculating global estimates as a population-weighted average of regional estimates to

ensure regional representation (full details: File H in S1 Materials). We produced 95% confi-

dence intervals for the mean seroprevalence estimate, reflecting uncertainty in the summary

effect size [36], and 95% prediction intervals to give a range for the predicted parameter value

in a new study. All numerical results presented are from this stage. To visualize the trend in

regional and global estimates over time, we fit a smooth curve to these estimates using non-

parametric regression (gam from R package mgcv) [37]. We also summarized the relevant var-

iant genome frequency in each region shared via the GISAID initiative [38].
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We also estimated to what extent laboratory confirmed SARS-CoV-2 cases [39] underesti-

mated the full extent of infections based on seroprevalence. For studies that sampled partici-

pants in 2021, we used national seroprevalence estimates and vaccination rates [40] to

calculate seroprevalence attributable to infection only. In countries administering only vac-

cines using Spike (S) protein antigens (e.g., mRNA), we calculated the ascertainment ratio

using only studies that detected anti-nucleocapsid (N) seroprevalence. In countries adminis-

tering inactivated vaccines that may generate both anti-S and anti-N responses, we adjusted

the reported seroprevalence using a standard formula [41]. We then produced regional and

global estimates of seroprevalence using the 2-stage process described above and computed

the ratio to the corresponding cumulative incidence of confirmed SARS-CoV-2 cases in the

region or globally. We stratified by HIC versus LMIC in all regions.

Aggregated results shared by Unity collaborators reported the proportion of seropositives

that were symptomatic at some time point prior to sampling, summarized using the median

and interquartile range, and tested for differences in distribution across age and sex groups

using analysis of variance (ANOVA).

To quantify population differences in SARS-CoV-2 seroprevalence, we identified studies

with seroprevalence estimates for sex and age subgroups. We calculated the ratio in seropreva-

lence between groups within each study, comparing each age group to adults 20 to 29 and

males to females. We then aggregated the ratios across studies using inverse variance-weighted

random-effects meta-analysis. The amount of variation attributable to between-study hetero-

geneity versus within-study variance was quantified using the I2 statistic.

Our main analysis used seroprevalence estimates uncorrected for test characteristics. As a

sensitivity analysis, we also produced global and regional estimates adjusting for test character-

istics through Bayesian measurement error models, with binomial sensitivity and specificity

distributions. The sensitivity and specificity values for correction were prioritized from the

WHO SARS-CoV-2 Test Kit Comparative Study conducted at the NRL Australia [19], fol-

lowed by a multicenter evaluation of 47 commercial SARS-CoV-2 immunoassays by 41 Dutch

laboratories [42], and from independent evaluations by study authors where author-designed

assays were used.

Data were analyzed using R statistical software version 4.1.2 [32].

Results

Study characteristics

We identified 173,430 titles and abstracts in our search spanning from January 1, 2020 to May

20, 2022 (Fig 1). Of these, 5,281 full-text articles were included in full text screening. A total of

513 seroprevalence data sources containing studies aligned with the SEROPREV protocol

were identified, 480 published (94%) and 33 aggregated results from collaborators (6%), of

which 12 sources were not in one of our main languages and translated via Google Translate.

The 513 sources contained a total of 965 unique seroprevalence studies (detailed references

and information available in Table A to C in S1 Materials). Over 1,500 full-text articles were

excluded due to not containing studies compatible with the SEROPREV protocol; the main

reasons for articles’ exclusion at this stage was having an incorrect sample frame for this analy-

ses’ scope (i.e., we focused on seroprevalence in the general population and therefore excluded

1,073 articles of exclusively healthcare workers, close contacts of confirmed cases, or other spe-

cific closed populations) or not meeting our predefined assay quality performance threshold

(374 articles).

A total of 52% (100/194) of WHO Member States (MS) and 4 WHO countries, areas, and

territories, across all 6 WHO regions, were represented among the seroprevalence studies
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Fig 1. PRISMA flow diagram of inclusion. In cases where sources contained multiple primary estimates of seroprevalence (i.e., in

nonoverlapping populations, separate methodological seroprevalence studies reported in the same article, etc.), the source (full text)

was split into multiple individual studies included in the analysis. For this reason, we report more unique seroprevalence studies

than original full-text articles included.

https://doi.org/10.1371/journal.pmed.1004107.g001
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included in the descriptive analysis (Fig A in S1 Materials). Of 47 MS, 23 were represented in

AFR; 11 of 21 MS and 1 territory in EMR; 13 of 35 MS and 1 territory in AMR; 39 of 53 MS

and 2 territories in EUR; 6 of 11 MS in SEAR; and 8 of 27 MS in WPR (Fig A in S1 Materials).

Data from 61 of 134 LMICs and from 36 of 63 vulnerable HRP countries were included. A

large proportion of studies included in the descriptive analysis were conducted in LMIC (397/

965, 41%) and in vulnerable HRP countries (206/965, 21%) (Table 1). Of studies included in

the meta-analysis and meta-regression, these proportions were 30% (137/459) and 14% (66/

459), respectively. Of the 66 (30%) meta-analyzed studies in HRP countries, 20 had test perfor-

mance values below 90% sensitivity or 97% specificity and were included due to exception

criteria.

Among the 965 studies included in the descriptive analysis, 42% (402/965) reported results

at a local level, 36% (345/965) at a national level, and 23% (218/965) at a subnational level. The

most common sampling frame and method was household and communities (52%, 500/965)

and probability sampling (53%, 515/965), respectively. Within household-based samples, only

86/500 studies (17.2%) used convenience sampling. Among the testing strategies used to mea-

sure seroprevalence, most studies used ELISA (37%, 360/965) or CLIA assays (37%, 355/965),

and few studies used a lateral flow immunoassay (9.4%, 91/965) or multiple assay testing algo-

rithm (7.4%, 72/965). The majority of studies (734/965, 76%) had no vaccination at the sam-

pling midpoint date in the country of the study (Table 1). Very few studies (14/965, 1.5%) in 4

countries (Canada, Japan, United Kingdom, United States of America) sampled participants

during 2022.

Most (50%, 483/965) studies were rated moderate risk of bias. A summary of overall risk of

bias ratings and breakdown of each risk of bias indicator for all studies is available (Fig B and

Table D in S1 Materials, respectively). Subnational and national studies at low or moderate

risk were included in the subsequent results.

Overall and infection-induced seroprevalence by month, region, and

income class

We estimated weighted seroprevalence in a series of separate meta-analyses each month and

found in September 2021, global seroprevalence from infection or vaccination (overall sero-

prevalence) was 59.2%, [95% CI 56.1% to 62.2%, 95% prediction interval 51.2% to 66.7%]—an

increase since the June 2020 estimate of 7.7% [CI 5.7% to 10.3%, prediction interval 4.2 to

13.8] (Table E in S1 Materials). In September 2021, global seroprevalence attributable to infec-

tion was 35.9% [CI 29.5% to 42.7%, prediction interval 22.8% to 51.4%] (Fig 2 and Table E in

S1 Materials).

Regional analyses began in January 2020 and ended in February 2021 through March 2022

depending on when seroprevalence studies in each region sampled participants. Overall sero-

prevalence in February 2021 was 42.7% [37.6% to 48.0%] in EMR (compared to 33.6% [32.8%

to 34.4%] in June 2020). In April 2021, overall seroprevalence was 20.0% [18.8% to 21.2%] in

AMR LMIC (2.3× since June 2020). In June 2021, overall seroprevalence was 48.7% [47.7% to

49.7%] in EUR LMIC, compared to 22.4% [21.1% to 23.8%] in July 2020. In September 2021,

overall seroprevalence was 82.2% [75.9% to 87.2%] in SEAR (8.9× since June 2020). In Decem-

ber 2021, overall seroprevalence was 86.7% [84.6% to 88.5%] in AFR (3.5% [2.9% to 4.2%] in

June 2020) and 30.3% [25.3% to 35.9%] in WPR (0.2% [0.1% to 0.4%] in June 2020). Finally, in

March 2022, overall seroprevalence was 95.9% [92.3% to 97.8%] in EUR HIC (4.3% [3.4% to

5.5%] in June 2020), and 99.8% [99.7% to 99.9%] in AMR (HIC) (3.6% [2.5% to 5.2%] in June

2020). (Fig 2, middle panel, and Table E in S1 Materials). Infection-induced seroprevalence is

reported in Table E in S1 Materials; for example, 47.9% [41.0% to 54.9%] of the population in
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Table 1. Characteristics of included studies, January 2021–May 2022.

ALL STUDIES LOW AND MODERATE RISK OF BIAS

STUDIES; NATIONAL OR SUBNATIONAL

SCOPE

LOW AND MODERATE RISK OF BIAS

STUDIES; NATIONAL SCOPE ONLY

Dataset 0 Subdataset 1 Subdataset 2

Used in

descriptive

analysis

Used to estimate seroprevalence in the general

population over time and identify associated

factors

Used to estimate case ascertainment2

Number of studies N = 9651 N = 4591 N = 2761

Study Characteristics:

Income level

Low-income country 101 (10%) 26 (5.7%) 24 (8.7%)

Lower middle-income country 130 (13%) 52 (11%) 25 (9.1%)

Upper middle-income country 166 (17%) 59 (13%) 23 (8.3%)

High-income country 568 (59%) 322 (70%) 204 (74%)

Vulnerable countries (humanitarian

response plan [HRP])

Vulnerable HRP country 206 (21%) 66 (14%) 29 (11%)

WHO region

Africa region (AFR) 171 (18%) 47 (10%) 38 (14%)

Americas region (AMR) 244 (25%) 117 (25%) 34 (12%)

Eastern Mediterranean region (EMR) 44 (4.6%) 21 (4.6%) 17 (6.2%)

Europe region (EUR) 402 (42%) 233 (51%) 172 (62%)

South-East Asia region (SEAR) 65 (6.7%) 26 (5.7%) 5 (1.8%)

Western Pacific region (WPR) 39 (4.0%) 15 (3.3%) 10 (3.6%)

Geographic scope

Local 402 (42%) 0 (0%) 0 (0%)

Subnational 218 (23%) 183 (40%) 0 (0%)

National 345 (36%) 276 (60%) 276 (100%)

Study population

Blood donors 193 (20%) 86 (19%) 69 (25%)

Residual sera 197 (20%) 98 (21%) 53 (19%)

Household and community samples 500 (52%) 256 (56%) 142 (51%)

Pregnant or parturient women 60 (6.2%) 15 (3.3%) 11 (4.0%)

Persons living in slums 5 (0.5%) 1 (0.2%) 0 (0%)

Multiple general populations 8 (0.8%) 3 (0.7%) 1 (0.4%)

Representative patient population 2 (0.2%) 0 (0%) 0 (0%)

Sampling method

Convenience sampling3 254 (26%) 66 (14%) 29 (11%)

Probability sampling 515 (53%) 330 (72%) 198 (72%)

Sequential sampling 178 (18%) 56 (12%) 44 (16%)

Quota sampling 18 (1.9%) 7 (1.5%) 5 (1.8%)

Test type4

CLIA 355 (37%) 151 (33%) 81 (29%)

ELISA 360 (37%) 175 (38%) 107 (39%)

IFA 68 (7.0%) 62 (14%) 62 (22%)

LFIA 91 (9.4%) 45 (9.8%) 15 (5.4%)

Luminex 5 (0.5%) 2 (0.4%) 0 (0%)

Multiple Assay Testing Algorithm: Binding

Assays + Confirmatory Testing with

Neutralization Assay

40 (4.1%) 8 (1.7%) 7 (2.5%)

(Continued)
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EUR HIC (UK studies only) and 33.7% [31.6% to 36.0%] of the population in AMR HIC (Can-

ada studies only) had infection-induced antibodies in March 2022. In the meta-analyses by

country with at least 2 studies, 75% (188/250) showed considerable heterogeneity from 75% to

100% [36].

Ratios of seroprevalence to cumulative incidence

Snapshots of seroprevalence to confirmed case ratios, based on estimated weighted seropreva-

lence using national studies, are shown in Table 2. Globally, the median ratio was 51.3 infec-

tions derived from seroprevalence to 1 reported case (51.3:1) in 2020 Quarter Three,

suggesting that around 1.9% of cases were reported, and 10.5:1 in 2021 Quarter Three, suggest-

ing that around 9.5% of cases were reported. In 2020 Quarter Three, the median ratio ranged

from 3.4:1 in AMR (HIC) (29.4% of cases reported) to 219.6:1 in EMR (0.5% of cases

reported). In 2021 Quarter Three, this ranged from 1.8:1 in AMR (HIC) (55.6% of cases

reported) to 176.7:1 in AFR (0.6% of cases reported) (Table 2).

Subgroup analysis

Asymptomatic seroprevalence by age and sex subgroups for studies reporting subgroups on

symptoms are shown in Fig C in S1 Materials. Median asymptomatic prevalence was similar

across age groups (ANOVA p = 0.28). Median asymptomatic prevalence in males was 64.6%

compared to 58.6% in females (ANOVA p = 0.47).

Within studies, compared to the reference category of 20 to 29 years old, seroprevalence

was significantly lower for children 0 to 9 years (prevalence ratio 0.75, 95% CI [0.67 to 0.84],

Table 1. (Continued)

ALL STUDIES LOW AND MODERATE RISK OF BIAS

STUDIES; NATIONAL OR SUBNATIONAL

SCOPE

LOW AND MODERATE RISK OF BIAS

STUDIES; NATIONAL SCOPE ONLY

Dataset 0 Subdataset 1 Subdataset 2

Used in

descriptive

analysis

Used to estimate seroprevalence in the general

population over time and identify associated

factors

Used to estimate case ascertainment2

Multiple Assay Testing Algorithm: Other

Strategies

32 (3.3%) 12 (2.6%) 3 (1.1%)

Other 8 (0.8%) 3 (0.7%) 1 (0.4%)

Neutralization 6 (0.6%) 1 (0.2%) 0 (0%)

Overall risk of bias

Low 183 (19%) 124 (27%) 82 (30%)

Moderate 483 (50%) 335 (73%) 194 (70%)

High 299 (31%) 0 (0%) 0 (0%)

Percent vaccinated at sampling midpoint5

0% 734 (76%) 308 (67%) 158 (57%)

Above 0% up to 5% 70 (7.3%) 29 (6.3%) 22 (8.0%)

Above 5% up to 10% 15 (1.6%) 9 (2.0%) 7 (2.5%)

Above 10% 146 (15%) 113 (25%) 89 (32%)

1n (%). See File G in S1 Materials for definitions.
2In the ascertainment analysis, studies conducted in 2021 were adjusted for vaccination. See File H in S1 Materials for details.
3Convenience sampling was restricted to studies with a clearly defined sampling frame. See File D in S1 Materials for details.
4CLIA, chemiluminescent immunoassay; ELISA, enzyme-linked immunosorbent assay; IFA, immunofluorescence assay; LFIA, lateral flow immunoassay.
5Vaccination rates taken from Our World in Data.

https://doi.org/10.1371/journal.pmed.1004107.t001
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Fig 2. Estimated seroprevalence globally and by WHO region from January 2020 to March 2022. The figure contains 9 boxes showing the

global analysis and 8 WHO regional analyses. Each box contains the following panels. Top and middle panel: We produced weighted point

estimates and 95% CIs of overall (top) and infection-induced (middle) seroprevalence by meta-analyzing studies in 12-week rolling windows. To

visualize the trend in seroprevalence in each WHO region and globally, we fit a flexible, smooth function of time (dashed line) to the point

estimates using nonparametric regression (full details: File H in S1 Materials). Countries included in each region-month estimate are in Table E
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p< 0.001) and adults 60+ years (0.87 [0.80 to 0.96], p = 0.005). There were no differences

between other age groups nor between males and females. (Full results: Fig 3)

Meta-regression

In the multivariable meta-regression, 329 studies remained after applying our inclusion crite-

ria for prevaccination studies. The full model is reported in Fig 4 (model comparison and diag-

nostics: Table G in S1 Materials). Subnational studies reported higher seroprevalence

estimates compared to national studies (PR 1.27 [1.02 to 1.59], p = 0.03). Compared to HIC,

higher seroprevalence estimates were reported by low-income (PR 7.33 [3.49 to 15.41],

p< 0.001), lower middle-income (PR 7.33 [3.49 to 15.41], p< 0.001), and upper middle-

income countries (PR 3.97 [2.88 to 5.49], p< 0.001). Higher cumulative incidence of reported

cases was associated with higher seroprevalence (PR 1.39 [1.30 to 1.49], p< 0.001), while more

stringent PHSM measures up to the sampling midpoint date, continuous from 0 to 10, were

associated with lower seroprevalence (PR 0.89 [0.81 to 0.98], p = 0.02). Much of the heteroge-

neity in effect sizes was explained by WHO region, income class, and cumulative confirmed

cases. By contrast, sample frame was the least important predictor based on the AIC criterion

(Table G in S1 Materials), and compared to studies that sampled households and communities,

there were no differences between seroprevalence in studies that sampled blood donors (PR

1.04 [0.77 to 1.40], p = 0.79) nor residual sera (PR 1.08 [0.83 to 1.41], p = 0.55).

in S1 Materials. Bottom panel, left axis: Shaded areas represent the relative frequency of major VOCs circulating, based on weekly counts of

hCoV-19 genomes submitted to the GISAID we have aggregated by month. Weeks with fewer than 10 total submissions in a given country were

excluded from the analysis. Bottom panel, right axis: New confirmed cases per 100,000 people, smoothed using local regression (locally

estimated scatterplot smoothing: LOESS). Est, estimate; CI, confidence interval; GISAID, Global Initiative on Sharing Avian Influenza Data;

VOC, variant of concern; WHO, World Health Organization.

https://doi.org/10.1371/journal.pmed.1004107.g002

Table 2. Median estimated seroprevalence to cumulative incidence ratios by WHO region, World Bank income level, and quarter using national studies.

Estimated seroprevalence to case ratios: Median [Range]

WHO region Income level� 2020 Q3 (July to

September)

2020 Q4 (October

to December)

2021 Q1 (January

to March)

2021 Q2 (April to

June)

2021 Q3 (July to

September)

Africa (AFR) Low-middle income

(LMIC)

82.2 [43–104.9] 152.9 [115.5–

156.9]

154.4 [145.9–

211.2]

185.5 [131.2–

226.1]

176.7 [164.1–

189.2]

Americas (AMR) Low-middle income 22 [6.1–27.5] 18.3 [18.3–18.3] NA NA NA

Americas High-income (HIC) 4.6 [2.5–6.5] 2.6 [2–2.9] 2.3 [2.2–2.4] 2 [1.9–2.2] 1.8 [1.8–1.8]

Eastern Mediterranean

(EMR)

Low-middle-income 219.6 [36.9–

425.2]

28.8 [20.8–56.7] 59.3 [56.8–61.8] NA NA

Eastern Mediterranean High-income 8.8 [8.5–27.2] 26.2 [25.3–27] NA NA NA

Europe (EUR) Low-middle-income 84.5 [71.8–97.2] 44.4 [35.5–53.3] 25.8 [25.8–25.8] 11.5 [11.3–11.8] NA

Europe High-income 8.1 [5.5–15.4] 1.9 [1.5–4.3] 2.1 [1.8–2.1] 1.6 [1.6–1.8] 1.9 [1.7–2.1]

South-East Asia (SEAR) Low-middle-income 30.1 [22.4–37.8] 40.3 [33.5–48.3] 37.5 [37.5–37.5] NA NA

Western Pacific (WPR) Low-middle-income 45.4 [29.4–

338.9]

44.3 [38.7–51.6] 34.5 [31.2–37.9] NA NA

Western Pacific High-income 3.4 [2.9–4] 3.1 [3–3.2] NA NA NA

Global All 51.3 [39.6–62.9] 22.7 [20.9–24.5] 17.9 [15–20.7] 13.5 [13.5–13.5] 10.5 [9.3–11.7]

NA, national studies not available.

Seroprevalence studies that sampled participants in 2021 were adjusted for antibody target and vaccination rate to calculate seroprevalence attributable to infection (full

details: File H in S1 Materials).

�There are no high-income countries in the WHO South-East Asia region; the 2 high-income countries in the WHO Africa region, Mauritius and Seychelles, both have

no seroprevalence studies and were hence not included in this analysis.

https://doi.org/10.1371/journal.pmed.1004107.t002
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Sensitivity analysis

Regional and global estimates of seroprevalence accounting for serological test performance

from independent test kit evaluations showed no qualitative differences from the primary

results (Table F in S1 Materials). For example, overall global seroprevalence in September 2021

using corrected estimates was 61.5% [56.7% to 66.1%], compared to 59.2% [56.1% to 62.2%]

using uncorrected estimates.

Discussion

We synthesized data from over 800 seroprevalence studies worldwide (43% from LMICs) pub-

lished up to May 2022 (search dates: January 1, 2020 to May 20, 2022), providing global and

regional estimates of SARS-CoV-2 seroprevalence over time with substantial representation of

regions with limited available seroprevalence data. We estimate that approximately 59.2% of

the global population had antibodies against SARS-CoV-2 in September 2021 (35.9% when

excluding vaccination). Global seroprevalence has risen considerably over time, from 7.7% a

year before, in June 2020.

Our findings provide evidence of regional and temporal variation in the overall seropreva-

lence, over 80% in SEAR and AFR in late 2021 and over 90% in AMR HIC and EUR HIC in

early 2022. In WPR, there was a paucity of high-quality population-based studies in 2021, and

estimated seroprevalence was as low as 30.3% in December 2021, though 1 study in Japan sug-

gests that this has increased to over 90% in February 2022 [43]. Regional variation is driven by

differences in the extent of SARS-CoV-2 infection and vaccination. This is exemplified by our

monthly timeline of seroprevalence by region, 2020 to 2021, which provides estimates of evolv-

ing temporal changes of the global pandemic. We observed increases in seroprevalence

Fig 3. Meta-analysis of seroprevalence differences by demographic groups. We calculated the ratio in prevalence

between subgroups within each study then aggregated the ratios across studies using inverse variance-weighted

random-effects meta-analysis. Each row represents a separate meta-analysis. I2, heterogeneity quantified using the I2

statistic; PR, prevalence ratio.

https://doi.org/10.1371/journal.pmed.1004107.g003
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following the emergence of variants in regions with available data (e.g., 6% (July 2020) to 41%

(April 2021) in AFR following the Beta variant and 12% (February 2021) to 75% (August 2021)

in SEAR following the Delta variant), demonstrating the substantial number of infections

caused by more transmissible variants. In HIC regions, the increases in overall seroprevalence

were driven by increased vaccine coverage in early 2021 (e.g., 6% (January 2021) to 95%

(August 2021) in AMR HIC and 7% (January 2021) to 72% (August 2021) in EUR HIC), while

we also observed increases in infection-induced seroprevalence following the Omicron variant

(e.g., 7% (December 2021) to 34% (March 2022) in AMR HIC and 18% (October 2021) to 48%

(March 2022) in EUR HIC). Another possibility for regional variation is the potential cross-

reactivity of antibodies against P. falciparum or other common cold coronaviruses, which has

been remarked upon in the literature [44–46], which may impact seroprevalence estimates in

areas of Africa or elsewhere with a high incidence of malaria. Our results add global represen-

tation and principled estimation of changes in seroprevalence over time as compared to previ-

ous evidence syntheses [9,11,12]. These estimates are similar to estimates of true infections by

global epidemiological models. For example, our global estimate of seroprevalence attributable

to infection (35.9%) is similar to the Institute of Health Metrics and Evaluation cumulative

infection incidence estimate of 42.8% on 15 September 2021 [47]. Our analysis provides an

orthogonal estimate based solely on seroprevalence data, using a method that has the added

value of being easily interpretable and with fewer assumed parameters.

Our results provide evidence of considerable case underascertainment, indicating that

many cases of SARS-CoV-2, including subclinical cases, are not captured by surveillance

Fig 4. Meta-regression of seroprevalence (prevaccination) to identify study design and country factors associated

with seroprevalence. We fit a log-Poisson generalized linear mixed-effects model, including studies where less than

5% of the national population was vaccinated 2 weeks before the sampling midpoint date. We performed model

comparison using the AIC criterion (Table G in S1 Materials). PHSM data were taken from the London School of

Hygiene and Tropical Medicine global dataset. The PHSM index scale ranged from 0 (least stringent) to 10 (most

stringent) (see File H in S1 Materials). k = 329; χ2(95% CI) = 0.74 (0.63–0.87). The marginal R2, or variation between

studies explained only by fixed effects, was 62.9%. Multivariable analysis included additional controls for transmission

phase and age group not shown in figure. AIC, Akaike information criterion; PHSM, public health and social measure;

PR, prevalence ratio.

https://doi.org/10.1371/journal.pmed.1004107.g004
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systems, which in many countries are based on testing of symptomatic patients, have varying

sensitivity in their definitions of positive cases, or simply have limited access to testing [48].

There was wide variation in underascertainment (as estimated through seroprevalence–case

ratios) in all regions, income groups, and over time, with higher ratios consistently observed in

LMICs compared to HICs. Our ratios of seroprevalence to reported cases in late 2020 were

comparable to other studies for AMR, EUR, and SEAR [9–12]. Our estimates of seropreva-

lence to cumulative incidence ratios for AFR, WPR, and EMR are novel, with no other analyses

we found having systematically estimated ascertainment through seroprevalence in these

regions; moreover, estimates of true infections from epidemiological models suggest that the

high levels of underascertainment suggested by this study are plausible [47].

We also provide more granular evidence of significant variation in infection by age by

10-year band. Children aged<10 years, but not children aged 10 to 19, were less likely to be

seropositive compared to adults aged 20 to 29 years; similarly, adults aged >60 years, but not

those aged 30 to 39, 40 to 49, or 50 to 59, were less likely to be seropositive than adults 20 to 29.

These findings add nuance and granularity to differences in seroprevalence by age observed by

other studies [10]. Lower seroprevalence in adults 60+ could be explained by immunosenes-

cence that can lead to quicker seroreversion [49] higher mortality and hence a lower propor-

tion of individuals with evidence of past infection, gaps in vaccine access, or more cautious

behaviour resulting in fewer infections in this age group. There are several possible explana-

tions for lower seroprevalence in children: milder infections, which are generally associated

with lower antibody titers [50]; school closures; and ineligibility for vaccination.

Our multivariable model suggests that higher seroprevalence estimates were reported by

low- and lower middle-income countries compared to high-income countries, with the highest

seroprevalence in lower middle-income countries (prevaccination). Potential explanations for

this result are multifaceted and include weaker health system functionality and performance,

lower capacity to isolate, and less stringent use of and ability to effectively implement PHSM.

This is also consistent with findings by Rostami and colleagues [11]. Our results suggest that

an increase in overall PHSM stringency was associated with lower seroprevalence. This and

other work have shown that the use of PHSM was associated with reduced SARS-CoV-2 infec-

tions, especially when implemented early and limiting population mobility [51–53]. Our

model also found that subnational studies have higher estimates than national studies; one

hypothesis for this is that subnational studies are often concentrated on cities or areas with

denser populations, which may contribute to increased transmission of the virus. Further

research is needed to validate this hypothesis. Finally, our results suggest that blood donors

and residual sera studies may be good proxies for the general population, as there was no sta-

tistical difference between seroprevalence estimates in these sample frames compared to

household and community samples.

In line with the equity principles of the Unity initiative, our dataset had global coverage,

including a broad range of LMICs (one-third of studies included in our dataset 1, n = 177) and

vulnerable HRP countries (14% of included studies). Related other global meta-analyses of

seroprevalence had 23% and 35% LMIC coverage, respectively [9,11]. Unity study collabora-

tors shared timely evidence by uploading their aggregated and standardized early results to an

open data repository, enabling geographic coverage and reducing publication bias.

Strengths and limitations

Our regional and global meta-analysis estimates are timely, robust, and geographically diverse

with estimates from all WHO regions. The laboratory and epidemiological standardization

enabled by the SEROPREV protocol, as well as the analysis of only studies assessed to have low
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or moderate risk of bias using a validated risk of bias tool [25], enabled high-quality and com-

parable data. Despite this effort, there are still methodological differences between the meta-

analyzed studies that may reduce their comparability. For example, 14% of studies in our anal-

ysis dataset (66/459, 18 of which were household based) were convenience samples, which are

less representative than population-based probability samples. To limit this bias, we required

Unity-aligned convenience samples to have a clearly defined sample frame (i.e., sampling of

volunteers excluded). Our risk of bias evaluation also included subjective review of the demo-

graphic breakdown in the study, coverage of subgroup estimates, and author comments on

representativeness of the sample, such that the most nonrepresentative studies were rated high

risk of bias and excluded from analysis.

A few limitations should be described. First, although we conducted meta-regression to

explore heterogeneity of the included studies, there remained some residual heterogeneity that

could not be explained quantitatively—likely driven by differences in disease transmission in

the different countries and time points that serosurveys were conducted. Second, we did not

account for waning of population immunity, so the present work likely underestimates the

extent of past infection and case ascertainment. Third, seroprevalence studies are cumulative,

meaning that results reflect all COVID-19 countermeasures implemented up to the time of

participant sampling, and, thus, we cannot isolate the contributions of particular PHSM.

Fourth, while we screened study eligibility based on high assay performance criteria, different

serological assays may yield varying results, which should be taken into account when inter-

preting seroprevalence data. Some argue against combining studies using different assays,

because assay performances can vary considerably leading to potential bias in the results. With

the moderate seroprevalence values generally observed in our results (roughly 20% to 80%),

we expect limited bias to be introduced by the different assays. Nevertheless, we conducted a

sensitivity analysis adjusting estimates from individual studies with assay performance when-

ever available and found that global and regional estimates remained similar. Finally, at certain

points in time, our meta-analysis estimates were driven by studies from specific countries—

either very populous countries (i.e., SEAR: India, AMR HIC: USA, AMR LMIC: Brazil, WPR:

China), or countries in regions with scarce data during the time in question (e.g., EMR: 2

countries in early 2021). We also could not produce global estimates for late 2021/early 2022

due to the delays between when studies conducted their sampling (we extracted from the

“sampling midpoint”), and when these results were later published or released within our

search dates.

Implications and next steps

Population-based seroprevalence studies primarily give a reliable estimate of the exposure to

infection. In cases where antibodies can be measured quantitatively, it may also be possible to

use them to assess the level of protection in a population, although there is currently no con-

sensus on antibody-based correlates of protection for SARS-CoV-2 [4]. While antibodies per-

sist in most infected individuals for up to year (with early evidence pointing at up to 18

months) [54–57], the reinfection risk with the immune-escaping Omicron variant is reported

to be much higher than in previous variant of concerns (VOCs) in both vaccinated and previ-

ously infected individuals, indicating that the presence of antibodies is less indicative of a level

of protection against infection. However, seroprevalence estimates remain indicative of protec-

tion against severe disease, as cellular immunity is unlikely to be disrupted even with an

immune escaping VOCs.

Seroprevalence studies have been invaluable throughout the COVID-19 pandemic to

understand the true extent and dynamics over time of SARS-CoV-2 infection and, to some
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extent, immunity. Serosurveillance provides key epidemiologic information that crucially sup-

plements other routine data sources in populations. In populations with reported high vaccine

coverage, seroprevalence studies provide a supplement to vaccine coverage data and are an

important tool for the evaluation of vaccination programs. In populations with low vaccine

coverage, it provides an estimate of cumulative incidence of past SARS-CoV-2 infection

(including asymptomatic and mild disease), true case fatality ratio, and avoid many of the limi-

tations of passive disease reporting systems, which can be unreliable due to underdiagnosis

and undernotification. Seroprevalence data can be used to compare seropositivity between dif-

ferent groups (age, sex geography, etc.) to identify vulnerable populations and thus inform

decisions regarding the implementation of countermeasures such as vaccination programs

and PHSM [58]. A key challenge in implementing serosurveillance has been timeliness of

study implementation, data analysis, and reporting—as such, it will be important for public

health decision-makers to prioritize investment and establish emergency-mode procedures to

facilitate timely study implementation early on in future outbreak or variant emergence

responses as part of overall surveillance strategy. There is also a need to continue to build

national capacity with WHO and other partners to rapidly enable high-quality study imple-

mentation and communication of findings in a format friendly to decision-makers. The pan-

demic persists in large because of inequitable access to countermeasures tools such as vaccines;

emphasizing the importance of equitable vaccine deployment globally, the strengthening of

health systems and of tailored PHSM to mitigate disease transmission until high population

protection is achieved. Globally standardized and quality seroprevalence data continue to be

essential to inform health policy decision-making around COVID-19 control measures, partic-

ularly in capacity-limited regions with low testing capacity and vaccination rates.

Conclusions

In conclusion, our results show that seroprevalence has increased considerably over time, par-

ticularly from late 2021, due to mainly infection in some regions and vaccination in others.

Nevertheless, there is regional variation and over one-third of the global population are sero-

negative to the SARS-CoV-2 virus. As our understanding of SARS-CoV-2 develops, the role of

seroprevalence studies may change including the adaptation of study objectives and methodol-

ogy to the epidemiological context. Currently, our global estimates of infections based on sero-

prevalence far exceed reported cases captured by surveillance systems. As we enter the third

year of the COVID-19 pandemic, implementation of a global system or network for targeted,

multi-pathogen, high-quality, and standardized collaborative serosurveillance [59,60] is a cru-

cial next step to monitor the COVID-19 pandemic and contribute to preparedness for other

emerging respiratory pathogens.
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