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Abstract

Transmission of many communicable diseases depends on proximity contacts among

humans. Modeling the dynamics of proximity contacts can help determine whether an out-

break is likely to trigger an epidemic. While the advent of commodity mobile devices has

eased the collection of proximity contact data, battery capacity and associated costs impose

tradeoffs between the observation frequency and scanning duration used for contact detec-

tion. The choice of observation frequency should depend on the characteristics of a particu-

lar pathogen and accompanying disease. We downsampled data from five contact network

studies, each measuring participant-participant contact every 5 minutes for durations of four

or more weeks. These studies included a total of 284 participants and exhibited different

community structures. We found that for epidemiological models employing high-resolution

proximity data, both the observation method and observation frequency configured to collect

proximity data impact the simulation results. This impact is subject to the population’s char-

acteristics as well as pathogen infectiousness. By comparing the performance of two obser-

vation methods, we found that in most cases, half-hourly Bluetooth discovery for one minute

can collect proximity data that allows agent-based transmission models to produce a rea-

sonable estimation of the attack rate, but more frequent Bluetooth discovery is preferred to

model individual infection risks or for highly transmissible pathogens. Our findings inform

the empirical basis for guidelines to inform data collection that is both efficient and effective.

Author summary

Close-proximity human contacts play a fundamental role in the spread of many diseases.

While the advent of commodity mobile devices have eased the collection of contact time

series, battery capacity and associated costs impose tradeoffs between the frequency and

scanning duration used for contact detection and participant experience and adherence.

To understand the impact of the frequency with which human contact networks are
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observed on the accuracy of network reconstruction and simulated attack rate, we down-

sampled data from five high-velocity contact network studies, each measuring participant

contacts every 5 minutes over at least four weeks. Results from infection transmission

models parameterized by contact networks reconstructed from successively downsampled

contact information revealed that the model-predicted attack rate and the per-realization

variability in predicted attack rate varies markedly by pathogen and network structure.

For some pathogens across multiple studies, downsampling contact rates imparts pro-

nounced inaccuracies in model-predicted attack rate, compared to what is predicted with

highest-velocity contact data. Our findings can inform design of data collection studies

that are both efficient and effective, and may aid understanding of contact networks

beyond the current collection limit.

This is a PLOS Computational Biology Methods paper.

Introduction

Despite a century of advances, the burden of contagious diseases remains troublingly high. In

the context of growing rates of drug resistance and virus mutations, development patterns

which elevate human contact with vectors and animal disease reservoirs, and the capacity of

infections to be disseminated via historically growing rates of global travel, the potential bur-

den of infectious disease is historically high. From the shocking worldwide death toll from

SARS-CoV-2 [1–4], to Middle East respiratory syndrome coronavirus (MERS-CoV), to Ebola

in central Africa [5, 6], to the burden of endemic tuberculosis worldwide and in indigenous

communities [7, 8], to the lost productivity due to seasonal flu [9–11] and the common cold

[12, 13], and the resurgent patterns of childhood communicable diseases [14–16], contagious

disease continues to impose a heavy adverse impact on society. This impact has driven sub-

stantial and ongoing research into the transmission, population spread, treatment, and preven-

tion of common viral and bacterial pathogens [14, 17, 18]. For the past century, dynamic

models of communicable diseases have served as a key tool in the understanding, prevention

and control of communicable disease. A central element of such models is a representation of

contact patterns between hosts, transmission, and the natural history of infection within a host

[19, 20].

Close-proximity human contact networks constitute a key mechanism in the spread of

communicable diseases [21–23]. Together with pathogen-specific parameters, high-fidelity

representations of such contact networks within transmission models [22] can enable a much

higher resolution view of the process of a disease spreading than is possible with the random

mixing assumptions required in compartmental models within the traditional susceptible-

infectious-recovered (SIR) family [19, 20, 24]. Such a view can support real-time identification

early of outbreaks and an estimation of the attack rate, as well as retrospective evaluation and

assessment of improved effectiveness of altered vaccine schedules, aid in planning of interven-

tions such as outbreak response immunization [25], public health orders and quarantine, and

support assessment of the impact of the scope, speed, and breadth of contact tracing [26].

Transmission models structured with a detailed contact network aid inferencing of popula-

tion-scale effects from individual-level behavior of infections by enabling characterization of
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the transmission of contagious diseases over the close-proximity contacts shaping outbreak

dynamics [22, 27].

The ubiquity of smartphones with their rich complement of sensors, and emergence of

wearable proximity-detection device have enriched data collection systems [28–33]. Automatic

contact tracing apps using Bluetooth low-energy [34] have allowed researchers to collect con-

tact information whose self-reporting would be burdensome [35, 36], and likely infeasible due

to limited awareness of contacts [37]. As envisioned by some observers [22], the growing avail-

ability of proximity contact data in high-resolution has further encouraged analytics taking

empirical data of proximate contacts into transmission modeling [29, 38–41]. Salathé et al.
[29] pioneered collecting high-resolution proximity contact data with mote sensors, and taking

such high-resolution data into a transmission model to analyze influenza outbreaks. Wymant

et al. [42] investigated the impact of the National Health Service (NHS) COVID-19 app for

England and Wales and estimated that increasing app uptake could reduce the number of

cases.

Despite the increasing scale of computing power in the form of expanding storage capacity

and accessible high-performance computing, we still struggle to collect, store, and process

individual-level contact data sufficient to parameterize a longitudinal transmission model with

even a municipal-scale population. When configuring smartphones to collect proximity con-

tact data, a sensing regime with sampling frequencies on the scale of minutes notably elevates

power consumption, risking adverse impacts on study recruitment and adherence. Such

impacts are of particular concern among low-socioeconomic status populations who are sub-

ject to elevated risks of communicable disease transmission due to crowding and other risk

factors [43–45].

In light of such technology constraints, past contributions [23, 28, 46] have argued that a

clear understanding of the sensing regime is required—a sensing regime schedules short peri-

ods to turn sensors on for scanning throughout an experiment. The proximity contact data in

our study are derived from Bluetooth discovery records, and the Bluetooth discovery is per-

formed at the first minute of each duty cycle, where duty cycles are consecutive periods of

identical length. The reciprocal of the duty cycle interval is referred to as the observation fre-

quency, and the observation frequency is in inverse relationship with the inter-observation

interval. This study investigated how varying sensing regimes impacts captured proximity con-

tact data and the results of an empirical contact empowered transmission model (ECTM). Spe-

cifically, we sought to investigate the following three questions:

• How does the structure of the inferred contact network skew as the observation frequency of

Bluetooth discovery reduces?

• How do the results of a transmission model when taking proximity contact data collected at

a reduced observation frequency deviate from taking proximity contact data collected at a

baseline frequency (the highest frequency among our scenarios)?

• Under which disease/pathogen and community structure contexts may observation fre-

quency be reduced, and to what extent, without undermining confidence in conclusions?

We addressed these questions by analyzing proximity contacts derived from downsampled

contact data collected from participant smartphones in five high-resolution human contact

network studies. Each study has an effective duration of four or more weeks, and includes at

least 30 participants, yielding a total of 284 participants across all studies. Close-proximity con-

tact data were collected approximately every 5 minutes by smartphone-based Bluetooth hand-

shakes. We analyzed how network structure changed as observation frequency is reduced.
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To study the impact of downsampling on the model-estimated attack rate and individual

infection risks, we provided downsampled contact data to an SEIR agent-based simulation

model for 12 different transmissible diseases/pathogens. Using findings at the baseline resolu-

tion (involving sampling every 5 minutes) as the reference, we found that the bias-variability

of the attack rate shifted as observation frequency was reduced. Our findings further demon-

strate that in terms of both variability and bias, the magnitude of the impact of reducing obser-

vation frequency is both disease and community specific. Specifically, for diseases with low

basic reproductive number, such as Middle East Respiratory Syndrome (MERS), simulation

results with respect to both attack rate and individual infection risk were relatively insensitive

to observation frequency. On the other hand, pathogens such as Bordetella pertussis showed a

marked dependence on sampling frequency. Maintaining a higher observation frequency

notably turns out to be more important in denser communities. Finally, we found that individ-

ual infection risk varied according to which edges of contact network served as parts of trans-

mission chains within a given simulation.

Data sources

This study drew contact data from five high-velocity microcontact data sets each with a month

or longer duration, employing the Saskatchewan Human Ethology Datasets (SHED) 1, 2, 7, 8,

and 9 [31, 47, 48]. These SHED data sets employed the iEpi system and its successor Ethica

Data [31, 49] to collect longitudinal data via smartphone-based sensors, including with respect

to the battery level, charging state, Bluetooth, Wi-Fi, GPS, accelerometer, magnetometer, in

addition to pre- and post-surveys. Only the Bluetooth discovering records and battery level

records were used in this research. It is important to emphasize that the SHED datasets,

though sharing high acquisition velocity and a duration of a month or greater, exhibit notable

heterogeneity in the characteristics of the participant population and—by extension—the net-

work structures. SHED1 and SHED2, represent “closer” communities, composed of graduate

students and staff from the Department of Computer Science from University of Saskatche-

wan, with SHED1 having the majority of its participants coming from two research laborato-

ries. In contrast, SHED7, SHED8, and SHED9 recruited undergraduate students from across

the University of Saskatchewan through a social sciences study pool, representing a more

diverse and “diffuse” community. Descriptive information of these SHED data sets, such as

aggregate distributions, can be found in the S1 Appendix and code repository.

All SHED studies’ participants were volunteers. No experimental manipulations were con-

ducted during data collection. The studies did not undertake stratified sampling as to ethnicity,

grade, or gender. The study did not proscribe participation by those connected with the

department or research laboratories involved, and the study team informed colleagues in labs

and the Department of Computer Science first. Awareness of the potential study involvement

can be assumed to have spread across social networks. For SHED1 and SHED2, participants

were provided with a pre-configured Android phone that they carried in conjunction with any

other personal mobile device. By contrast, participants used their own phones for SHED7,

SHED8, and SHED9. Although for these three studies, both Android and iPhone users were

welcome, because Bluetooth beaconing did not work reliably on iPhone due to security set-

tings, iPhone users were removed from the analysis and all participants reported here were

Android users.

Contact data collection method

Data collection for Bluetooth contacts and battery levels on both iEpi and Ethica Data apps

equipped smartphones occurs within discontinuous epochs. Study periods (consecutive days
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spanning at least one month) were divided into 5-minute (exactly for SHED1 and SHED2, and

approximate intervals for SHED7, 8, 9) duty cycles. Within each duty cycle, battery levels were

recorded as long as the apps were running, and Bluetooth scan was enabled during the first

minute of each duty cycle. Phones were discoverable while scanning for nearby discoverable

devices.

Methods

We synthesized collections of proximity contact data with varying sensing regimes by down-

sampling from a baseline. The impact of varying sensing regimes are measured on two types of

findings: those regarding network structure, and those involving population-wide disease

spread. For the network analyses, we compared network structure with successive levels of

downsampling and interpreted the results in terms of classical network models [50–52]. For

the simulation analyses, we used an individual-level Susceptible-Exposed-Infectious-Recov-

ered (SEIR) model [53], with reconstructed contact networks using 12 distinct common com-

municable diseases/pathogens (flu, SARS, fifth, pertussis, measles, chickenpox, MERS,

diphtheria, COVID-19 wild type, COVID-19 Alpha variant, COVID-19 Beta variant, COVID-

19 Delta variant). We investigated how downsampling (decrements in observation frequency)

impacts findings regarding the attack rates, individual infection risks, and outbreak timing

from simulation outputs, by employing two distinct downsampling methods named Snap-
shot and Upperbound. For every combination of choices from downsampling methods,

sampling rates, communicable diseases, and studies, the contact network for that study

induced by that downsampling rate was derived and analyzed, and simulations conducted

using those networks were analyzed.

Ethics statement

SHEDs data collection and analysis was conducted under written approval BEH-14–203, from

the University of Saskatchewan Human Behavioral Ethics Review Board. Written informed

consent was obtained from the participants.

Downsampling approach

We assume that the behavior of close-proximity contacts is time-varying and denoted by an

undirected graph Gt = (Vt, Et), with vertices representing participants and edges denoting

pairs of participants that exhibit close-proximity contact at time t. We assume that, given a suf-

ficiently small temporal quantum ξ0 (for example, one second), the state of our close-proximity

contacts can be considered constant across each such time quantum without significant loss of

precision, meaning our analysis only considers dynamics over a unidimensional lattice with

spacing ξ0. This leads to proximity contacts evolving over time as a series of undirected graphs

Gt0
; t0 2 x0N � R, where t0 projects the discrete-time index onto a real-world clock. We

denote proximity contacts among participants V at time t as Gt; t 2 N. Downsampling

according to a heuristic is essentially aggregating {Gt}, t 2 [ti, tj), which can be considered as a

coding problem [54, 55].

Because the baseline frequency of longitudinal data obtained is approximately every 5 min-

utes, the original sampling of close-proximity contact network is a series of {Gt}, t 2 [0, T),

where t has the unit of minute and T is the effective length of a study in minutes. After

post-processing, t represents an integer index representing the minute associated with the

observation, where minute 0 corresponds to the first minute of the first day of the study.

For convenience, we rephrase the sample time as a period rather than a specific point,
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fGti
g; ti 2 ½ix; ðiþ 1ÞxÞ; i ¼ 0; 1; 2; � � �, where ξ = 5 is the (expected) duty cycle interval and

1/ξ is the observation frequency for our original data, and is referred to as the baseline

frequency.

A further consideration relates to data availability. Such availability is affected by many

factors, including—but not limited to—participants opting to “snooze” the sensor data

recording during a private period, cases where the operating system temporarily evicts the

data collection app from memory due to resource shortages, or—especially for the case of

SHED7 and 8—due to misaligned duty cycles reflecting system scheduling. After aggrega-

tion, each sample Gt ¼ ðVti
; Eti
Þ is an unweighted unidirected simple graph which can be

represented as a (0, 1)-adjacency matrix. This adjacency matrix is symmetrical and each

of its element aij 2 {0, 1} indicates individual vi and vj have a contact (aij = 1) or no contact

(aij = 0).

We considered two downsampling strategies: A physically realizable sampling strategy

(named Snapshot), and a theoretical upper-bound (named Upperbound). Snapshot

periodically samples a snapshot of the current contacts in place at that time, thereby

providing a simulated answer to the question “what if we sampled less frequently?”. The

Upperbound downsampling strategy instead records all contacts throughout the

downsampling interval, and reports those as applying at the sampling time. It instead

answers the question “What would be the impact of these same contacts, if they were to

change less frequently?” Upperbound provides an oracle which maintains all contacts

during the period regardless of whether the downsampled schedule would have measured

them.

Snapshot. The Snapshot downsampling method is conceptually straightforward: for

each downsampling period [iξ0, (i + 1)ξ0), i = 0, 1, 2, � � �, we choose the first available sample

index G~t i
; ~t i 2 ½ix

0
; ðiþ 1Þx

0
Þ. This results in subsampling fG~t i

g; ~t i 2 ½ix
0
; ðiþ 1Þx

0
Þ. If a con-

tact occurred during the specific duty cycle captured by that index, it will be reflected within

the sampled record. Snapshot simulates the effect of selecting a longer duty cycle for mea-

surement, including the loss of contacts due to undersampling.

Upperbound. In contrast to Snapshot, we sought to investigate the impact of a theoret-

ical downsampling method, which could provide a sample summary that included information

drawn from throughout that interval. Specifically, we considered the union G�t i
for

fGti
g; ti 2 ½ix; ðiþ 1ÞxÞ; i ¼ 0; 1; 2; � � �, where the union, in general for any discrete set

j 2 N, is defined as
S

j2J Gj =
S

j2J (Vj, Ej) = (
S

j2J Vj,
S

j2J Ej). This downsampling mechanism

serves to conserve all pairwise contacts which are observed at any time during a downsampling

interval. Upperbound cannot practically be deployed in data collection using the most com-

mon sensors used for proximity detection, but could be used during post-processing to reduce

the number of time steps realized during ABM-based analyses, increasing simulation speed.

As ξ approaches the study period, the Upperbound downsampling results in a more homo-

geneously weighted random mixing graph of contacts, resembling compartmental models

with less heterogeneous preferential mixing among compartments. Upperbound maintains

the density of the contact graph during downsampling.

While the investigation of the effects of Upperbound was motivated predominantly by its

theoretical properties, it bears noting that some technologies—such as privacy-preserving or

battery-sensitive contact tracking and reporting systems—do perform similar temporal aggre-

gation of contact information over a period of time [56]. Snapshot performs temporal quan-

tization in a sampling context. Upperbound performs both temporal quantization and

aggregation via accumulation across that interval.
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SEIR simulation

We built an agent-based SEIR transmission model (SEIR-ABM) with the proximate contacts

derived from synthetic proximity contact data collected with different observation frequencies.

These synthetic proximity contact data are generated by downsampling with both Snapshot
and Upperbound methods across datasets and diseases/pathogens.

Agent-based SEIR model. The agent-based model treats each person in the study popula-

tion as an actor with one of four possible states with respect to a natural history of infection:

Susceptible, latently infected (Exposed), Infective, and in a Removed state conferring persistent

immunity to future infection. At any one time quantum, a given agent is further parameterized

by a vector of active contacts, as specified by the proximity contact data for that agent for the

current study, at the current level and type of aggregation.

Our SEIR agent-based model (SEIR-ABM) takes proximity contact data

D ¼ ðfGti
g; xÞ; ti 2 ½ix; ðiþ 1ÞxÞ; i ¼ 0; 1; � � � ; n � 1, an initial infected agent

V 2
S

iVti
; i ¼ 0; 1; � � � ; n � 1, and a disease/pathogen M from the set {flu, SARS, fifth, per-

tussis, measles, chickenpox, MERS, diphtheria, COVID-19 wild type, COVID-19 Alpha vari-

ant, COVID-19 Beta variant, COVID-19 Delta variant}. The proximity contact observations

were repeated four times, ensuring at least four months of proximity contacts time series for

transmission simulation, to avoid underestimation of attack rate induced by right-censored

data—particularly considering diseases/pathogens whose Exposed and Infectious periods add

up to more than twenty days.

For each disease/pathogen, we gathered the basic reproductive number R0 (Table 1) and

range estimates of the latent period and infectious periods. Descriptions and comments about

these diseases/pathogens can be found in the S1 Appendix. For simplicity, we will refer to a

pathogen or a variant type of a pathogen as a disease in the following text. Each agent in the

SEIR-ABM was associated with a latent period and personal infectious period drawn uni-

formly from corresponding ranges. Although in practice R0 varies along with the rate of

human-human or human-vector interactions spatially and temporally [57], we assumed iden-

tical R0 for scenarios with different SHED datasets, because participants spend a considerable

amount of their time on campus. This paper focuses on analyzing the impact of temporal reso-

lution of Bluetooth discovering sensed proximate contact. Even if the R0 is not calibrated

Table 1. Disease parameter table.

Disease Name Basic Reproductive Number Incubation Period Infectious Period

chickenpox †15 [58] 10—12 [59] �8—11 [60]

COVID-19 Wild Type †2.5 [61] 5.6—7.7 [61] 3—7 [61]

COVID-19 Alpha Variant ?3.23 [62] 5.6—7.7 [61] 3—7 [61]

COVID-19 Beta Variant ?3.13 [62] 5.6—7.7 [61] 3—7 [61]

COVID-19 Delta Variant ?4.93 [62] 5.6—7.7 [61] 3—7 [61]

diphtheria †6.5 [63] ‡2—5 [59] ‡14—28 [64]

fifth 1.8 [65] �6—11 [66] �4—9 [66]

flu ‡1.31 [67] 2.28—3.12 [67] ‡2.06—4.69 [67]

measles †15 [63] �5—10 [68] �4—6 [69]

MERS 0.69 [70] 2—14 [71] ?1—5 [72]

pertussis †14.5 [63] 7—10 [59] ‡14—21 [59, 73]

SARS 3.6 [74–76] 2—10 [75] 4—14 [77]

We use (†) for parameters derived as midpoint of reported range, (‡) for parameters derived range from different reports, (�) for parameters derived from starting range

plus average duration, and (?) for parameters derived from other disease or comparative estimations.

https://doi.org/10.1371/journal.pcbi.1010917.t001
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separately for the specific population represented in each SHED dataset, it will not block us

from interpreting how R0 changes with the temporal resolution.

A simplified model was employed because we were primarily interested in the impact of

measurement frequency. That model supports a stylized notion of the characteristics of the

diseases explored, under a variety of epidemiological contexts:

• Closed-population Despite the fact that some for the 12 communicable diseases examined

here are potentially lethal, we assume a closed population with no mortality or care-seeking

that would cause an infected individual to be removed from circulation prior to recovery.

• No intervention Occurrence of infection within an individual or public health messaging

regarding an identified outbreak can lead to the adoption of personal protective behavior

such as elevated hygienic adherence and social distancing by population members; outbreaks

can also lead to triggering of public health interventions, such as outbreak response immuni-

zation campaigns, quarantine efforts, contact tracing or increased vaccination. Within our

simulation, we assume that infection status does not change agent behavior.

• Consistent stages of infection While the different communicable diseases considered in

this paper differ considerably in the features of their natural history of infection (e.g., the

presence of both symptomatic and alternative oligo-/asymptomatic pathways, lack of perma-

nent immunity) and routes of transmission (e.g., airborne, droplet, fecal-oral), to focus on

the effects of temporal quantization, we treated them as all being characterized by a 4-stage

natural history of infection and proximity-based transmission, and as differing merely in

terms of a disease-specific residence time within each state. This structure proceeds from

Susceptible to Exposed, Infectious, and Removed states. In light of the 4-month time horizon

of the model, we assumed that no re-infection is possible for each of the 12 communicable

diseases.

• Homogeneous infectious rate We assume that for every discordant pair of individuals

engaged in contact, the probability that the pathogen will be transmitted is governed by a

constant hazard rate and the duration of the contacting period. This hazard rate is deter-

mined by a rate of potentially infecting exposures β (for example, sneezing, aerosol produc-

tion or hand-shaking), and a transmission probability per such exposure.

A System Dynamics/compartmental SEIR model (SEIR-SD) typically has

R0 ¼ l � g� 1 ¼ b � �c � g� 1, where λ is the force of infection, β is the probability of transmission

per contact between a susceptible and an infective, �c is the average number of contacts made

by each susceptible per unit time, and γ is the rate at which an infectious person recovers or

otherwise transitions to the Removed state. In the SEIR-ABM, because of the no interven-

tion assumption, we estimate �c ¼ 1

TkVk

P

i;j;k
Iðejk 2 Eti

Þ given observed temporal graphs

fGti
¼ ðVti

;Eti
Þg; ti 2 ½ix; ðiþ 1ÞxÞ; i ¼ 0; 1; � � � ; n � 1, where T = ξn is the effective study

period, I is the indicator function, kVk is the number of participants whose contact net-

works are recorded and kVk does not change within the model because of the closed-popu-

lation assumption.

All agents in the SEIR-ABM start as susceptible, with the exception of one initial infective.

To address the potential impact on an outbreak outcome of the index infective individual, we

iterate the initially infected person over the entire population. For each initial infection setting,

we simulated the model across 30 distinct realizations, each associated with a distinct random

number seed. At a high level, the algorithm of our SEIR-ABM can be summarized as follows

(Algorithm 1):
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Algorithm 1: Outline of SEIR-ABM
input: contact data D,

disease M,
initially infected person V

output: list of infectious events R
1 ðG; xÞ  D;
2 it  iterator(G);
3 Vs  init_population;
4 set_health_state (V, Infectious);
5 t  0;
6 G  next(it);
7 while t < T do
8 map(update_health_state, Vs);
9 map(λv. append(R, expose_all_connected(v, G)), filter(λv.
at_health_state(v, Infectious), Vs));
10 if get_timestamp(G) + ξ < t then
11 G  next(it);
12 end
13 t  tick_tock(t);
14 end

Parameter variation grid. For each of the two downsampling methods, our simulation

considers scenarios involving all combinations over three parameter classes: underlying popu-

lations, diseases, and downsampling intervals (mimicking observation frequencies). This

paper specifically investigates the impact of the downsampling method and downsampling

intervals given a specific underlying study population and pathogen. We consider all combina-

tions of the following:

• Two downsampling methods: Snapshot and Upperbound

• Five datasets (SHED1–2, SHED7–9) with populations {39, 32, 61, 74, 78}, considering each

possible exogenously infected index within each population

• Twelve pathogens and their accompanying communicable diseases: influenza type A,

SARS-CoV, parvovirus B19, Bordetella pertussis, Measles morbillivirus (MeV), varicella-zos-

ter virus (VZV), MERS-CoV, Corynebacterium diphtheriae, SARS-CoV-2, SARS-CoV-2

(B.1.1.7), SARS-CoV-2 (B.351), SARS-CoV-2 (B.1.617.2)

• Seven sampling intervals: 5 minutes (baseline), and 6 downsampling intervals: 10, 30, 60, 90,

180, 360 minutes

• An ensemble of 30 Monte Carlo realizations per parameterization

Considering all combinations of the above, we simulated 1312080 realizations of the

SEIR-ABM model. Realizations were evaluated on a server with an Intel Xeon CPU E5–2690

v2 and 503GB memory. Models were created in AnyLogic 8.1.0 and exported to a standalone

Java application with OpenJDK 1.8.0_252, resulting in 85GB of output data.

Impact metrics

The transmission dynamics that emerged from an SEIR agent-based model have various

usages, typified by evaluating interventions [78, 79], understanding transmission paths [80,

81], estimating disease parameters [82, 83], and forwarning outbreaks [84, 85]. These usages

often have their basis on model simulated results, such as attack rates, transmission pathways

in contact networks, and individual infection risks. We employed corresponding metrics to

summarize changes in these simulation results across the parameter variation grid, bearing
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variations due to stochastics of Monte Carlo realizations and rotations of the index infective

within each population.

Cumulative cases. The cumulative cases of a realization are the number of endogenous

infections throughout that realization, starting from an infectious due to exogenous infec-

tion (not counted) until no one at the states of Exposed or Infectious. Because of assumptions

as to the closed-population and acyclic stages of infection and persistent immunity, the

cumulative cases are capped at one less than the size of underlying population. Without

imposing assumptions on the distribution of cumulative cases over thirty Monte Carlo reali-

zations, we employed median and inter-quantile range (IQR) as statistics to summarize

cumulative cases by groups. In an agent-based model, the results of disease spread can be

strongly influenced by the contact network of the initially infected individual. We explored

two approaches to grouping the cumulative cases by constructing blocks with/without the

index infectives.

Outbreaks and outbreak-timing. Outbreak timing and behavior are commonly studied

characteristics of communicable diseases, yet the quantifiable definition of an outbreak varies

due to challenges regarding data collection and characterization of the appropriate cohort to

be counted. Instead of imposing a quantitative definition, this work employs cumulative cases

over time as a quantification of outbreak dynamics of disease in simulations for a given under-

lying population V and observed contact data D.

Each realization of the ABM-SEIR simulates an observation of cumulative cases over time

as a continuous time series z
ðiÞ
ðt; V;Dx;Z;MÞ, where i = 1, 2, � � �, NMC is the index of the

Monte Carlo replication and t is the time within the simulation, ranging from zero up to the

time of termination of that realization. Recall that a realization terminates once its last infec-

tious individual has finished their infectious period, thereby becoming Removed. The continu-

ous time series of cumulative cases varies under the circumstances specified by the initial

infectious individual V (specific to the underlying population V), observed contact data Dx;Z

(specific to the sampling method η and sampling interval ξ), and disease M (which

parameterizes the latent period and infectious period). The average of z(i) over different

initial infectious individual V and the Monte Carlo replication index i, denoted by

m̂zðt; Dx;Z;MÞ ¼ 1

NMCkVk

P
V2V; i¼1;2;���;NMC

z
ðiÞ
ðt; V;Dx;Z;MÞ, is the sample mean of cumulative

cases given the underlying population V and observed contact data Dx;Z for the disease M.

Assuming a homogeneous chance for each individual of the underlying population V to

become the initial infectious individual, we can use m̂zðt; Dx;Z;MÞ 2 ½0; kVk� to estimate the

expected cumulative cases.

To compare across underlying populations of differing population sizes kVk, we defined

the normalized expected cumulative cases (NECC) as %̂ðt; Dx;Z;MÞ ¼ 1

kVk m̂zðt; Dx;Z;MÞ,
where %̂ðt; Dx;Z;MÞ 2 ½0; 1�, with 0 indicating no infection and 1 indicating that the entire

population is infected by time t. For a disease M, given the underlying population V and

observed contact data Dx;Z, the NECC reflects the estimated expected fraction of maximum

potential cumulative cases at time t.
Attack rates. The attack rate of a realization is the ratio of cumulative cases to the size of

its underlying population. The attack rate reflects the proportion of people who become

infected started with an exogenously infected index in an otherwise susceptible population

under our assumptions. Considering the attack rate as corresponding cumulative cases nor-

malized by the size of its underlying population, we can compare attack rates among different

underlying populations for a given disease, but with different downsampling methods and

observation frequencies. These comparisons may shed light on whether an underlying
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population will alter the importance of the temporal resolution to transmission simulation

results of our interests.

We introduced an accuracy-precision view to measure the deviation with respect to

the attack rate of simulations parameterized by the downsampled contact observations

Dxþ
; xþ 2 f10; 30; 60; 90; 180; 360g from the baseline Dx0

; x0 ¼ 5. This deviation measure-

ment is conducted for each downsampling method (Snapshot or Upperbound) under the

circumstances parameterized by underlying population V and disease M. An underlying pop-

ulation V shapes both the baseline contact observation Dx0
and the closure of the set of possible

initial infectious individuals V. We summarized two statistics: median and IQR, across the val-

ues of the attack rate drawn from an ensemble 482 of 30 realizations for each scenario defined

by observations of contact network Dxþ ;Z
, initial infectious individual V, and a type of commu-

nicable disease M. The differences of a statistic (either the median or IQR) with respect to the

attack rate of simulations parameterized by a downsampled contact observations Dxþ
from the

baseline Dx0
is defined as Dstatisticxþ ¼ statisticxþ � statisticx0

.

Transmission pathways in contact networks. Studies on transmission pathways in con-

tact networks investigate how a disease/pathogen may spread on routes of transmission avail-

able between infectious and susceptible individuals, given the structure of contact networks

where they reside [86, 87]. Sensor-data-derived proximate contacts reveal contact networks to

study transmission pathways for diseases relying on routes of aerosol transmission and poten-

tially direct contact transmission [29, 31, 88]. An infection pair of a realization, denoted by an

ordered tuple of (Vsusceptible, Vinfectious), states the infection of Vsusceptible by Vinfectious during

the infectious period of Vinfectious in the realization. Because infection pairs are elemental

results reflecting transmission pathways from a realization, we sought to measure impacts of

temporal resolution on transmission pathways in contact networks by comparing statistics of

infections pairs from corresponding realizations.

Given a set of realizations from the ABM-SEIR model with a size kVk population, if we put

all possible tuples of individuals T ¼ fði; jÞ j i; j 2 V ^ i 6¼ jg into a canonical form with a rule

(i, j)� (k, l), i� j _ (i = k ^ j� l), then we can express the frequencies of infection pairs in

the set of realizations as a vector Ω 2 N0

kT k�1, where kT k ¼ kVk2
� kVk. Assuming Ω 6¼ 0

and an uniform prior of an individual becoming the exogenously infected index, the L1-nor-

malized vector of infectious pairs’ frequencies, denoted by Ω
kΩk1

, is the relative risk of infection

pairs occur in a realization.

Now we consider two parameter sets Pp and Pq sharing a disease/pathogen, an underlying

population, and a sampling method, but with different duty cycle intervals ξp and ξq. The

differences of realizations resulted by Pq from Pp, in terms of frequencies of infection

pairs, can be reflected by a weighted-Minkowski distance of order one, denoted by

DM Ωp;Ωq

� �
¼

Ωp

kΩpk1

 !>

� Ωp � Ωq

� �abs
, where Ω

kΩk1
is the weight and (�)abs is the element-

wise absolute value operator for a vector, such that Ωabs
¼ ½absðO1Þ � � � absðOkT kÞ�

>
. When ξp

< ξq, Pq is a parameter set with a larger duty cycle interval than Pq, this weighted-Minkowski

distance between frequencies of infection pairs Ωp and Ωq can be interpreted as the risk-

weighted L1-distance resulted by a downsampled proximate data of duty cycle interval ξq from

a reference proximate data of duty cycle interval ξp. This expected L1-distance handles varia-

tions due to stochastics of Monte Carlo realizations and rotations of the index infective within

each population, allowing us to infer impacts of observation frequencies on simulated results

of infection pairs sharing an underlying population. Notice that 0� DM(Ωp, Ωq)� NMCkVk,
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where NMC = 30 is the number of Monte Carlo realizations per parameterization, and kVk
is due to the rotation of index infectives. We have DM(Ωp, Ωq) = 0 when Ωp = Ωq, and

DM(Ωp, Ωq) = NMCkVk when ∄ i; j 2 V; Oði;jÞp > 0 ^ O
ði;jÞ
q > 0 ^ i 6¼ j. To unify the

scale of DM(Ωp, Ωq) for underlying populations with different sizes, we employed

DNM Ωp;Ωq

� �
¼

DMðΩp ;ΩqÞ

kVk and 0 � DNM(Ωp, Ωq)� NMC.

Individual infection risks. The infection risk of an individual is estimated by the fraction

of realizations where the individual got infected. For a population V, its individual infection

risks under a circumstance of a disease, a sampling method, and an sample interval can be pre-

sented by a vector of infection risks for everyone in the population, denoted by Ψ 2 NkVk
0

. The

L1-normalized vector of individual infection risks, denoted by ρ ¼ Ψ
kΨk1

can be considered as

the likelihood of an individual to be the most likely infected.

For each individual given each combination of disease and datasets, we calculated the

Laplacian-smoothed individual infection probability based on infection counts from simula-

tions informed by ξ+-downsampled contact data using downsampling method η 2 {Upper-

bound, Snapshot}; then we assembled the individual infection probability into a vector of the

L1-normalized vector of individual infection risks ρðM;Dx;ZÞ. Laplacian-smoothing was

employed to ensure that those who were not infected in simulation outcomes are still assigned

a small probability of being infected.

To characterize the deviation of ρðM;Dx;ZÞ as sample interval ξ increases, we employed

Kullback-Leibler divergence of the baseline ρðM;Dx0 ;Z
Þ from ρðM;Dxþ;Z

Þ with sample inter-

val ξ+, denoted as dxþ ¼ DKLðρðM;Dx0 ;Z
Þk ρðM;Dxþ ;Z

ÞÞ, where ξ0 = 5, and ξ+ 2 {10, 30, 60,

90, 180, 360}. The KL-divergence dxþ is evaluated six times (at ξ+ = 10, 30, 60, 90, 180, 360)

under circumstances parameterized by combinations of the downsampling method η, under-

lying population V, and disease M.

Results

We evaluated the impact of downsampling methods and frequencies from two perspectives: the

resultant distortions of network structure, and deviation in transmission model outcomes. Each

such evaluation employed the results of the baseline fidelity network representation as the refer-

ence for assessing such distortions/deviations. The network structure analyses show that, as

observation frequency reduces, the Snapshot method and the Upperbound method distort

network structure in different ways—the Snapshot keeps the average cumulative contact time

at the cost of underestimating node degrees. In contrast, the Upperbound method results in

inflated average cumulative contact time but retains the node degree distribution. The evaluated

the deviation in transmission model outcomes at both the population and individual levels are

analyzed in the following sections. To keep main text succinct, we restricted figures in this sec-

tion to three selected diseases—influenza type A, denoted as flu; SARS-CoV-2 (B.1.617.2),

denoted as covid19delta; and Measles morbillivirus (MeV), denoted as measles. Corre-

sponding figures that include all 12 diseases can be found in the supplementary materials.

Impacts on population-level simulation results

The impacts of the observation frequency on simulation results from the ABM-SEIR model

can be considered at the population and/or individual level. Cumulative cases and attack rates

were used to measure the impacts of observation frequency on simulation results at the popu-

lation level. Such population-level results of a transmission model are often used to evaluate

the size of the outbreak or the overall severity of an upcoming wave. We performed Welch’s
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t-test on cumulative cases with different ξ to draw quantitative conclusions as to the impact of

observation frequency on the mean of cumulative cases. We used the Prentice modified Fried-

man test on cumulative cases with different ξ to test the impact of observation frequency on

the distribution of cumulative cases.

Cumulative cases. In Figs 1 and 2, we visualized the empirical distributions of the cumu-

lative cases in realizations of the agent-based SEIR model informed by downsampled contact

data at different duty cycle intervals, with one grid for each of the Snapshot and the

Upperbound downsampling methods. In general cases, the Snapshot method preserves

the distribution of cumulative cases regardless of increasing duty cycle interval. Meanwhile,

the Upperbound method suffers from systematically overestimating the plausibility of hav-

ing an outbreak. For diseases having relatively high R0 (e.g., measles) and “closer” population

(SHED1–2), the Snapshot method risks underestimating plausible outbreaks with sparse

observations—those sampled an hour or more apart—while the Upperbound method

retains the risk of corresponding outbreak occurrence at the cost of results varying between

either universal infection or no further infection after the initial infection.

Welch’s t-test. We validated our interpretation of Figs 1 and 2 with the Bonferroni-cor-

rected Welch’s t-test [89, 90], provided by R package stats, version 4.0.2. For each sampling

method of the Snapshot and Upperbound, we tested cumulative cases with different duty

cycle intervals blocked by diseases and underlying populations. Resulting 60 blocks, with each

group (observation frequencies) having at least 960 samples (cumulative cases of realizations),

sufficiently large to consider the robustness of t-test given the distribution of cumulative cases’

departure from normality [91, 92], as shown in Figs 1 and 2. Setting the alpha-value as 5%, our

null hypothesis is that given a disease/pathogen other than high R0 diseases (chickenpox, mea-

sles, pertussis) and a underlying population, the mean of cumulative cases resulted by proxi-

mate contacts collected with different observation frequencies are equal. For each block,

Fig 1. Grids of violin plots of cumulative cases for the Snapshot method.

https://doi.org/10.1371/journal.pcbi.1010917.g001

PLOS COMPUTATIONAL BIOLOGY Observation frequency’s impact on proximity contact data and modeled transmission dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010917 February 27, 2023 13 / 31

https://doi.org/10.1371/journal.pcbi.1010917.g001
https://doi.org/10.1371/journal.pcbi.1010917


pairwise by duty cycle intervals resulting 21 comparisons per block and αaltered = 0.05/

21 = 0.00238. It turned out for the Snapshot method null hypotheses were not rejected for

pairs of observation intervals less than or equal to 30 minutes, except for SHED8-diphtheria

between pairs of duty cycle intervals 10–30 (t(4368.3) = −3.10115, p = 0.00194), SHED8-SARS

5–30 (t(4294.5) = −3.23677, p = 0.00122)), and SHED9-diphtheria 5–30 (t(4399.6) = −3.61278,

p = 0.00031). For the Upperbound method hypotheses are rejected, except for SHED2-fifth

5–10 (t(1910.7) = −1.8350, p = 0.06666), SHED2-MERS 5–10 (t(1902.2) = −1.037,

p = 0.29989); SHED9-COVID19Delta 90–180 (t(4667.3) = −1.2404, p = 0.21490), 180–360

(t(4675.8) = −1.9465, p = 0.05165). Full results of Welch’s t-tests can be found in S1 Table.

Prentice-modified Friedman tests. We further validated our interpretation of Figs 1 and

2 with the Prentice modified Friedman test [93–95], provided by R package muStat, version

1.7.0. We tested cumulative cases grouped by sampling interval and blocked by data collection,

sampling method, population (dataset), disease, and initial infection node. Resulting χ2 =

222081, with 6 degrees of freedom (reflecting the fact that the sampling interval ξ 2 {5, 10, 30,

60, 90, 180, 360} has 7 choices in total), and p< 2.2e−16, with the null hypothesis being that

the sampling interval does not differentiate the distribution of cumulative cases, for the same

data collection, sampling method, dataset, disease, and initial infection node.

Outbreaks and outbreak timing. For each disease, we drew a grid of subplots to visualize

the change of normalized expected cumulative cases (NECC) under the impact of the sampling

Fig 2. Grids of violin plots of cumulative cases for the Upperbound method. Figs 1 and 2 are two grids of violin-plots visualize the empirical

distributions of the cumulative cases outcomes from the agent-based SEIR model informed by proximity contact data downsampled at different inter-

observation intervals, given different diseases, within different underlying populations. At the highest level, we summarize simulated cumulative cases

by downsampling methods, resulting in two subfigures having a similar arrangement, referred to here as a violin-plot grid. One such grid is present for

each of the Snapshot and the Upperbound downsampling methods. Each such grid characterizes how cumulative cases vary by disease (row), and

dataset (column). Within each cell of the violin-plot grid, violin-plots of cumulative cases are arranged from left to right according to the increasing

inter-observation interval, with a 5-minute interval being the left-most, and 360-minute being the right-most. Each violin-plot shows the distribution of

simulated cumulative cases over different random seeds and initially infected individuals at the inter-observation interval denoted by its horizontal axis

label. The size of underlying population is denoted with blue lines, and the red dots indicate mean values of corresponding violin plot-denoted

cumulative cases distributions.

https://doi.org/10.1371/journal.pcbi.1010917.g002
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interval (row) and sampling method (color) for each underlying population (column). Four

representatives are selected and shown in Figs 3–6; the remainder can be found in the S1

Appendix. Similar diseases appear to have similar dynamics, as shown, for example, in Figs 3

and 4; diseases with extremely low and high R0 tend to behave quite differently regardless of

sampling method, interval, and dataset, as can be seen by contrasting Figs 5 and 6. In general,

the NECC curves of the Snapshot method exhibit smaller estimates of cumulative cases (on

the vertical axis) over time. As the downsampling interval increases, the NECC curves of the

Snapshot method also tend to end earlier on the horizontal axis. This early termination

reflects the fact that disconnections halt the pathogen spread among infectious and susceptible

due to missed contacts. For a given underlying population, the early termination of disease

Fig 3. Outbreak timing of flu.

https://doi.org/10.1371/journal.pcbi.1010917.g003
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spread seems consistent with the smaller estimates of cumulative cases, except for the scenarios

when NECC curves terminated early due to the entire population having been infected. This

analysis demonstrates that:

• As would be expected, given an initially susceptible population, a pathogen with a tendency

to catalyze an outbreak will often exhibit apparent, sharp increases in infections during the

outbreak period. Weakly spreading pathogens have an initial ascent followed by a long tail.

More notable is that this tendency holds largely invariant of sampling method, population,

and sampling interval.

• In a pattern that is maintained—mutatis mutandis—across populations, sampling method,

and interval, clinically similar diseases exhibit similar curves: SARS (Fig 4) is known to have

Fig 4. Outbreak timing of SARS.

https://doi.org/10.1371/journal.pcbi.1010917.g004
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similar characteristics to flu (Fig 3), and they exhibit similar patterns for our measure. The

discrepancy is small for “closer” populations.

• In a pattern that again holds independent of sampling method and interval as well as popula-

tion (dataset), diseases with different R0 behave differently. Pertussis (Fig 5) has the highest

R0 amongst the diseases we simulated, while MERS (Fig 6) has the lowest. Their pattern is

distinct—pertussis tends to have a clearer outbreak. By contrast, SARS exhibits a steep curve

in the beginning and a long tail, indicating limited disease spread.

• Discrepancies between Snapshot and Upperbound from the 5-minute baseline

increased with the sampling interval ξ. Discrepancies induced by the sampling interval exert

less impact than the characteristics of the study population, with “diffuse” communities (like

SHED9) exhibiting substantial discrepancies for both Snapshot and Upperbound.

Fig 5. Outbreak timing of pertussis.

https://doi.org/10.1371/journal.pcbi.1010917.g005
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• When the sampling interval is large, the Snapshot method outperforms Upperbound in

terms of having NECC closer to the 5-minute baseline, at the cost of shortening the disease

spreading period.

Attack rate. In the accuracy-precision view, as shown in Fig 7, when downsampling with

the Snapshot method, points are closer to the origin for communicable diseases with low R0

Fig 6. Outbreak timing of MERS. Figs 3–6 compares outbreak timing of diseases. The normalized expected cumulative cases (NECC) estimates the

expected cumulative cases as a fraction of its underlying population size at time t, given the disease, underlying population, sampling method, and

sampling interval. We organized NECC over time as colored curves in a grid of cells for each disease, with the underlying population in columns and

sampling interval in rows. Each cell plots three NECC curves of the baseline (red), downsampled with the Snapshot method (green), and

downsampled with the Upperbound method (blue). Each NECC curve plots NECC (y-axis) over time in the unit of months (x-axis). Both the x-axis

and the y-axis are log10-scaled. The origin of each plot is at (0.5 weeks, 10−5). Minor ticks on the x-axis(lighter vertical strips) mark 1, 2, 3, and 4 weeks

before the first month, then every half month (15 days). NECC curves have different periods (on the x-axis) because they either lack proximate contact

from infectious to susceptible or run out of the susceptible. If a NECC curve ends early because of running out of susceptible, its NECC value will stop

at one on the y-axis. Steeper NECC curves imply faster growth in cumulative cases. We selected four representatives here; the remainder can be found

in the S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1010917.g006
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and for “diffuse” population such as {SHED7, SHED8, SHED9}, indicating the advantage of

Snapshot at maintaining an estimate of attack rate as downsampling interval increases. For

diseases with high R0 (measles) and “closer” communities {SHED1, SHED2}, Snapshot
underestimates the attack rate as ξ increases, whereas Upperbound overestimates.

Fig 7. Attack rate given initial infection node for the Snapshot method.

https://doi.org/10.1371/journal.pcbi.1010917.g007
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Upperbound reduces IQR deviation of estimated attack rate while the Snapshot increases

interquartile range (IQR) deviation.

The accuracy-precision deviation of simulation results in terms of attack rate depends on

the underlying population structure (“closer” or “diffuse”), the type of communicable disease,

the sampling method (Snapshot or Upperbound), and the sample interval. Casual inspec-

tion of the skewed nature of the distributions towards higher values of the horizontal axis

within each subplot of Figs 7 and 8 (indicating increasing median deviation in incidence) con-

firms that increasing the sample interval results in over-estimation of the attack rate, as is sug-

gested in [39]. By contrast, the clustering of the points by color in each subplot suggests that

the initial infection node exerts a smaller impact on the two statistics we have chosen to reflect

the accuracy-precision tradeoffs.

Comparing within subplots column-wise, the Snapshot method performs well with “dif-

fuse” communities, resulting in both low deviation of median and low deviation of IQR. When

used with “closer” networks, Snapshot tends to overestimate the attack rate but underesti-

mate the IQR. Upperbound exhibits greater deviation than Snapshot, and is more consis-

tent as sampling interval increases given other factors—from left to right. When sampling

interval is brief and sampling rate high, attack rate exhibits low median and IQR deviation

from the ground truth, because the reconstructed contact network is less distorted. As the sam-

pling interval increases and sampling rate decreases, Upperbound tends to become both less

accurate and less precise. As the sample interval increases further, the overestimation of the

attack rate reaches a limit as people directly or indirectly connected to the initially infectious

person are reliably infected for high R0 pathogens, or people remain uninfected for pathogens

with low R0.

Comparing within subplots row-wise, disease-specific patterns are also visible: estimates for

the attack rate of diseases with low R0, such as influenza type A, seem relatively insensitive to

the sampling interval. Pathogens/communicable diseases with sufficiently high R0 tend to

behave similarly as sampling interval increases, regardless of their differences in R0 value.

Impacts on individual-level simulation results

We measure the impacts of observation frequencies on the simulation results at the individual

level with transmission pathways and individual infection risks. Individual risk of infection

can suggest vulnerable group to prioritize resource allocation and ensure health equity [96].

Individual risk of infection is asymptotically approached by the fraction of realizations in

which an individual is infected. The difference of individual risk of infection can be compared

pairwise in terms of weighted-Minkowski distance among scenarios with different datasets D
for the same underlying population V and disease M. We calculated the Kullback-Leibler

divergence on individual infection probabilities with different ξ to draw quantitative conclu-

sions on the impact of downsampling frequency on simulation results at the population level.

Higher KL-divergence values from the Snapshot method for SHED9 were observed for

chickenpox, COVID-19, diphtheria, measles, and pertussis, and are indicated by darker colors

of the corresponding column on Fig 9. Lower KL-divergence values associated with influenza

type A, regardless of dataset and downsampling frequency, induces its lighter color in the cor-

responding column in that figure. We find that the KL-divergence can effectively summarize

the information shown on Fig 9 and therefore can serve as an efficient metric to measure dif-

ferences in individual risk.

Distance matrices of infection pairs. Fig 9 shows matrices of pairwise weighted-Min-

kowski distances of frequencies of infections pairs given downsampling methods, disease, and

sampling frequencies for underlying populations, with the color shifting from lighter to darker
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Fig 8. Attack rate given initial infection node for the Upperbound method. The accuracy-precision views in Figs 7 and 8 measure the

deviation with respect to the attack ratio of simulations parameterized by the downsampled contact observations Dxþ
; xþ 2

f10; 30; 60; 90; 180; 360g from the baseline Dx0
; x0 ¼ 5. Here we only show ξ+ 2 {10, 60, 360} to prevent points from being over-

clustered, and the rest can be found in the appendix. Subplots are arranged as grids according to the combinations of underlying

population V and disease M. Within each subplot specific for a given combination of fDx;V;Mg, deviation of the median attack rate is

shown on the horizontal axis (reflecting accuracy) and deviation of the inter-quartile range (IQR) for attack rate is depicted on the vertical

axis (negatively correlated with precision). Each datapoint within such a subplot is associated with a specific sample interval ξ of Dx,
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whose value is denoted by both color and shape for visual clarity. In both Figs 7 and 8, points with same color and shape tend to cluster

instead of mixing with other colors, indicating that sample interval impacts govern both the accuracy and precision of the attack ratio

more than the initial infection node V. In Fig 7, when downsampling with the Snapshot method, points are closer to the origin for

diseases with low R0 (except for chickenpox, measles and pertussis) and for “distant” population such as {SHED7, SHED8, SHED9},

indicating the advantage of Snapshot at maintaining an estimate of attack ratio as downsampling interval increases. For diseases with

high R0 (chickenpox, measles, pertussis) and “closer” populations ({SHED1, SHED2}, Snapshot metod underestimates the attack ratio

as ξ increases, whereas Upperbound slightly overestimates. Upperbound reduces IQR deviation of estimated attack ratio while the

Snapshot increases IQR deviation.

https://doi.org/10.1371/journal.pcbi.1010917.g008

Fig 9. Distance matrix of infection pairs. Two grids of two dimensional (2D) histograms visualize matrices of pairwise weighted-Minkowski distances

of frequencies of infections pairs given downsampling methods, disease, and sampling frequencies for underlying populations. All histograms share a

color-scale as shown in the legend, with the color shifting from lighter to darker with the increasing degree of dissimilarity. For each matrix, starting

from its top left corner, inter-observation intervals are arranged in ascending order—ξ = 5, 10, 30, 60, 90, 180, 360—horizontally from left to right and

vertically from top to bottom. We found Snapshot is better at preserving consistent frequencies of infection pairs, particularly with an observation

frequency higher than once per half-hour, except for higher R0 diseases in “diffuse” communities, such as chickenpox and measles in SHED9. For lower

R0 diseases (flu), particularly in “closer” communities like SHED1, the Snapshot method have weighted-Minkowski distance less than two even

between the observation frequencies of 5-minute and 360-minute.

https://doi.org/10.1371/journal.pcbi.1010917.g009
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with an increasing degree of dissimilarity. We found Upperbound is better at preserving

likely paths than Snapshot, and the limits of the sampling interval needed to preserve likely

paths of disease spreading lies amongst ξ 2 {10, 30, 60}. Under Upperbound, diseases with

similar R0 resemble each other, and MERS with a low R0 = 0.69, has its likely paths varying

notably over sampling intervals for a less “diffuse” population, while other diseases—despite

exhibiting a wide range of R0 2 [0.69, 15]—maintain a similar pattern of those likely paths

with rising sampling interval, for a given population.

Kullback-Leibler divergence on individual infection risk. As shown in Fig 10, the

Snapshot method in general will exhibit higher divergence than the Upperbound method,

except for diseases with low R0, such as influenza type A (1.31). In general, the higher the dxþ ,

the higher the divergence of individual infection risk from estimations with ξ+-downsampled

contact data when compared to ξ0-sampled contact data.

Discussion

We investigated the impacts of observation frequency on proximity contact data and modeled

transmission dynamics through the downsampling-simulation-evaluation approach. We

started by specifying various sensing regimes regarding the sampling method and the sampling

interval. This exploration drew on two sampling methods proposed here—the Snapshot
method as a conceptually and practically straightforward scheme and the Upperbound

Fig 10. Kullback-Leibler divergence of individual infection risk. The deviation of individual infection risks as sample interval ξ increases is visualized

as a grid of line plots. Every cell of the grid corresponds to a specific downsampling method η (row), disease M (column). Within each cell, there are

five lines with distinct colors; each color denotes a corresponding underlying population V. Each colored line is formed by sequentially connecting

adjacent points with straight lines. There are six points for each colored line, each associated with a sample interval in the order of ξ+ = 10, 30, 60, 90,

180, 360, denoting the KL-divergence of the baseline ρðM;Dx0 ;Z
Þ from ρðM;Dxþ ;Z

Þ with the sample interval ξ+.

https://doi.org/10.1371/journal.pcbi.1010917.g010
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method as a theoretical upper bound. We then emulated proximity contact data collected with

different sensing regimes by downsampling from a baseline. Finally, we designed experiments

and metrics to evaluate the impacts of sensing regimes on proximity-contact-data-informed

transmission models under various circumstances.

We evaluated the impacts of sensing regimes on transmission dynamics from both popula-

tion-level and individual-level perspectives under the circumstances of different underlying

populations and types of diseases. In summary, our results show that:

• In general, the sensing regime impacts multiple metrics of proximity-contact-data-informed

transmission models, at both the population level and the individual level.

• The impact of sensing regimes varies notably as one varies the underlying population and

disease type.

• As the sampling interval increases, proximity contact data downsampledwith both the

Snapshot method and the Upperbound method leads the informed ABM-SEIR model

to diverge from the baseline.

• For underlying populations captured by the SHED datasets and the types of diseases that we

investigated, it appears that we need a sampling interval of less than 30 minutes to mitigate

the risk of having downsampled proximity contact data misrepresenting the baseline. For

example, the shapes of the violin plots shifted when the sampling interval increases over 30

minutes in Fig 1, with the Snapshot method, under the circumstance of SHED8-measles

and in almost every cell of the corresponding Upperbound grid, as shown in Fig 2.

• As the sampling interval increases, the Snapshot method tends to retain reasonable esti-

mations in general, but bears the risk of underestimating the spread of diseases compared

with the baseline. For example, the Snapshot method may result in differences for metrics

such as cumulative cases (Figs 1 and 3–6), attack rate (Fig 7), and infection period (Figs 3–6),

especially under the circumstance of a “close” community like SHED1 and a high R0 disease

like measles. In contrast, the Upperbound method tends to systematically overestimate

population-level metrics compared with the baseline (Figs 2–6 and 8). However, the

Upperbound method can retain good estimations on the period of disease spread for high

R0 disease (Figs 2 and 5 and for individual infection risks (Fig 10).

• The results of downsampling with the Snapshot method exhibit higher discrepancy from

the baseline under circumstances of a “close” community for a high R0 disease than for a

“diffuse” community with a low R0 disease (Figs 7 and 10). Such tradeoffs raise the potential

for improving sampling by creating a hybrid scheme that draws on the best of the Snap-
shot and the Upperbound methods.

• For parameters that depict a disease, the R0 seems to be important in determining the

impacts of sampling frequency and sampling method on the results of transmission models.

The importance of R0 is evident by comparing MERS with pertussis, as mentioned above.

Such importance is also apparent when comparing COVID-19 with its variants, which are

characterized here by an identical latent period and infectious period, as shown in the S1

Appendix. Besides the R0, we have yet to find notable impacts from the latent period and the

infectious period when we compare pairs of diseases with similar R0 but different latent peri-

ods and infectious periods, such as measles and chickenpox, as shown in the S1 Appendix.

To the best of our knowledge, we are among the first to characterize how temporal resolu-

tion of proximity contact data will impact results from an agent-based transmission model.

We found that to secure reliable results from the ABM-SEIR model examined here, it will
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generally be sufficient to sample proximate contacts with the Snapshot method using an

inter-sample interval of a half-hour or below. Furthermore, we noticed that the most effective

sampling method and sampling interval can depend on the types of disease. Among the com-

binations of the underlying populations and types of diseases we have investigated, we further

found that the most favorable sensing regime may differ depending on the population-level

and individual-level metrics of interest.

Our methodology for investigating the impact of the sensing regime for proximity contact

data on results of informed transmission models is highly generalizable. Such methodology

can be adapted to tailor sensing regimes for specific circumstances and evidence the study of

proximity contact networks for transmission modeling.

Our findings are subject to a number of important limitations:

• Limited Population Size—Given the confined population size, it is possible that the

observed behavior of Snapshot and Upperbound here is materially altered by quantiza-

tion effects exhibited by agent-based simulation when population size is small [97–99].

Because the attack rate represents the quotient of two integers, when both nominator and

denominator are small, the possible values of their ratio can be sparse. A partial result is that

realizations in which the entire population is infected can happen more frequently than

when the population size is large.

• Limited Diversity of Participants—As university students, most participants of our experi-

ments share similar lifestyles and activity spaces for their working and studying hours.

Because network structures of proximate contact in different age groups and communities

can be a key factor in disease transmission [100], the findings resulting from applying such

methods to larger and more societally representative communities may vary notably from

the results shown here. Future work is encouraged to adapt our methodology for a broader

collection of underlying populations and types of diseases.

• Simple Modeling Methodologies—While the method of feeding high-resolution proximity

contact data into the epidemiological model used in our experiment is mathematically and

practically straightforward, there is much opportunity to apply more versatile methods to

combine data into the model as modeling methodologies advance. Our experiment is

designed to examine the impact of observation frequency on transmission models informed

by proximity contact data. Future studies that collect longitudinal incidence reports along

with proximate contacts are needed to enable evaluations of the performance of transmission

models informed by proximity contact data in predicting real-world outbreaks.

In summary, this work has investigated the impacts of observation frequency and sampling

methods for proximity contact records in capturing proximity contact networks for epidemio-

logical simulations. We evaluated the impacts induced by the temporal granularity of sampling

networks in terms of distortion of measured network structure and of population-level and

individual-level simulation outcome metrics in light of combinations of specific diseases and

underlying types of communities. These results emphasize classes of pathogens and population

structures in which the design of new studies should prioritize frequent sampling of contact

networks. Our findings also provide guidance as to how network density and lower sampling

rates might distort measures such as attack rate and individual risk.

Supporting information

S1 Table. Welch’s t-tests over observation intervals. It contains two comma-separated values

(CSV) files, one for each of the Snapshot and the Upperbound downsampling method.
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Each CSV file contains details of the corresponding Welch’s t-test, where block names are

underscore-concatenated strings of the underlying population and the type of disease/patho-

gens.

(ZIP)

S1 Appendix. Auxiliary results and model diagrams. Auxiliary results for 12 diseases, as well

as a diagram illustrating the SEIR-ABM.

(PDF)
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