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Abstract

The COVID-19 pandemic has created an urgent need for models that can project epidemic

trends, explore intervention scenarios, and estimate resource needs. Here we describe the

methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model devel-

oped to help address these questions. Covasim includes country-specific demographic

information on age structure and population size; realistic transmission networks in different

social layers, including households, schools, workplaces, long-term care facilities, and com-

munities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-

based transmissibility. Covasim also supports an extensive set of interventions, including

non-pharmaceutical interventions, such as physical distancing and protective equipment;

pharmaceutical interventions, including vaccination; and testing interventions, such as

symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These

interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and

other factors. Implemented in pure Python, Covasim has been designed with equal empha-

sis on performance, ease of use, and flexibility: realistic and highly customized scenarios

can be run on a standard laptop in under a minute. In collaboration with local health agencies

and policymakers, Covasim has already been applied to examine epidemic dynamics and

inform policy decisions in more than a dozen countries in Africa, Asia-Pacific, Europe, and

North America.
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Author summary

Mathematical models have played an important role in helping countries around the

world decide how to best tackle the COVID-19 pandemic. In this paper, we describe a

COVID-19 model, called Covasim (COVID-19 Agent-based Simulator), that we devel-

oped to help answer these questions. Covasim can be tailored to the local context by using

detailed data on the population (such as the population age distribution and number of

contacts between people) and the epidemic (such as diagnosed cases and reported deaths).

While Covasim can be used to explore theoretical research questions or to make projec-

tions, its main purpose is to evaluate the effect of different interventions on the epidemic.

These interventions include physical interventions (mobility restrictions and masks),

diagnostic interventions (testing, contact tracing, and quarantine), and pharmaceutical

interventions (vaccination). Covasim is open-source, written in Python, and comes with

extensive documentation, tutorials, and a webapp to ensure it can be used as easily and

broadly as possible. In partnership with local stakeholders, Covasim has been used to

answer policy and research questions in more than a dozen countries, including India, the

United States, Vietnam, and Australia.

1 Introduction

More than a year after COVID-19 was first identified, governments continue to be faced with

an urgent need to understand the rapidly evolving pandemic landscape and translate it into

policy. Since the onset of the pandemic, mathematical modeling has been at the heart of

informing this decision-making. Numerous statistical models and data visualization tools have

been developed over the last year in an attempt to meet this demand, with varying purposes,

structures, and levels of detail and complexity; for example, despite their limitations [1], data

dashboards have proven crucial for understanding the current state of the epidemic on both

global and local scales [2,3]. However, more detailed models are needed to evaluate scenarios

based on complex intervention strategies. These strategies are important to evaluate in order

to understand the epidemiological impact of reopening schools, businesses, and society.

Models for examining COVID-19 transmission and control measures can be broadly

divided into two main types: compartmental models and agent-based models (also called indi-

vidual-based or microsimulation models), with the former generally being simpler and faster,

while the latter are generally more complex, detailed, and computationally expensive. Numer-

ous compartmental models have been developed or repurposed for COVID-19: Walker et al.

[4] used an age-structured stochastic "susceptible, exposed, infectious, recovered" (SEIR)

model to determine the global impact of COVID-19 and the effects of various social distancing

interventions; Read et al. [5] developed an SEIR model to estimate the basic reproduction

number in Wuhan; Keeling et al. [6] used one to look at the efficacy of contact tracing as a con-

tainment measure; and Dehning et al. [7] used an SIR model to quantify the impact of inter-

vention measures in Germany. In models such as those by Giordano et al. [8] and Zhao and

Chen [9], compartments are further divided to provide more nuance in simulating progression

through different disease states, and have been deployed to study the effects of various popula-

tion-wide interventions such as social distancing and testing on COVID-19 transmission.

For microsimulation models, several agent-based influenza pandemic models have been

repurposed to simulate the spread of COVID-19 transmission and the impact of social distanc-

ing measures in the United Kingdom [10], Australia [11], Singapore [12], and the United

States [13]. Additionally, new agent-based models have been developed to evaluate the impact
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of social distancing and contact tracing [14–18] and superspreading [19]. Features of these

models include accounting for the number of household and non-household contacts

[13,15,16]; the age and clustering of contacts within households [13,14,16]; and the micro-

structure in schools and workplace settings informed by census and time-use data [14].

Branching process models have also been used to investigate the impact of non-pharmaceuti-

cal intervention strategies [20,21] and the proportion of unobserved infections [22].

In developing Covasim, our aim was to produce a tool that would be capable of informing

real-world policy decisions for a variety of national and subnational settings. We wanted to

capture the benefits of agent-based modeling (in particular, the ability of such models to simu-

late the kinds of microscale policies being used to respond to the COVID-19 pandemic), whilst

making use of recent advances in software tools and computational methods to minimize the

complexity and computation time typically associated with such models. In this regard, Cova-

sim is most similar to the OpenABM-Covid19 model [23,24], which has also been developed

as a high-performance, user-friendly, general-purpose COVID model.

Overall, the design principle we followed with Covasim was to make common usage pat-

terns as simple as possible, while still giving the user the ability to customize virtually all aspects

of the simulation. For example, Covasim comes pre-loaded with demographic data for each

country (Section 2.4), but users can also define custom populations and contact networks

down to the level of a single city [25] or even university [26]. Common COVID-19 interven-

tions are built into Covasim (Section 2.5), and custom interventions of arbitrary complexity

can also be defined. In addition, Covasim’s high performance for an agent-based model,

achieved via dynamic rescaling (Section 2.6.2) and array-based computations (Section 2.7.1),

means that most analyses can be run on a standard laptop, removing the need to use a high-

performance computing cluster except for large parameter sweeps or model calibrations (Sec-

tion 2.6.8). These design choices are intended to allow users to start running simple Covasim

analyses quickly, while providing flexibility later if more detailed data become available or if

the modeling questions become more nuanced.

To date, Covasim has been used by researchers and public health officials in over a dozen

countries. Covasim has been used to inform policy decisions in the United States [25,27], Viet-

nam [28], the United Kingdom [29], and Australia [30]. It has also been used for research stud-

ies in these locations [31–34], and well as other countries including India, Russia, Kenya, and

South Africa. This paper describes the methodology underlying Covasim, and provides several

examples illustrating its use, including an application to Seattle where Covasim scenarios were

used to inform a rapid policy decision, with subsequent validation of these findings by real-

world data.

2 Design and implementation

2.1 Design and implementation

Covasim simulates the state of individual people, known as agents, over a number of discrete

time steps. Conceptually, the model is largely focused on a single type of calculation: the proba-

bility that a given agent on a given time step will change from one state to another, such as

from susceptible to infected, or from critically ill to dead. Once these probabilities have been

calculated, a pseudorandom number generator with a user-specified seed is used to determine

whether the transition actually takes place for a given model run.

The logical flow of a single Covasim run is as follows. First, the simulation object is created,

then the parameters are loaded and validated for internal consistency, and any specified data

files are loaded (described in Section 2.6.1). Second, a population of agents is created, includ-

ing age, sex, and comorbidities for each agent, drawing from location-specific data
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distributions where available; then, agents are then connected into contact networks based on

their age and other statistical properties (Section 2.4). Next, the integration loop begins. On

each timestep (which corresponds to a single day by default), the order of operations is:

dynamic rescaling (Section 2.6.2); applying health system constraints (Section 2.6.3); updating

the state of each agent, including disease progression (Section 2.2); importation events (Section

2.6.4); applying interventions (Section 2.5); calculating disease transmission events across each

infectious agent’s contact network (Section 2.3); collating outputs into results arrays (Section

2.6.5); and applying analyzers (Section 2.6.7). The following sections describe each step in

more detail.

2.2 Disease progression

In Covasim, each individual is characterized as either susceptible, exposed (i.e., infected but

not yet infectious), infectious, recovered, or dead, with infectious individuals additionally cate-

gorized according to their symptoms: asymptomatic, presymptomatic, mild, severe, or critical.

A schematic diagram of the model structure is shown in Fig 1.

Fig 1. Covasim model structure, including infection (exposure), disease progression, and final outcomes. Yellow

shading indicates that an individual is infectious and can transmit the disease to other susceptible agents. States with a

dashed border are considered symptomatic with respect to symptomatic versus asymptomatic testing.

https://doi.org/10.1371/journal.pcbi.1009149.g001
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The length of time after exposure before an individual becomes infectious is set by default

to be a log-normal distribution with a mean of 4.6 days, which is within the range of values

reported across the literature (Table 1). The length of time between the start of viral shedding

and symptom onset is assumed to follow a log-normal distribution with a mean of 1.1 days

(Table 1). Exposed individuals may develop symptoms or may remain asymptomatic. Individ-

uals with symptoms are disaggregated into either mild, severe, or critical cases, with the proba-

bility of developing a more acute case increasing with age (Table 2). Covasim can also model

the effect of comorbidities, which act by modifying an individual’s probability of developing

severe symptoms (and hence critical symptoms and death). By default, comorbidity multipliers

are set to 1 since they are already factored into the marginal age-dependent disease progression

rates.

Table 1. Default duration parameters, in days, used in the Covasim model.

Parameter Description Distribution

(mean, std)

Source

τinf Exposed-to-infectious: Length of time after exposure before

an individual is infectious (i.e., has begun viral shedding)

τinf ~ lognormal

(4.5, 1.5)

From Lauer et al. [37]; additional sources Du et al., Nishiura et al., and

Pung et al. [38–40].

τsym Infectious-to-symptomatic: Length of time after viral

shedding has begun before an individual has symptoms

τsym ~ lognormal

(1.1, 0.9)

Linton et al. [41] report the incubation period as 5.6 days (95% CI: 5.0–

6.3 days). Using the period of exposure before becoming infectious, we

infer the period of viral shedding before symptomatic. However, other

studies have estimated longer periods, e.g. [42].

τsev Symptomatic-to-severe: Length of time after symptoms have

started that symptoms have become severe (i.e., requiring

hospitalization)

τsev ~ lognormal

(6.6, 4.9)

Linton et al. [41], Wang et al. [43]

τcri Severe-to-critical: Length of time after severe symptoms

have started that symptoms have become critical (i.e.,

requiring ICU)

τcri ~ lognormal

(1.5, 2.0)

Chen et al. [44], Wang et al. [43]

τdea Critical-to-death: Time from onset of critical symptoms to

death

τdea ~ lognormal

(10.7, 4.8)

Verity et al. [45]

τra Time from infectiousness onset to recovery for

asymptomatic cases

τra ~ lognormal

(8.0, 2.0)

Wölfel et al. [46]

τrm Time from symptom onset to recovery for mild cases τrm ~ lognormal

(8.0, 2.0)

Wölfel et al. [46]

τrs Time from onset of severe symptoms to recovery for severe

cases

τrs ~ lognormal

(18.1, 6.3)

Verity et al. [45]

τrc Time from onset of critical symptoms to recovery for critical

cases

τrc ~ lognormal

(18.1, 6.3)

Verity et al. [45]

https://doi.org/10.1371/journal.pcbi.1009149.t001

Table 2. Age-linked disease susceptibility, progression, and mortality probabilities. Key: rsus: relative susceptibility to infection; psym: probability of developing symp-

toms; psev: probability of developing severe symptoms (i.e., sufficient to justify hospitalization); pcri: probability of developing into a critical case (i.e., sufficient to require

ICU); pdea: probability of death (i.e., infection fatality ratio). Relative susceptibility values are derived from odds ratios presented in Zhang et al. [47]. Mortality rates are

based on O’Driscoll et al. [48] for ages<90 and Brazeau et al. [49] for ages>90. All other values are derived from Verity et al. [45] and Ferguson et al. [50], which did not

differentiate 80–89 and 90+. Values were validated from model fits to data on numbers of cases, numbers of people hospitalized and in intensive care, and numbers of

deaths from Washington and Oregon states. Note that "overall" values depend on the age structure of the population being modeled. For a population like the USA or UK,

the symptomatic proportion is roughly 70%, while for populations skewed towards younger ages, this proportion is lower. Similarly, overall mortality rates are estimated to

vary from 0.2% in Kenya to 0.9% in the USA and 1.4% in Italy.

0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90+ Overall

rsus 0.34 0.67 1.00 1.00 1.00 1.00 1.00 1.24 1.47 1.47 1.00

psym 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.90 0.5–0.75

psev 0.00050 0.00165 0.00720 0.02080 0.03430 0.07650 0.13280 0.20655 0.24570 0.24570 0.1–0.2

pcri 0.00003 0.00008 0.00036 0.00104 0.00216 0.00933 0.03639 0.08923 0.17420 0.17420 0.05–0.1

pdea 0.00002 0.00002 0.00010 0.00032 0.00098 0.00265 0.00766 0.02439 0.08292 0.16190 0.002–0.015

https://doi.org/10.1371/journal.pcbi.1009149.t002
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Estimates of the duration of COVID-19 symptoms and the length of time that viral shed-

ding occurs are highly variable, but durations are generally reported to increase according to

acuity [35,36]. We reflect this in our model with different recovery times for asymptomatic

individuals, those with mild symptoms, and those with severe symptoms, as summarized in

Table 1. All non-critical cases are assumed to recover, while critical cases either recover or die,

with the probability of death increasing with age (Table 2).

2.3 Transmission and within-host viral dynamics

Whenever a susceptible individual comes into contact with an infectious individual on a given

day, transmission of the virus occurs with probability β. For a well-mixed population where

each individual has an average of 20 contacts per day, a value of β = 0.016 corresponds to a

doubling time of roughly 4–6 days and an R0 of approximately 2.2–2.7, with the exact value

depending on the population size, age structure, and other factors. The value of β = 0.016 that

is currently used as the default in Covasim was based on calibrations to data from Washington

and Oregon states. However, this default value is too low for high-transmission contexts such

as New York City or Lombardy [51], and may be too high for low-transmission contexts such

as India’s first wave [52]. Hence, this parameter must be calibrated by the user to match local

epidemic data, as described in Section 2.6.8.

If realistic network structure (i.e., households, schools, workplaces, and community con-

tacts) is included, the value of β depends on the contact type. Default transmission probabili-

ties are roughly 0.050 per contact per day for households, 0.010 for workplaces and schools,

and 0.005 for the community. These values correspond to relative weightings of 10:2:2:1, cho-

sen (a) for consistency with both time-use surveys [53] and studies of infections with known

contact types [47], and (b) to have a weighted mean close to the default β value of 0.016 for a

well-mixed population (i.e., if different network layers are not used). When combined with the

default number of contacts in each layer, age-based susceptibility, and other factors, for a typi-

cal (unmitigated) transmission scenario, the proportions of transmission events that occur in

each contact layer in the absence of interventions are approximately 30% via households, 25%

via workplaces, 15% via schools, and 30% via the community. The value of β can also be modi-

fied by interventions, such as physical distancing, as described below.

In addition to allowing individuals to differ in terms of disease severity and time spent in

each disease state, we allow individual infectiousness to vary between people and over time. We

use individual viral load to model these differences in infectivity. Several studies have found that

viral load is highest around or slightly before symptom onset, and then falls monotonically [54–

58]. As a simple approximation to this viral time course, we model two stages of viral load: an

early high stage followed by a longer low stage. By default, we set the viral load of the high stage

to be twice as high as the low stage and to last for either 30% of the infectious duration or 4

days, whichever is shorter. The default viral load for each agent is drawn from a negative bino-

mial distribution with mean 1.0 and shape parameter 0.45, which was the value most consistent

with both international estimates [59,60] and fits to data in Washington state and Oregon. The

daily viral load is used to adjust the per-contact transmission probability (β) for an agent on a

given day. Viral loads for a representative sample of individuals given default parameter values

are shown in Fig 2. The proportion of transmissions by asymptomatic, presymptomatic, and

symptomatic individuals varies by context; estimated proportions for Seattle are shown in [25].

Evidence is mixed as to whether transmissibility is lower if the infectious individual does

not have symptoms [55]. We take a default assumption that it is not, but include a parameter

that can be modified as needed depending on the modeling application or context, noting that

some studies have used much lower rates of infectiousness for asymptomatic individuals [61].
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2.4 Contact network models

Covasim is capable of generating and using three alternative types of contact networks: random

networks, SynthPops networks, and hybrid networks. Each of these may be useful in different set-

tings, and in addition users have the option of defining their own networks. Covasim’s default

contact networks are shown schematically in Fig 3; different options for construction these net-

works are provided in the following sections. To facilitate easy adaptation to different contexts,

Covasim comes pre-loaded with data on country age distributions and household sizes as

reported by the UN Population Division 2019 (population.un.org).

Fig 2. Example of within-host viral load dynamics in Covasim. Each row shows a different agent in the model. Color indicates

viral load, which typically peaks the day before or the day of symptom onset, before declining slowly.

https://doi.org/10.1371/journal.pcbi.1009149.g002
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Fig 3. Illustration of contact networks with multiple layers in Covasim. (A) In reality, individual people move between household, school, workplace, and

community contact layers during the day. (B) In the model (shown here with a population of 20 people, with age structure and household sizes based on

Malawi data), these dynamic contacts are approximated as static average daily contacts between layers. Individuals have different numbers of connections

(lines) and connection weights (line widths; default relative weights shown) for each layer.

https://doi.org/10.1371/journal.pcbi.1009149.g003
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2.4.1 Random networks. Covasim generates random networks by assuming that each

person in the modeled population can come into contact with anyone else in the population.

Each person is assigned a number of daily contacts, which is drawn from a Poisson distribu-

tion whose mean value can be specified by the user depending on the modeling context (with a

default value of 20). The user can also decide whether these contacts should remain the same

throughout the simulation, or whether they should be sampled randomly from the population

each day.

2.4.2 SynthPops networks. Covasim is integrated with SynthPops, an open-source data-

driven model capable of generating realistic synthetic contact networks for populations; fur-

ther information, including documentation and source code, is available from synthpops.org.

Briefly, the method draws upon previously published models and empirical studies to infer

high-resolution age-specific contact patterns in key settings (e.g., households, schools, work-

places, and the general community) relevant to the transmission of infectious diseases [62–64].

Census or survey data such as those from Demographic and Health Surveys [65,66] are used

by SynthPops to inform demographic characteristics (e.g., age, household size, school enroll-

ment, and employment rates). Age-specific contact matrices, such as those in [62,67–69], are

then used to generate individuals and their expected contacts in a multilayer network frame-

work. By default, SynthPops generates household, school, and work contact networks; com-

munity connections are generated using the random approach described above, and long-

term care facilities can be included if data are available. An example synthetic network as gen-

erated by SynthPops is shown in Fig 4.

2.4.2.1 Households. SynthPops generate individuals within households using data on the

distribution of ages, household sizes, and the age of reference individuals per household for a

given population. The algorithm first generates household sizes from the household size distri-

bution, and then assigns a reference individual (for example, the head of the household) with

their age sampled conditional on the household size. To construct the other household mem-

bers, location-specific household age mixing contact matrices and the population age distribu-

tion are used to infer the likely ages of household contacts for the reference person. Each

column c of the contact matrix is treated as an age distribution of the household contacts for a

person in the age group c. The ages of other household members are then sampled conditional

on the age of the reference person for the household.

2.4.2.2 Schools. A similar approach is used to construct schools. School enrollment data,

available from census studies or survey data can be used to inform enrollment rates by age,

school sizes, and student-teacher ratios. The SynthPops algorithm first chooses a reference stu-

dent for the school conditional on enrollment rates to infer the school type, and then uses the

age mixing contact matrix in the school setting to infer the likely ages of the other students in

the school. Students are drawn from an ordered list of households, such that they reproduce

an approximation of the neighborhood dynamics of children attending area schools together.

Teachers and other non-teaching staff (e.g., administrative or cleaning staff) are drawn from

the adult population comprising the labor force and assigned to schools as needed, reflecting

average student-teacher and student-staff ratio data. With large schools, it is unlikely for each

student, teacher, or other staff member to be in close contact with all other individuals.

Instead, for each individual in the school layer we model their close and effective contacts as a

subset of contacts from their school who can infect them by sampling a random set of n other

individuals in their school, where n is drawn from a Poisson distribution with rate parameter

λs equal to the average class size (λs = 20 as a default).

2.4.2.3 Workplaces and community. The labor force is drawn using employment rates by

age, and non-teachers are assigned to workplaces using data on establishment sizes. Workers

are assigned to workplaces using a similar method with an initial reference worker sampled
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from the labor force and their co-workers inferred from age mixing patterns within the work-

force. All workers (teachers included) are drawn at random from the population, to reflect the

general mixing of adults from different neighborhoods at work. Similar to the school layer,

Fig 4. Synthetic population networks for households (top), schools (middle), and workplaces (bottom). Age-specific contact matrices

are shown on the left, while actual connectivity patterns for a 127-person subsample of a population of 10,000 individuals are shown

on the right. All individuals are present in the household network, including some with no household connections. A subset of these

individuals, including teachers, are present in the school network (circles); another subset is present in workplace networks (squares);

some individuals are in neither school nor work networks (triangles).

https://doi.org/10.1371/journal.pcbi.1009149.g004

PLOS COMPUTATIONAL BIOLOGY Covasim: An agent-based model of COVID-19 dynamics and interventions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009149 July 26, 2021 10 / 32

https://doi.org/10.1371/journal.pcbi.1009149.g004
https://doi.org/10.1371/journal.pcbi.1009149


large workplaces are unlikely to be fully connected graphs of contacts. Instead, for each

worker, we model their close contacts as a subset of n contacts from other individuals in their

workplace, where n is drawn from a Poisson distribution with rate parameter λw equal to the

estimated maximum number of close contacts in the workplace (λw = 20 as a default).

For contacts in the general community, we draw n random contacts for each individual

from other individuals in the population, where n is drawn from a Poisson distribution with

rate parameter λc equal to the expected number of contacts in the general community (with

λc = 20 as a default, as above). Connections in this layer reflect the nature of contacts in shared

public spaces like parks and recreational spaces, shopping centers, community centers, and

public transportation. All links between individuals are considered undirected to reflect the

ability of either individual in the pair to infect the other.

The generated multilayer network of household, school, work, and community network

layers represents a population with realistic microstructure. This framework can also be

extended to consider more detailed interactions in key additional settings, such as hospitals,

encampments, shelters for those experiencing homelessness, and long term care facilities.

2.4.3 Hybrid networks. Covasim contains a third option for generating contact networks,

which captures some of the realism of the SynthPops approach but does not require as much

input data, and is more readily adaptable to other settings. As such, it is a "hybrid" approach

between a fully random network and a fully data-derived network. As with SynthPops, each

person in the population has contacts in their household, school (for children), workplace (for

adults), and community. A population of individuals is generated according to a location-spe-

cific age distribution, and each individual is randomly assigned to a household using location-

specific data on household sizes (using the pre-loaded UN data described above).

Unlike SynthPops, the hybrid algorithm does not account for the distribution of ages within

a household. Children are assigned to schools and adults to workplaces, each with a user-speci-

fied number of fixed daily contacts (by default, Poisson-distributed with means of 20 for

schools and 16 for workplaces, chosen to match the mean values for SynthPops networks).

Individuals additionally have contacts with others in the community (by default, Poisson dis-

tributed with a mean of 20). All children and young adults aged between 6 and 22 are assigned

to schools and universities, and all adults between 22 and 65 are assigned to workplaces. This

distinguishes it from SynthPops where enrollment or employment varies depending on the

given data. A comparison of the different population structure options available in Covasim is

listed in Table 3.

Table 3. Comparison of population options in Covasim.

Population

type

Data requirements Best suited for Not well suited for

Random

networks

None Models of transmission in special settings

such as prisons or cruise ships

Large or complex populations

Hybrid

networks

Data on the age distribution and household sizes for

each country are pre-loaded

No additional data are required, but users can

optionally specify the daily number of school,

workplace, and community contacts

Population network models in data-rich

settings; adaptable and suited to most

modeling contexts

Populations with high heterogeneity in contact

patterns or size distributions

SynthPops

networks

Household, school, workplace, and community age

mixing patterns

School size distributions, enrollment rates by age,

student-teacher ratios

Workplace size distributions, employment rates by

age

Number of households, size distribution, and age/

sex distribution

Complex populations in data-rich

settings

Settings where the data requirements cannot be

met, or where other social settings are critical

contexts for disease transmission

https://doi.org/10.1371/journal.pcbi.1009149.t003
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2.5 Interventions

A core function of Covasim is modeling the effect of interventions on disease transmission or

health outcomes, to understand the impact that different policy options may have in a specific

setting. In general, interventions are modeled as changes to parameter values. Covasim has

built-in implementations of the common interventions described below, as well as the ability

for users to create their own interventions, which can either be derived from the base interven-

tion class, or be simple functions that modify the simulation object. Both built-in and user-

defined interventions have full access to the simulation object at each timestep, which means

that user-defined interventions can dynamically modify any aspect of the simulation. This can

be used to create interventions more specific than those included by default in Covasim, such

as age-specific physical distancing or quarantine, or interventions that are dynamically "trig-

gered" based on the current or past state of the simulation.

2.5.1 Physical distancing, masks, and hygiene. The most basic intervention in Covasim

is to reduce transmissibility (β) starting on a given day. This can be used to reflect both (a)

reductions in transmissibility per contact, such as through mask wearing, personal protective

equipment, hand-washing, and maintaining physical distance; and (b) reductions in the num-

ber of contacts at home, school, work, or in the community. However, Covasim also includes

an "edge-clipping" intervention (considering a contact between two agents as a weighted

"edge" between two "nodes"), where β remains unchanged but the number of contacts that per-

son has is reduced. Complete school and workplace closures, for example, can be modeled

either by setting β to 0, or by removing all edges in those contact layers; partial closures can be

modeled by smaller reductions in either β or the number of contacts.

In general, both types of interventions have similar impact–for example, halving the num-

ber of contacts and keeping β constant will produce very similar epidemic trajectories as halv-

ing β and keeping the number of contacts constant. However, the distinction becomes

important when considering the interaction between physical distancing and other interven-

tions. For example, in a contact tracing scenario, the number of contacts who require tracing,

number of tests performed, and number of people placed in quarantine are all strongly affected

by whether physical distancing is implemented as a reduction in β of specific edges, or remov-

ing those edges entirely.

2.5.2 Testing and diagnosis. Testing can be modeled in two different ways within Cova-

sim, depending on the format of testing data and purpose of the analysis. The first method

allows the user to specify the probabilities that people with different risk factors and levels of

symptoms will receive a test on each day. Separate daily testing probabilities can be entered for

those with/without symptoms, and those in/out of quarantine. The model will then estimate

the number of tests performed on each day. The second method allows the user to enter the

number of tests performed on each day directly, including multipliers on the probability of a

person receiving a test if they have symptoms, are in quarantine, or are over a certain age. This

method will then allocate the tests among the population. If data on the number of daily tests

performed each day are available, the second method is preferable.

Once a person is tested, the model contains a delay parameter that indicates how long peo-

ple need to wait for their results, as well as a loss-to-follow-up parameter that indicates the

probability that people will not receive their results. Additional parameters control the sensi-

tivity and specificity of the tests.

2.5.3 Contact tracing. Contact tracing corresponds to notifying individuals that they have

had contact with a confirmed case, so that they can be quarantined, tested, or otherwise change

their behavior. Contact tracing in Covasim is parameterized by the probability that a contact

can be traced, and by the time taken to identify and notify contacts. Both parameters can vary
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by type of contact, and can be controlled by the user. For example, it may be reasonable to

assume that people can trace members of their household immediately and with 100% proba-

bility, while tracing work colleagues may take several days and may be incomplete. Digital con-

tact tracing can be approximated in Covasim as a standard contact-tracing intervention with

zero delays, with the caveat that tracing multiple steps (i.e., contacts of contacts) within a single

day would require a custom intervention.

2.5.4 Isolation of positives and contact quarantine. Isolation (referring to behavior

changes after a person is diagnosed with COVID-19) and quarantine (referring to behavior

changes after a person is identified as a known contact of someone with confirmed or sus-

pected COVID-19) are the primary means by which testing interventions reduce transmission.

In Covasim, people diagnosed with COVID-19 can be isolated. Their contacts who have been

traced can be placed in quarantine with a specified level of compliance; people in quarantine

may also have an increased probability of being tested. People in isolation or quarantine typi-

cally have a lower probability of infecting others (if infectious) or of acquiring COVID-19 (if

quarantined and susceptible). The default reductions for isolation are 70% in the household

and 90% in school, work, and community layers, while quarantine is assumed to have lower

compliance (40% reduction in the household and 80% in other layers). However, if psychoso-

cial support is not provided to people in home isolation or quarantine, there may be an

increased risk of passing on infection to, or acquiring infection from, other household mem-

bers. For performance reasons, isolation and quarantine are implemented as reductions in

per-contact transmission risk rather than changes in the number of contacts; for realistic

parameter values (i.e., β� 1), the difference between these implementations should be

negligible.

2.5.5 Vaccines and treatments. Pharmaceutical interventions, especially vaccines, are an

increasingly important part of public health responses to COVID-19. However, there are sig-

nificant modeling challenges due to the large number of vaccine candidates under investiga-

tion, coupled with the considerable uncertainty regarding their properties–such as the extent

to which they block acquisition and transmission as well as symptoms, how much protection

is conferred by a single dose, the extent to which immunity wanes over time, and their effec-

tiveness against different COVID-19 strains [70]. Vaccines in Covasim are modeled by adjust-

ing individuals’ susceptibility to infection and probability of developing symptoms after being

infected; both of these modifications affect the overall probability of progressing to severe dis-

ease and death. Additional flexibility, including waning efficacy and differential effectiveness

across variants, will be incorporated as trial results become available. Though treatments for

COVID-19 have so far had only modest results in clinical trials [71], they can be implemented

in Covasim as interventions that reduce the probability of progressing to severe disease or

death.

2.6 Additional features

2.6.1 Data inputs. In addition to the demographic and contact network data available via

SynthPops, Covasim includes interfaces to automatically load COVID-19 epidemiology data,

such as time series data on deaths and diagnosed cases, from several publicly available data-

bases. These databases include the Corona Data Scraper (coronadatascraper.com), the Euro-

pean Centre for Disease Prevention and Control (ecdc.europa.eu), and the COVID Tracking

Project (covidtracking.com). At the time of writing, these data are available for over 4,000

unique locations, including most countries in the world (administrative level 0), all US states

and many administrative level 1 (i.e., subnational) regions in Europe, and some administrative

level 2 regions in Europe and the US (i.e., US counties).
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2.6.2 Dynamic rescaling. One of the major challenges with agent-based models is simu-

lating a sufficient number of agents to capture an epidemic at early, middle, and late stages,

without requiring cumbersome levels of memory or processor usage. Whereas compartmental

SEIR models require the same amount of computation time regardless of the population size

being modeled, the performance of agent-based models typically scales linearly or suprali-

nearly with population size (see Section 2.7.1). As a consequence, many agent-based models,

including Covasim, include an optional "scaling factor", where a single agent in the model is

assumed to represent multiple people in the real world. A scaling factor of 10, for example, cor-

responds to the assumption that the epidemic dynamics in a city of 2 million people can be

considered as the sum of the epidemic dynamics of 10 identical subregions of 200,000 people

each.

However, the limitation of this approach is that it introduces a discretization of results:

model outputs can only be produced in increments of the scaling factor, so relatively rare

events, such as deaths, may not have sufficient granularity to reflect the epidemic behavior at a

small scale. In addition, using too few agents in the model introduces stochastic variability pat-

terns that do not reflect real-world processes in the entire population.

To circumvent this, Covasim includes an option for dynamic rescaling. Initially, when the

epidemic is small, there is no scaling performed: one agent corresponds to one person. Once a

certain threshold is reached, however (by default, 5% of the population is non-susceptible), the

non-susceptible agents in the model are downsampled and a corresponding scaling factor is

introduced (by default, a factor of 1.2 is used). For example, in a simulation of 100,000 agents

representing a true population of 1 million with a threshold of 10% and a rescaling factor of 2,

dynamic rescaling would be triggered when cumulative infections surpass 10,000, leaving

90,000 susceptible agents; dynamic rescaling would then resample the non-susceptible popula-

tion to 5,000 (now representing 10,000 people) and increase the number of susceptible agents

to 95,000 (now representing 190,000 people), i.e. with every agent now counting as two. If the

epidemic expands further, this process will repeat iteratively until the scale factor reaches its

upper limit (which in this example is 10, and which would be reached after 100,000 cumulative

infections). Through this process, arbitrarily large populations can be modeled, even starting

from a single infection, maintaining a constant level of precision and computation time

throughout.

2.6.3 Health system capacity. Individuals in the model who have severe and critical

symptoms are assumed to require regular and intensive care unit (ICU) hospital beds, respec-

tively, including ventilation in the latter case. The number of available hospital beds (ICU and

otherwise) beds are input parameters. If the model estimates that the number of severe/critical

cases is greater than the number of available non-ICU/ICU beds, then the health system capac-

ity is exceeded. This means that severely ill individuals have an increased probability of pro-

gressing to critical, and critically ill individuals who are unable to access treatment have an

increased mortality rate (by default, both by a factor of 2).

2.6.4 Importations. The spatial movement of agents is not currently modeled explicitly in

Covasim, and the population size for a given simulation is fixed. Thus, importations are imple-

mented as spontaneous infections among the susceptible population. This corresponds to

agents who become infected elsewhere and then return to the population.

2.6.5 Model outputs. By default, Covasim outputs three main types of result: "stocks"

(e.g., the number of people with currently active infections on a given day), "flows" (e.g., the

number of new infections on a given day), and "cumulative flows" (e.g., the cumulative number

of infections up to a given day). For states that cannot be transitioned out of (e.g. death, plus

recovery if reinfection is not considered), the stock is equal to the cumulative flow. Flows that

are calculated in the model include: the number of new infections and the number of people
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who become infectious on that timestep; the number of tests performed, new positive diagno-

ses, and number of people placed in quarantine; the number of people who develop mild,

severe, and critical symptoms; and the number of people who recover or die. The date of each

transition (e.g., from critically ill to dead) is also recorded. By default, these results are summed

over the entire population on each day; results for subpopulations can be obtained by defining

custom analyzers, as described in Section 2.6.7.

2.6.6 Reproduction number and doubling time. In addition to these core outputs, Cova-

sim includes several outputs for additional analysis. For example, several methods are imple-

mented to compute the effective reproduction number Re. Numerous definitions of Re exist; in

standard SIR modeling, the most common definition ("method 1") is [72]:

Re ¼ R0S=N

where R0 is the basic reproduction number, S is the number of susceptibles, and N is the total

population size. However, with respect to COVID-19, many authors instead define Re to include

the effects of interventions, due to the implications that Re = 1 has for epidemic control.

A second common definition of Re ("method 2") is to first determine the total number of

people who became infectious on day t, then count the total number of people these people

went on to infect, and then divide the latter by the former. "Method 3" is the same as method 2,

except it counts the number of people who stopped being infectious on day t (i.e., recovered or

died), and then counts the number of those people infected. Unlike in a compartmental

model, where Re can only be estimated by using simplifying assumptions, in an agent-based

model, methods 2 and 3 can be implemented by simply counting exactly how many secondary

infections are caused by each primary infection. By doing so, all details of the epidemic–

including time-varying viral loads, population-level and localized immunity, interventions,

network factors, and other effects–are automatically incorporated, and do not need to be con-

sidered separately.

While methods 2 and 3 are implemented in Covasim, they have the disadvantage that they

introduce significant temporal blurring, due to the potentially long infectious period (and, for

method 3, the long recovery period). To avoid this limitation, the default method Covasim

uses for computing Re is to divide the number of new infections on day t by the number of

actively infectious people on day t, multiplied by the average duration of infectiousness

("method 4"). This definition of Re is nearly identical to the definition of the "instantaneous

reproductive number" in Gostic et al. [73], which in that study is used as the ground truth

against which other Re estimators are compared.

Covasim also includes an estimate of the epidemic doubling time, computed similarly to

the "rule of 69.3" [74], specifically:

T ¼
wlogð2Þ

logðniðtÞ=niðt � wÞÞ

where T is the doubling time, w is the window length over which to compute the doubling

time (3 days by default), and ni(t) is the cumulative number of infections at time t.
2.6.7 Analyzers. In addition to interventions, Covasim also includes a library of "analyz-

ers". Like interventions, in principle they can access and modify any aspect of the simulation

state. However, they are typically used to record additional details about the internal state of

the model that are not included as standard outputs (e.g., the age distribution of infections at a

given point in time). By convention, interventions and analyzers differ in that interventions

modify the state of the simulation (and are applied at the beginning of each timestep), while

analyzers record the state (and are applied at the end of each timestep).
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2.6.8 Calibration. The process of calibration involves finding parameter values that mini-

mize a function that measures the difference between observed data (which typically includes

daily confirmed cases, hospitalizations, deaths, and number of tests conducted) and the model

predictions. Since most data being calibrated to are time series count data, this function is

defined as:

L ¼
X

s

X

t

wsf ðc
s;t
d ; c

s;t
m Þ

where s refers to the type of data observed (such cumulative confirmed cases or number of

deaths); t is the time index; ws is the weight associated with s; cs;td and cs;tm are the counts from

the data and model, respectively, for this time series at this time index; and f is the loss, objec-

tive, or goodness-of-fit function (e.g., normalized absolute error, mean absolute error, mean

squared error, or the Poisson test statistic [75]). By default, Covasim calculates the loss using

normalized absolute error. Depending on underlying distributional assumptions, minimizing

the normalized absolute error can sometimes give parameter estimates that are equivalent to

the estimates that maximize the log-likelihood (or an approximation thereof, as in approxi-

mate Bayesian computation [76]). Intuitively, most distributional assumptions mean that

larger errors imply a lower log-likelihood. However, we do not make explicit distributional

assumptions, so caution is advised with treating them as statistically rigorous likelihoods.

Calibrating any model to the COVID-19 epidemic is an inherently difficult task: not only is

there significant uncertainty around the reported data, but there are also many possible combi-

nations of parameter values that could give rise to these data. Thus, in a typical calibration

workflow, most parameters are fixed at the best available values from the literature, and only

essential parameters (for example, β) are allowed to vary.

Calibration is often performed externally to Covasim. However, since a single model run

returns a scalar loss value, these runs can be easily integrated into standardized calibration

frameworks. Any standard optimization library–such as the optimization module of SciPy–

can be easily adapted (as long as it can handle stochastic results, which standard gradient

descent cannot), as can more advanced methods such as the adaptive stochastic descend

method of the Sciris library [77], or Bayesian approaches such as history matching [78] and

sequential Monte Carlo methods [79]. To date, the Optuna hyperparameter optimization

library [80] has proven to be the most effective approach for calibration, and an implementa-

tion is included in the codebase.

2.7 Software architecture

Covasim was developed for Python 3.8 using the SciPy (scipy.org) ecosystem [81]. It uses

NumPy (numpy.org), Pandas (pandas.pydata.org), and Numba (numba.pydata.org) for fast

numerical computing; Matplotlib (matplotlib.org) and Plotly (plotly.com) for plotting; and

Sciris (sciris.org) for data structures, parallelization, and other utilities.

The source code for Covasim is available via both the Python Package Index (via pip install

covasim) and GitHub (github.com/institutefordiseasemodeling/covasim). Covasim is fully

open-source, released under the Creative Commons Attribution-ShareAlike 4.0 International

Public License. More information is available at covasim.org, with full documentation and a

comprehensive set of tutorials available at docs.covasim.org.

2.7.1 Performance. All core numerical algorithms in the Covasim integration loop–spe-

cifically, calculating intra-host viral load, per-person susceptibility and transmissibility, and

which contacts of an infected person become infected themselves–are implemented as highly

optimized 32-bit array operations in Numba. For further efficiency, agents are not represented
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as individual objects, but rather as indices of one-dimensional state arrays (Fig 5). This avoids

the need to use an explicit for-loop over each agent on every integration timestep, increasing

performance by more than an order of magnitude. Similarly, contacts between all agents in the

model are stored as a single array of "edges" per contact layer.

As shown in Fig 6, these software optimizations allow Covasim to achieve high levels of per-

formance, despite being implemented purely in Python. Performance scales linearly with pop-

ulation size over multiple orders of magnitude: memory scales at a rate of roughly one agent

per 1 KB of memory, while single-core compute time (benchmarked on an Intel i9-8950HK

laptop processor) scales at a rate of roughly 7 million simulated person-days per second of

CPU time. These speed and memory use results are comparable to OpenABM-Covid19,

despite the latter being implemented in C [23]. One consequence of the array-based imple-

mentation is that compute time depends on the number of agents and the number of connec-

tions per agent, but is independent of the number of infected agents; this is because uninfected

agents are simply represented as zeros in the transmission probabilities vector.

Due to Covasim’s computational efficiency, it is feasible to run realistic scenarios, such as

tens of thousands of infections among a susceptible population of hundreds of thousands of

people for a duration of 12 months, in under a minute on a personal laptop. Covasim is also

suited to high-performance computing environments, with support for parallelization via the

built-in "multiprocessing" library; it can also be adapted easily to other parallel processing

Fig 5. Illustration of the standard object-oriented approach for implementing agent-based models (top), where each agent is a separate object, compared with

the approach used in Covasim (bottom), where agents are represented as slices through a set of state arrays. Dots (. . .) represent omitted entries. In practice,

each agent has several dozen states, and there are typically hundreds of thousands of agents.

https://doi.org/10.1371/journal.pcbi.1009149.g005
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libraries such as Celery and Dask. Although in some special situations it is possible to split a

single simulation across multiple cores, parallel processing is used primarily to run multiple

independent simulations simultaneously, such as for uncertainty analyses or calibration.

2.7.2 Deployment and access. While Covasim is primarily intended to be used via Python

scripts, a number of other options for using it are also available. A simple webapp for Covasim

has been developed, based on Vue.js (for the frontend), ScirisWeb (for communicating

between the frontend and the backend), Flask (for running the backend), and Gunicorn/

NGINX (for running the server); this webapp is available at app.covasim.org. A screenshot of

the user interface is shown in Fig 7. A pre-built version of Covasim, including the webapp, is

also available on Docker Hub (hub.docker.com). Covasim can also be run via R using the

"reticulate" library, and from the command line via the "fire" library.

2.7.3 Software tests. Covasim includes an extensive suite of both integration tests and

unit tests; code coverage for version 2.1.1 is 89%. In addition, outputs from the default simula-

tions for each version are compared against cached values in the repository; since random

seeds are stored, results are exactly reproducible despite the stochasticity in the model. When

new data become available and parameter values are updated, previous parameters are stored,

ensuring that any changes affecting the model outputs are intentional, and that previous ver-

sions can be easily retrieved and compared against. The test suite includes unit tests (e.g.,

checking that sampling functions produce the specified distributions; that simulations loaded

from file exactly match the original), functional tests (e.g., that a simulation run with a

Fig 6. Covasim performance in terms of processor usage (top) and memory usage (bottom), for the number of agents shown,

simulated for 100 days. There is roughly linear scaling over three orders of magnitude of population size.

https://doi.org/10.1371/journal.pcbi.1009149.g006
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particular analyzer produces a plot), and end-to-end "scientific" tests (e.g., that an increase in

mortality rate leads to more deaths, while adding NPIs leads to fewer).

3 Results

3.1 Example usage

Several of Covasim’s standard features are illustrated in Fig 8A. It represents a simulation of

200,000 people, from February 10 to June 29 2020, starting with 75 seed infections. After an

initial 45 days of uncontrolled epidemic spread, the following interventions are applied: March

26, close schools and reduce work and community contacts to 70% of their original values;

April 10, reduce work and community to 30% of their original values; May 5, reopen work and

community to 80% of their original values; May 20, begin testing 10% of people with COVID-

like illness each day, and trace the contacts of people who test positive.

By default, Covasim shows time series for key cumulative counts, daily counts, and health

outcomes (including deaths). All plotting outputs are configurable, and results can also be

saved in Excel, JSON, or NumPy formats for further processing. While a full Covasim applica-

tion would likely include additional complexity regarding calibration and plotting, other

aspects of the example shown in Fig 8A are comparable to a real-world exploratory policy anal-

ysis. Despite this, the Python script used to generate Fig 8A is only 28 lines; this code is listed

in Fig 8B.

In addition to running single simulations, Covasim also allows the user to run multiple sim-

ulations, which can be averaged over to determine forecast intervals. By default, the "80% fore-

cast interval" is used, i.e. between the 10th and 90th percentiles of the simulated trajectories.

Since these forecast intervals are typically produced by a combination of both stochastic vari-

ability ("aleatory uncertainty") and imperfect knowledge of the "true" parameter values

Fig 7. Covasim webapp user interface; screenshot taken from http://app.covasim.org.

https://doi.org/10.1371/journal.pcbi.1009149.g007
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("epistemic uncertainty"), they should not be interpreted as statistically rigorous Bayesian cred-

ible intervals [82,83]. Multiple simulations can also be used to quickly run different scenarios

in parallel and compare them, as shown in Fig 9.

Fig 8. (A) Illustrative example of a single run of a Covasim simulation. Interventions (described in the text) are shown

as dashed vertical lines. (B) Full listing of the code for this simulation, including defining the parameters of the

simulation (lines 4–11); defining the interventions (lines 14–23); and creating, running, and plotting the simulation

(lines 26–28).

https://doi.org/10.1371/journal.pcbi.1009149.g008
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3.2 Transmission analyses

The preceding examples illustrate some aspects of Covasim’s core functionality that are used

in most applications. More in-depth analyses are also possible, leveraging either the default

outputs, or the fact that the full state of the model is accessible to the user at every timestep via

custom analysis functions.

For example, detailed information about the transmission tree is stored for each simulation.

This information can be used to determine the detailed microstructure of the infection pat-

terns in a given simulation. Complete transmission trees for a small network under three

Fig 9. (A) Illustrative example of a scenario comparison using a simple custom intervention ("protecting the elderly", i.e.

removing all transmission among people over age 70 after a certain date). (B) Full listing of the code for this simulation,

showing the intervention definition (lines 3–6), and a compact way of creating the simulations, running them in parallel, and

plotting them (lines 8–11).

https://doi.org/10.1371/journal.pcbi.1009149.g009
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different intervention scenarios are shown in Fig 10, visualized via the ETE Toolkit [84]. For

realistically sized networks, it is not feasible to visualize entire transmission trees. However,

their statistical properties can be analyzed to determine transmission routes and potential

intervention targets. For example, such information can be used to determine the net contri-

bution of schools (or even teachers at schools) to the overall epidemic trajectory [27].

3.3 Case study

Here we provide a case study of how Covasim was used to inform a policy decision in King

County (the local government area that includes the city of Seattle), Washington, USA; a full

description of the methodology used is given in [25]. Briefly, we used Optuna to calibrate Cov-

asim to epidemiological and program data from January 27 to November 14 2020; these data

are available from the Public Health Seattle King County data dashboard [3]. We then ran the

model with eight different calibrated parameter sets (with multiple parameter sets used to cap-

ture parametric uncertainty) to (a) estimate unobserved quantities, such as the number of new

infections and the case detection rate; (b) estimate the impact of proposed new mobility

restrictions (such as limiting indoor dining) scheduled to start on November 16, which we

Fig 10. Example transmission trees for a hypothetical population of 300 individuals with a single seed infection on day

1, with (A) no interventions, (B) testing only, and (C) testing plus contact tracing. Time is shown on the horizontal

axis, with each tree representing approximately 90 days. The vertical size of each tree is proportional to the total

number of infections.

https://doi.org/10.1371/journal.pcbi.1009149.g010
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Fig 11. Example calibration of Covasim to data from Seattle/King County, Washington, USA from January 27 to November 14

2020 (dashed line), with projections until December 31, including additional restrictions imposed on November 16. (A) Number

of daily COVID-19 tests, which are used as input data. (B) Calibration to the number of daily COVID-19 diagnoses. (C) Calibration to

the number of daily contacts traced (weekly averages shown; data past prediction date are not available). (D) Calibration to the number

of daily COVID-19 deaths. (E) Projections of the number of new infections if restrictions had not been implemented, with the

restrictions as implemented, and if restrictions were implemented together with increases in testing and contact tracing. Bands show

80% forecast intervals; data are rolling 7-day averages to account for weekend reporting delays.

https://doi.org/10.1371/journal.pcbi.1009149.g011
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estimated would result in a 15% reduction in transmission [85]; and (c) compare this scenario

with counterfactual scenarios of either not implementing the scheduled restrictions, or by

implementing them together with increased testing and contact tracing.

As shown in Fig 11, Covasim was able to capture numerous features of the epidemic during

the calibration period, including numbers of tests and contacts traced (which were used as

input data, along with mobility data from SafeGraph; see safegraph.com); the three infection

"waves" (spring, summer, and fall); changes in test positivity rate (not shown), and numbers of

deaths. During the scenario period, we assumed that the number of tests conducted per day

would remain constant at the average value from the previous 7 days (Fig 11A).

Despite a rapid increase of cases in the preceding weeks, the model predicted counterintui-

tively that even these modest mobility restrictions would be sufficient to stop the rise in cases

(Fig 11B), a projection that turned out to be accurate. (Note that using actual testing data for

this period, rather than assuming a constant number of tests, would have resulted in an even

more accurate prediction of diagnoses, though of course these data were not available at the

time the prediction was made). While the model correctly predicted the trend in cases, it

underestimated the number of deaths (Fig 11D), although the observations were still within

the 80% forecast interval (the large uncertainty interval for deaths is a consequence of the

small numbers of events being predicted, i.e., fewer than 10 deaths per day; this forecast inter-

val includes both parametric and stochastic uncertainty, as described in Section 3.1). This

underestimate was likely due to assuming a continuation of infection patterns that occurred

over the summer and early fall, during which younger adults were disproportionately infected

compared to older ones.

Finally, we predicted that had the additional restrictions not been implemented, by the end

of the year, daily infection rates would have been roughly three times as high as actually

occurred (Fig 11E). Had testing and contact tracing programs been rapidly scaled up (by 50%

and five fold respectively), we estimated the number of infections would have been approxi-

mately halved. These predictions helped provide quantitative support for public health deci-

sions regarding mobility restrictions and increased testing.

4 Discussion

The COVID-19 pandemic has presented an unprecedented challenge to the disease modeling

community in terms of requiring rapid, accurate predictions, often based on extremely limited

data, with consequences of global scale. Covasim was developed to help policymakers make

decisions based on the best available data, while taking into account the large uncertainties

that remain in terms of COVID-19 transmission dynamics, disease progression, and other

aspects of its biology, such as the proportions of asymptomatic and presymptomatic

transmission.

We prioritized five different factors when developing Covasim: rapid development process,

computational performance, flexibility, simplicity for users, and simplicity for developers.

Striking a balance between these factors required making certain tradeoffs. For example,

choosing to implement Covasim in Python instead of C++ or Java significantly reduced devel-

opment time and increased simplicity for users and developers; however, it imposed a large

penalty on performance. While we were able to solve this by using Numba and vectorized state

arrays in place of object-oriented agents, this implementation increased development time and

increased the complexity for developers. Another tradeoff we encountered is that while the

gold standard in simplicity of use remains interactive webapps [86], the limited flexibility such

webapps provide means that most Covasim users to date have instead used Python scripts to

run analyses.
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Beyond implementation tradeoffs, it is worth noting that in many cases, compartmental

models offer simpler, faster, and more robust results than agent-based models such as Cova-

sim. Indeed, many of the most influential COVID-19 models that have been developed to date

have been compartmental models [4,85,87,88]. However, compartmental models have two

major limitations. First, they cannot be easily adapted to changing epidemic conditions, such

as new strains or multiple types of vaccine, since these often require a combinatorial explosion

in the number of compartments [89,90]. Second, they are unsuitable for answering questions

that depend on details of behavior at the individual level, such as superspreading events, trans-

mission within multigenerational households, school classroom cohorting, and contact trac-

ing. While it is possible to approximate some of these phenomena in compartmental models

[91,92], these approximations typically exclude important factors such as time delays. Some of

the issues regarding compartmental models’ predictive performance [93–95] may be partly a

consequence of their inability to capture key mechanisms of epidemic spread. While agent-

based models, including Covasim, are difficult to deploy widely enough, and calibrate quickly

enough, to be a feasible replacement for compartmental models, they can provide a mechanis-

tic understanding of the COVID-19 epidemic in ways that compartmental models cannot.

4.1 Limitations of Covasim

Covasim is subject to the usual limitations of mathematical models, most notably constraints

around the degree of realism that can be captured. For example, human contact patterns are

intractably complex, and the algorithms that Covasim uses to approximate these are necessar-

ily quite simplified.

Like all models, the quality of the outputs depends on the quality of the inputs, and many of

the parameters on which Covasim relies are still subject to large uncertainties. Most critically,

the proportion of asymptomatics and their relative transmission intensity, and the proportion

of presymptomatic transmission, strongly affect the number of tests required in order to

achieve workable COVID-19 suppression via testing-based interventions.

Dynamical models are commonly validated by comparing their projections against data on

what actually happened, as shown in the case study (Fig 11). However, several challenges are

commonly encountered when using this approach for COVID-19, including (a) data quality

issues (such as low case detection rates and under-reporting of deaths); (b) the difficulty of pre-

dicting future social and political responses that would significantly impact model projections

(such as the timing of school and workplace reopening, or a sudden increase in testing rates, as

in the case study presented above); and (c) the fact that model-based projections themselves

have the potential to influence policy decisions, e.g., optimistic model projections may lead to

relaxed policies, which in turn will lead to worse outcomes than predicted, while pessimistic

model projections may lead to stricter policies, which in turn will lead to better outcomes than

predicted.

4.2 Future directions

More than a year after the emergence of SARS-CoV-2, our understanding of the pandemic is

still evolving rapidly, especially regarding the risks posed by variant strains and the opportuni-

ties offered by vaccine candidates. These two issues currently present the most important ques-

tions regarding epidemic control, and hence are the two most active areas of Covasim

development. Model parameter values are also continually updated as new data become avail-

able. Future development plans also include the incorporation of more detailed populations

and networks, including healthcare workers, different types of industry, spatial mixing pat-

terns, and the socioeconomic and racial disparities present in both transmission patterns and
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health outcomes. With the deployment of vaccines comes additional questions and interest

regarding the lifting of mobility restrictions and social distancing guidelines, as well as ques-

tions about equitable vaccine distribution to different populations around the world. Addi-

tional development of data-driven modeling of mobility between regions will help address the

risk of importation to regions with fewer resources for early detection and treatment, as pre-

pandemic mobility gradually returns to parts of the world. Finally, we are committed to con-

tinuing our collaborations with stakeholders and policymakers around the globe, to work with

them in determining how COVID-19 suppression can be achieved via a combination of dis-

tancing, testing, contact tracing, and vaccination.
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iya, Katherine Rosenfeld, Rafael C. Núñez, Jamie A. Cohen, Amanda S. Izzo, Greer Fowler,

Jasmina Panovska-Griffiths, Michael Famulare, Daniel J. Klein.

References
1. Everts J. The dashboard pandemic. Dialogues in Human Geography. 2020 Jul 1; 10(2):260–4.

2. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The

Lancet Infectious Diseases. 2020 May 1; 20(5):533–4. https://doi.org/10.1016/S1473-3099(20)30120-1

PMID: 32087114

3. Public Health Seattle King County. COVID-19 Data Dashboard [Internet]. 2020. Available from: https://

www.kingcounty.gov/depts/health/covid-19/data.aspx

4. Walker PGT, Whittaker C, Watson OJ, Baguelin M, Winskill P, Hamlet A, et al. The impact of COVID-19

and strategies for mitigation and suppression in low- and middle-income countries. Science. 2020 Jun

12;eabc0035. https://doi.org/10.1126/science.abc0035 PMID: 32532802

5. Read JM, Bridgen JR, Cummings DA, Ho A, Jewell CP. Novel coronavirus 2019-nCoV (COVID-19):

early estimation of epidemiological parameters and epidemic size estimates. Phil. Trans. R. Soc. 2021

B3762020026520200265.nd epidemic predictions. medRxiv. 2020 Jan 28;2020.01.23.20018549.

6. Keeling MJ, Hollingsworth TD, Read JM. Efficacy of contact tracing for the containment of the 2019

novel coronavirus (COVID-19). J Epidemiol Community Health. 2020 Jun 22; 74(10):861–6. https://doi.

org/10.1136/jech-2020-214051 PMID: 32576605

7. Dehning J, Zierenberg J, Spitzner FP, Wibral M, Neto JP, Wilczek M, et al. Inferring change points in

the spread of COVID-19 reveals the effectiveness of interventions. Science. 2020 Jul 10; 369(6500):

eabb9789. https://doi.org/10.1126/science.abb9789 PMID: 32414780

8. Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, et al. Modelling the COVID-19

epidemic and implementation of population-wide interventions in Italy. Nature Medicine. 2020 Apr 22;1–

6. https://doi.org/10.1038/s41591-019-0740-8 PMID: 31932805

9. Zhao S, Chen H. Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quant

Biol. 2020 Mar;1–9. https://doi.org/10.1007/s40484-020-0199-0 PMID: 32219006

10. Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, et al. Report 9: Impact of non-

pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. 2020 Mar

[cited 2021 Feb 7]. Available from: http://spiral.imperial.ac.uk/handle/10044/1/77482

11. Rockett RJ, Arnott A, Lam C, Sadsad R, Timms V, Gray K-A, et al. Revealing COVID-19 transmission

in Australia by SARS-CoV-2 genome sequencing and agent-based modeling. Nature Medicine. 2020

Sep; 26(9):1398–404. https://doi.org/10.1038/s41591-020-1000-7 PMID: 32647358

12. Koo JR, Cook AR, Park M, Sun Y, Sun H, Lim JT, et al. Interventions to mitigate early spread of SARS-

CoV-2 in Singapore: a modelling study. The Lancet Infectious Diseases. 2020 Mar 23; 20(6):678–88.

https://doi.org/10.1016/S1473-3099(20)30162-6 PMID: 32213332

13. Chao DL, Oron AP, Srikrishna D, Famulare M. Modeling layered non-pharmaceutical interventions

against SARS-CoV-2 in the United States with Corvid. medRxiv. 2020 Apr 11;2020.04.08.20058487.

14. Aleta A, Martı́n-Corral D, Pastore y Piontti A, Ajelli M, Litvinova M, Chinazzi M, et al. Modelling the

impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nature

Human Behaviour. 2020 Sep; 4(9):964–71. https://doi.org/10.1038/s41562-020-0931-9 PMID:

32759985

15. Kretzschmar ME, Rozhnova G, Bootsma MCJ, Boven M van, Wijgert JHHM van de, Bonten MJM.

Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. The

Lancet Public Health. 2020 Aug 1; 5(8):e452–9. https://doi.org/10.1016/S2468-2667(20)30157-2

PMID: 32682487

PLOS COMPUTATIONAL BIOLOGY Covasim: An agent-based model of COVID-19 dynamics and interventions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009149 July 26, 2021 27 / 32

https://doi.org/10.1016/S1473-3099%2820%2930120-1
http://www.ncbi.nlm.nih.gov/pubmed/32087114
https://www.kingcounty.gov/depts/health/covid-19/data.aspx
https://www.kingcounty.gov/depts/health/covid-19/data.aspx
https://doi.org/10.1126/science.abc0035
http://www.ncbi.nlm.nih.gov/pubmed/32532802
https://doi.org/10.1136/jech-2020-214051
https://doi.org/10.1136/jech-2020-214051
http://www.ncbi.nlm.nih.gov/pubmed/32576605
https://doi.org/10.1126/science.abb9789
http://www.ncbi.nlm.nih.gov/pubmed/32414780
https://doi.org/10.1038/s41591-019-0740-8
http://www.ncbi.nlm.nih.gov/pubmed/31932805
https://doi.org/10.1007/s40484-020-0199-0
http://www.ncbi.nlm.nih.gov/pubmed/32219006
http://spiral.imperial.ac.uk/handle/10044/1/77482
https://doi.org/10.1038/s41591-020-1000-7
http://www.ncbi.nlm.nih.gov/pubmed/32647358
https://doi.org/10.1016/S1473-3099%2820%2930162-6
http://www.ncbi.nlm.nih.gov/pubmed/32213332
https://doi.org/10.1038/s41562-020-0931-9
http://www.ncbi.nlm.nih.gov/pubmed/32759985
https://doi.org/10.1016/S2468-2667%2820%2930157-2
http://www.ncbi.nlm.nih.gov/pubmed/32682487
https://doi.org/10.1371/journal.pcbi.1009149


16. Kucharski AJ, Klepac P, Conlan AJK, Kissler SM, Tang ML, Fry H, et al. Effectiveness of isolation, test-

ing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different set-

tings: a mathematical modelling study. The Lancet Infectious Diseases. 2020 Jun 16; 20(10):1151–60.

https://doi.org/10.1016/S1473-3099(20)30457-6 PMID: 32559451

17. Blakely T, Thompson J, Carvalho N, Bablani L, Wilson N, Stevenson M. The probability of the 6-week

lockdown in Victoria (commencing 9 July 2020) achieving elimination of community transmission of

SARS-CoV-2. The Medical Journal of Australia. 2020 Sep 28; 213(8):349–351.e1. https://doi.org/10.

5694/mja2.50786 PMID: 32981108

18. Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico MS, et al. A stochastic agent-based model

of the SARS-CoV-2 epidemic in France. Nature Medicine. 2020 Sep; 26(9):1417–21. https://doi.org/10.

1038/s41591-020-1001-6 PMID: 32665655

19. Lau MSY, Grenfell B, Thomas M, Bryan M, Nelson K, Lopman B. Characterizing superspreading events

and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA. Proc Natl Acad Sci

USA. 2020 Sep 8; 117(36):22430–5. https://doi.org/10.1073/pnas.2011802117 PMID: 32820074

20. Peak CM, Childs LM, Grad YH, Buckee CO. Comparing nonpharmaceutical interventions for containing

emerging epidemics. Proc Natl Acad Sci U S A. 2017 Apr; 114(15):4023–8. https://doi.org/10.1073/

pnas.1616438114 PMID: 28351976

21. Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-

19 outbreaks by isolation of cases and contacts. The Lancet Global Health. 2020 8:e488–96. https://

doi.org/10.1016/S2214-109X(20)30074-7 PMID: 32119825

22. Perkins TA, Cavany SM, Moore SM, Oidtman RJ, Lerch A, Poterek M. Estimating unobserved SARS-

CoV-2 infections in the United States. Proc Natl Acad Sci U S A. 2020 Sep 8; 117(36):22597–602.

https://doi.org/10.1073/pnas.2005476117 PMID: 32826332

23. Hinch R, Probert WJM, Nurtay A, Kendall M, Wymatt C, Hall M, et al. OpenABM-Covid19—an agent-

based model for non-pharmaceutical interventions against COVID-19 including contact tracing. PLoS

Comput Biol. 2021;2020.09.16.20195925. https://doi.org/10.1371/journal.pcbi.1009146 PMID:

34252083

24. Abueg M, Hinch R, Wu N, Liu L, Probert W, Wu A, et al. Modeling the effect of exposure notification and

non-pharmaceutical interventions on COVID-19 transmission in Washington state. NPJ Digital Medi-

cine. 2021 Mar 12; 4(1):1–0. https://doi.org/10.1038/s41746-021-00422-7

25. Kerr CC, Mistry D, Stuart RM, Rosenfeld K, Hart GR, Núñez RC, et al. Controlling COVID-19 via test-
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