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The coronavirus 2019 (COVID-19) pandemic has significantly impacted the global economy
and society. One of the key challenges in combating it was predicting its spread to take
appropriate measures, such as lockdowns and social distancing. These measures have now
been lifted, and many countries are entering the final stages of the COVID-19 pandemic.

It is essential to continue studying the data collected during the COVID-19 pandemic, even
as the focus shifts to recovery and rebuilding, to improve our ability to respond to future
pandemics and protect public health. The COVID-19 pandemic has provided a wealth of data
that can be used to enhance our understanding of the virus and how it spreads. We used
data from 3112 counties in the USA obtained from multiple sources, including the daily
infection rates from the COVID-19 Data Repository of the Center for Systems Science and
Engineering (CSSE) at the John Hopkins University [1], interventions used to control the
spread of the virus [2], and demographics from the US Census [3], to train monitoring
systems that detect and track future outbreaks or pandemics, allowing us to better prepare or
even mitigate them in advance.

Artificial intelligence (AI) models have been used to forecast the cumulative daily number of
COVID-19 cases. These models can analyse large amounts of data and make predictions
quickly, which is critical in fast-moving pandemics. We built a forecasting model based on the
temporal convolutional network (TCN) [4] and implemented a web application [5] that
displays 28-day forecasts for every county in the United States. In our evaluation study, we
found that our TCN-based model outperformed its extension (an ensemble model) and other
state-of-art forecasting models.

TEMPORAL CONVOLUTIONAL NETWORKS

TCNs are a deep learning method proposed by Lea et al. [4] in 2017. They are commonly
used for tasks involving time-series data and can train in parallel, which results in faster
training time and optimal graphical processing unit (GPU) usage. TCNs do not exhibit the
vanishing gradient problem observed in recurrent neural networks [4] and can thus capture
long-term dependencies in data, which is vital for accurately predicting the spread of the
virus. TCNs have been used in various applications, such as flood forecasting and lip-
reading recognition [6,7].
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Photo: Our web application implementing methods discussed in this viewpoint,
displaying 28-day forecasts for every county in the United States. Source:

c0vidcather website, no permission needed for use. Available:
https://www.c0vidcatcher.org/dashboard.

Our model takes a seven-day window of COVID-19 cases, which are then processed
through a TCN layer of size 64. The output is then passed through a 20% dropout layer to
the dense output layer, which predicts the eight day of daily cumulative COVID-19 cases
(Appendix S1 in the Online Supplementary Document)

ENSEMBLE MODEL

The TCN model cannot handle non-time-series data, which motivated us to extend the TCN
model to an ensemble model. Our ensemble model combines multiple data sources to make
predictions and uses those of different models to make a final prediction. This is
advantageous, as it incorporates a broader range of variables, providing a more
comprehensive overview of the situation.

Our model combines time-series data and tabular data. The time-series data consists of a
seven-day window of COVID-19 cases and the tabular data contains 24 variables from the
US Census used in other COVID-19 studies [1–3,8]. The tabular data are the input for a
feedforward artificial neural network (ANN), while the time-series data are processed through
the TCN model. The output predictions of the ANN and TCN are passed through a
concatenate layer and then a dense output layer that produces the eight day’s predicted
daily cumulative cases. The details of our ensemble model are presented in Appendix S2 in
the Online Supplementary Document.

COMPARISON OF MODELS
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We compared the performance of our proposed models with several state-of-the-art
approaches presented in literature, including the statistical model autoregressive integrated
moving average (ARIMA) [9], long short-term memory networks (LSTM) [10], convolutional
neural networks (CNN), and artificial neural networks (ANN) [11].

In this evaluation study, we randomly split our data into two subsets for model training and
testing. We repeated this experiment ten times to obtain confidence intervals for our
comparisons and reduce the effect of the random split on our results. Each model was
trained and evaluated on the same train-test split to ensure a fair comparison. As the
evaluation metric, we used mean absolute errors (MAEs), which are a popular model error
evaluator for forecasting continuous values. The MAE is defined as the average absolute
difference between predicted and actual cases in the test data.

The MAEs of six forecasting methods over the ten random experiments are visualized as
side-by-side boxplots (Figure 1). Smaller MAEs or lower box positions indicate better
forecasting performance. We found that the TCN model outperforms all other models (mean
MAE = 19.71); the ensemble model is the second best (mean MAE = 26.38), indicating the
added non-temporal information cannot improve TCN’s performance. Other models had
much larger mean MAEs, with ANN at 51.25, LSTM at 90.61 (LSTM), CNN at 73.51, and
ARIMA at 683.86. Notably, all 10 MAE-values of TCN and ensemble model were consistently
smaller than the MAEs of the four other models. Furthermore, ARIMA had a notably higher
mean MAE than other models, which we believe is due to the way it trains. Since it uses a
moving average estimate, any errors it has will accumulate over time. Thus, it diverges
quickly over longer forecasts, an issue TCN does not have.

Figure 1.  Boxplots of the MAE of six forecasting models, including the ARIMA, ANN, LSTM,
CNN, TCN, and ensemble model. Each box is constructed using 10 MAEs of one method,
shown as the points inside each box. The lower the box’s position, the smaller the MAE
values, representing the method has better prediction performance.
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CONCLUDING REMARKS

We presented the application of the TCN model for disease forecasting and demonstrated
that it outperforms state-of-the-art approaches. Based on these findings, we believe that the
TCN is an excellent model for forecasting during the development of pandemic monitoring
systems.

Despite being the top candidate for our forecasting tool, the TCN model also has its
limitations, so we suggest using it with caution. First, it requires a large amount of data to
make accurate predictions, so it would not be helpful during the early stages of pandemics or
new variants. However, this limitation is not unique to the TCN model and is well-known from
other deep learning methods. This could potentially be solved through transfer learning and
using models built for other diseases or previous variants of the same virus. Second, the
TCN model can only handle time-series data. This means that it does not have a complete
picture of the situation and cannot consider variables such as public transportation use and
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demographic characteristics. We tried using ensemble machine learning to combine the TCN
model with an ANN model built from non-time-series data, but the ensemble model did not
outperform the TCN model. This could be due to two reasons. First, the pattern of observed
time-series data might have carried all trends encoded in the demographic variables we
added, so combining them gave no new information. Second, a better ensemble method is
desired to utilise information in two data sources more efficiently. Third, there are limitations
with the quality of input data, since data collection may not be as accurate when positive
cases increase rapidly beyond capacity. AI models and their results should be used
cautiously in decision-making, and comprehensive validation is always recommended.

Additional material

Online Supplementary Document
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