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Abstract: The elderly, especially those individuals with pre-existing health problems, have been
disproportionally at a higher risk during the COVID-19 pandemic. Residents of long-term care
facilities have been gravely affected by the pandemic and resident death numbers have been far
above those of the general population. To better understand how infectious diseases such as COVID-
19 can spread through long-term care facilities, we developed an agent-based simulation tool that
uses a contact matrix adapted from previous infection control research in these types of facilities.
This matrix accounts for the average distinct daily contacts between seven different agent types that
represent the roles of individuals in long-term care facilities. The simulation results were compared to
actual COVID-19 outbreaks in some of the long-term care facilities in Ontario, Canada. Our analysis
shows that this simulation tool is capable of predicting the number of resident deaths after 50 days
with a less than 0.1 variation in death rate. We modeled and predicted the effectiveness of infection
control measures by utilizing this simulation tool. We found that to reduce the number of resident
deaths, the effectiveness of personal protective equipment must be above 50%. We also found that
daily random COVID-19 tests for as low as less than 10% of a long-term care facility’s population will
reduce the number of resident deaths by over 75%. The results further show that combining several
infection control measures will lead to more effective outcomes.

Keywords: COVID-19; long-term care facilities; agent-based modeling; disease modeling; contact matrix

1. Introduction

The COVID-19 pandemic has passed through communities, affecting the most vul-
nerable people, especially the elderly [1]. Long-term care facilities (LTCFs) were hit hard
by the pandemic, resulting in a significant number of deaths [2]. LTCFs have high contact
environments with several high-risk individuals living very close to each other [3]. To
reduce the spread of COVID-19 within an LTCF, several measures were introduced in
addition to normal health and safety practices. These include stricter social distancing,
scheduled and random testing of facility residents and staff, as well as the use of personal
protective equipment (PPE) [2]. While these measures reduced the spread of COVID-19
infection, fatality rates in LTCFs remained at a higher level compared to the general fatality
rate [2]. This calls for a better understanding of the measures listed above in terms of their
capability to control the virus spread in an LTCF.

In the past couple of decades and prior to the onset of the COVID-19 pandemic,
agent-based modeling (ABM) has been used in a good number of infectious disease epi-
demiological studies [4]. The traditional equation-based epidemiological models in earlier
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use proved to be problematic, as such models assume the population being modeled to be
homogeneous. ABM allows the specification of characteristics and behaviors of individual
agents, and the interaction of these agents with other agents and the environment based on
a given set of rules [5]. Hernán [6] noted that ABM can be essential to an epidemiological
study if empirical facts (data) based upon running an actual experiment are considered
to be unattainable. However, El-Sayed et al. [7] compared the appropriateness of social
network analysis and ABM as approaches for social epidemiology, noting that use of ABM
“requires a balance between mechanistic rigor and model parsimony”.

Among others, ABM-based investigations have been conducted on outbreaks and
transmission of influenza [8–11], H1N1 [12], SARS [13], tuberculosis [14], cholera [15],
Ebola [16], measles [17,18], and dengue [19].

A growing number of COVID-19 related ABM studies have already been conducted [20–23].
Two earlier ABM-based investigations have been with respect to COVID-19 transmission in
LTCFs [24,25]. Nguyen et al. [24] have used as base case a representative LTCF in Scotland, and
they have examined interventions such as routine testing of staff, testing of new admissions,
isolation of symptomatic residents, and restrictions of public visits. Smith et al. [25] evaluated
the efficacy and resource efficiency of various surveillance strategies applied in a 170-bed LTCF
in Northern France, including group testing, testing for symptoms and admissions, and random
daily testing. Our work differs from previous studies [24,25] mainly because: (1) It develops
an easy-to-use simulation tool that can be used for scenario analysis and planning; (2) it can be
adapted and customized for LTCFs of different sizes; and (3) it can be further adjusted to be
used for other types of communicable diseases.

This study has two main goals. First, it presents an agent-based simulation tool that
models the spread of COVID-19 in an LTCF. The simulation tool presented in this paper
informs decision-makers and gives insights about the best strategies to reduce the impact of
LTCF outbreaks. Although agent-based modeling (ABM) has already been used to examine
how COVID-19 affects a specific LTCF or a similar setting [24,25], the simulation model
presented in this study allows for quick and easy adaptation to different facilities and
infection control measures.

The second goal of this paper is to examine how infection control measures influence
COVID-19 spread through an LTCF environment. More specifically, the effects of different
levels of PPE effectiveness and testing frequencies were assessed in terms of their influence
on the spread of the virus. In addition to these scenarios, a baseline scenario wherein a lack
of response allows the virus to spread freely through the facility was also simulated. By
comparing the number of residents who would decease under each scenario, the impact
of different infection control measures on reducing the COVID-19 spread and fatality
is understood.

2. Background

While most people who are infected by COVID-19 recover on their own, there are
various factors that can influence how severely they are impacted by the virus [26]. For
example, age, obesity, and diseases such as cancer and type two diabetes can increase the
risk towards a more severe affection [26]. Among these factors, age is the most significant [1].
Throughout the pandemic, LTCFs have been a consistent hotspot for fatal COVID-19
outbreaks [27], with fatality rates significantly higher than the fatality rate in the general
population [28]. Stall et al. [27] compared for-profit and not-for-profit LTCFs and found the
fatality rate among infected residents in both types of facilities to be roughly 30%, although
this rate can even be higher. Typically, the residents of these facilities are elderly who often
experience several pre-existing health conditions [29]. For example, in Ontario, Canada,
82% of LTCF residents are 75 years old or above, and more than 50% are over 85 [30]. Thus,
these residents are at higher risk of hospitalization and death from COVID-19 [29]. The
physical layout and procedures also matter. The LTCFs typically have several residents
living in close proximity inside a single building, giving a communicable disease such as
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COVID-19—which is transmitted by droplets—the opportunity to spread quickly among
susceptible residents who are in close contact with an infected viral vector [27].

There are 627 LTCFs in Ontario. During the COVID-19 pandemic, LTCFs have been
the epicenter of outbreaks in the province [2]. These facilities employ a total of over
100,000 staff, or 56,000 full-time equivalent (FTE) positions (as reported by LTCFs in 2018)
that serve 78,000 residents with a variety of needs. This is a resident to FTE employee ratio
of about 1.4:1 in which the number of staff, in terms of headcount, exceeds the number of
residents. An average Ontario LTCF serves about 125 residents, but there is a significant
variation in facility size [31]. About 40% of all Ontario LTCFs are small, with 96 beds or
less, of which 58% are privately owned (for-profit), 24% non-profit/charitable, and 16%
municipal [32].

The majority of LTCF staff in Ontario are personal support workers (PSWs) who
account for about 58% of all care facility employees. The PSWs are responsible for assisting
residents in their daily tasks. About 25% of LTCF staff are registered nurses, registered prac-
tical nurses, and nurse practitioners. Another 12% of them are allied healthcare providers
(AHPs) such as physiotherapists, occupational therapists, and dieticians. Administrative
staff account for about 1% of the overall staff of a facility. Cleaning and facility care staff
numbers are less reported, but they seem to account for 1% to 4% of the facility staff mem-
bers [32]. The staffing distribution is different due to the needs of the residents and thus,
varies among facilities. On average, an LTCF resident receives around 3.73 direct hours of
care per day, of which 2.3 h are from PSWs, which outnumbers nurses by one hour, and
outnumbers AHPs by 0.4 h [31].

There is no uniform layout for LTCFs in the province of Ontario, though most facilities
share a few common characteristics [33]. The number of residents per room varies from
1 to 4 in each home based on the home characteristics and the needs of the resident. It
is not recommended, however, to have more than two residents in one room [33]. The
vast majority of LTCFs have common areas such as dining and recreation spaces [34].
These spaces serve several residents concurrently and thus are a major cause of resident-to-
resident contact. Visits take place in either the common sitting areas, recreation areas, or the
resident’s room, depending on the facility setup and resident’s needs [33]. Ontario health
guidelines require rooms and common spaces to be cleaned at least once per day [35]. To
ensure the health and safety of residents, visitors generally need to check in and check out
as they enter and leave [33].

3. Materials and Methods
3.1. Disease Simulation Model

An agent-based modeling tool, using the AnyLogic (version 8.7.3) modeling and
simulation (M&S) platform, was developed for this study. To simulate an LTCF, seven
agent types were defined: (1) resident, (2) personal support worker (PSW), (3) nurse, (4)
allied health professional (AHP), (5) administrative staff (Admin), (6) housekeeper (HK),
and (7) visitor (for an Overview, Design concept, and Description (ODD) format of the
model see Table A1 in Appendix A).

To study the spread of an infectious disease, Rajagopal et al. [36] suggests a modified
SEIRD model in which individuals are grouped as susceptible (S), exposed but asymp-
tomatic (E), asymptomatic infected and symptomatic infected (I), recovered (R), and de-
ceased (D), to represent the transmission of COVID-19. As in [21], our model groups the
agents into susceptible, exposed, infectious (pre-symptomatic, symptomatic, and asymp-
tomatic), recovered, and deceased. This modified version is able to better capture the
COVID-19 as infected individuals can be with or without symptoms and symptomatic indi-
viduals can have different viral load and transmission rate before showing symptoms. The
addition of pre-symptomatic individuals identifies the subgroup within the symptomatic
group to differentiate between the transmission rates when the infectious person’s viral
load is lower compared to the time when the individual is fully symptomatic with the
maximum viral load. Agent statecharts are shown in Figure 1. (The simulation model does
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not currently take into account staff deaths. However, this may be added by modifying the
corresponding statechart to allow staff in this group as well).

Figure 1. Outbreak simulation statecharts (disease transmission left, location top right, and testing
bottom right).

Agents’ testing conditions were defined by the testing statechart. If an agent was
either randomly tested or had shown symptoms and was accordingly tested, that person’s
state changed to the tested state. All agents who diagnosed with COVID-19 due to testing
would be placed in isolation. If the test was negative, the individual stayed in the tested
state during a certain period of test validity, and then its state changed back to not tested
once the test results expired. PPE use was modeled by model parameters that moderate the
PPE effectiveness in terms of reducing infection probability and the portion of individuals
who wear PPE [37].

Before the actual simulation run, a parameter setup control panel (Figure 2) allowed
the user to set the desired LTCF parameter values, disease transmission, the initial number
of infected agents, contact matrix, PPE usage, testing, and vaccination. While vaccination is
in the model boundary, we did not model it as an infection control measure. This is because
we were modeling the initial stages of the pandemic (as of February of 2021) where there
was not sufficient credible information on vaccination in LTCFs. Specifically, information
on the adverse reaction rate, the average rate of exemption from vaccination for LTCF
residents, and vaccine effectiveness among severely health compromised individuals were
not available. Furthermore, the scenarios assessed in this paper were based on first wave
data, while vaccines were not available. Thus, we were hesitant to include vaccination as it
was not among the model data.
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Figure 2. Parameter setting page for the outbreak modeling tool.

The simulation output is presented in a series of graphs in Figure 3. It displays the
numbers of people who are recovered, symptomatic, asymptomatic, and exposed staff in
the LTCF at any given time. There are additional graphs that show the number of residents
who hospitalize and sometimes die due to the infection. While the model simulates several
aspects of COVID-19 outbreaks in LTCFs, this paper focuses on resident deaths. This
is because Ontario’s LTCFs COVID-19 infection data were not reported in a systematic
manner and do not represent the actual state of the outbreak, particularly in the first wave
of the pandemic from March to May 2020 [37]. As a result, verifying the accuracy of the
model via initial infection data is not a viable option. However, reported deaths are more
accurate and can be used to assess the model results.

3.2. Contact Matrix

We developed a contact matrix (Table 1) for LTCF based on the Duval et al. [3] study.
This study used wearable sensors (Radio-Frequency Identification Devices [RFID]) to
measure high resolution close contacts in a 200-bed LTCF, over a 4-month period. First, we
utilized the established mixing matrix from the neurologic rehabilitation ward from [3] to
partially inform the Cij entries. Next, we made use of the reciprocity condition CijNi = Cji Nj
to inform the entries Cij for i = HK, j ∈ {Resident, Nurse, AHP, PSW} as well as
Cij for i = Admin, j {Resident, Nurse, AHP, PSW}. These entries were calculated by
using the formula derived from the reciprocity condition Cij = Cji Nj/Ni. Next, Cij for
i, j ∈ {HK, Admin} and were informed by the transversal staff mixing matrix from [3].
The daily contact rates between different agent types were computed assuming that each
resident has one visitor per week, and visitors do not interact with the LTC staff. The
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conservation law was used to identify the visitor contact rate with residents. Finally, a
reciprocal correction was applied to ensure daily contacts are balanced.

Figure 3. Example of output graphs from the model.

Table 1. Contact matrix for the simulated long-term care facility.

Resident HK Admin Visitor Nurse AHP PSW

Resident 5.1 0.2 0.1 0.14 4.28 0.87 3.28

HK 8.3 1.5 0.15 0 1.17 0 2.73

Admin 8.3 0.3 0.9 0 2.33 1.1 0

Visitor 1.01 0 0 0 0 0 0

Nurse 15.23 0.1 0.1 0 5.3 2.04 5.76

AHP 6.59 0 0.1 0 4.32 1.1 1.45

PSW 4.98 0.1 0 0 2.46 0.29 0.7

Table 1 contains the calculated average number of distinct contacts, that one individual
of a particular agent type (row) has with other individuals belonging to the same or another
given agent group (column) over the course of a 24-h period. For example, a PSW agent
has an average of 4.98 contacts with the resident agents, or resident agents has an average
of 3.28 contacts with PSW agents.

4. Results
4.1. Baseline Model

Table 2 shows the parameter values used in the base simulation run. These parameters
define how the disease spreads among individuals during the simulation. They are based
on the parameters used in [21], which examined COVID-19 testing rates in schools using a
similar agent-based modeling and simulation approach. In the baseline scenario, infection
control measures were not implemented, and the disease was spread through a 249-resident
LTCF unimpeded. The result of this baseline simulation provides a baseline against which
the infection control measures’ effectiveness can be judged.
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Table 2. Simulated COVID-19 parameters.

Parameter Name Value (Unit)

Transmission Probability 14% (per each contact)

Symptomatic Recovery Period 12 (days)

Asymptomatic Incubation Period 5.47 (days)

Transmission Probability Pre-symptomatic 3% (per contact)

Transmission Probability Asymptomatic 14% (per contact)

Recovery Period Asymptomatic 9 (days)

Residents Death Rate 30%

Pre-symptomatic Period 2.63 (days)

Pre-Symptomatic Rate 50% (per person infected)

Pre-Symptomatic Incubation Period 2.4 (days)

Outbreak Progression Day (Day the Simulation Begins) 0

Figure 4 shows the minimum, mean, and maximum simulated (predicted) death toll
based on 500 Monte Carlo simulation runs of the baseline model. The horizontal axis
represents days and the vertical axis represents the number of resident deaths. This base
simulation used the parameters described in Table 2 with a 0.3 death rate. This simulation
was set up for a facility with 249 residents, 164 PSWs, 70 nurses, 35 visitors, 33 AHPs,
6 housekeeping staff, and three administrative staff. COVID-19 is introduced into the
facility by one infected nurse on day 1 of the simulation. The baseline model simulation
predicts that, if COVID-19 spreads unimpeded under the specified parameters, there will
be an average of 60.58 deaths after 50 days (minimum of 41 and maximum of 85 deaths).

Figure 4. The death toll of 500 simulation runs of the baseline model.

If the model accurately predicts LTCF outbreaks, we can argue that the function and
parameter settings in the model represent the actual conditions of LTCF outbreaks. Thus,
conclusions drawn from that model can be applied to real-world situations.

To assess the model accuracy, we first compared the number of resident deaths at fifty
days predicted by the model, against the number of resident deaths at fifty days observed
in five LTCF outbreaks. The five facilities chosen were the ones that suffered from major
outbreaks during the first infection wave in 2020. Facility sizes were close to the size of
the LTCF based on which we created the contact matrix. To account for the varied sizes
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of the LTCFs, the parameters were set to reflect the actual number of residents as well as
the average number of staff for an LTCF of that size in each particular LTCF. We assumed
that PPE and daily COVID-19 test was limited in Ontario LTCFs at the time of the early
outbreaks [38]. In each of the scenarios, the resident death rate was initially set at 0.3, as in
the base model. This was used as the initial death rate because previous study suggests
that the death rate in long-term care facilities with COVID-19 outbreaks is approximately
30% [39]. The results of these comparisons can be seen in Table 3 below. While it is difficult
to say for certain the specific reason for the observed discrepancies there are several likely
causes. The first is that in the real-world outbreaks the infection control measures in place
may have changed over the course of the outbreak. This may have been due to supply
issues or changes in the outbreak control strategy. This is difficult to capture as specific
data is not available on changing infection control measures for each specific case. Another
potential contributing factor is the possible that single events such as funerals, or additional
COVID-19 introduction into the facility could have impacted the number of infected and
subsequently the number of deaths.

Table 3. Deviations between simulated and observed LTCF resident deaths (baseline model).

LTCF Camilla Forest Downsview Orchard Seven Oaks

Death
Rate 0.3 0.4 0.3 0.2 0.3 0.3 0.4 0.3 0.2

Simulated
Deaths 61 82 61 41 61 61 81 69 24

Observed
Deaths 68 68 51 51 63 70 70 41 41

% Error 11.5 −17.1 −16.4 24.4 3.3 14.8 −13.6 −40.6 70.8

4.2. Impacts of Infection Control Measures

To examine the effectiveness of PPE use and COVID-19 testing in reducing the spread
of COVID-19 in LTCFs, we simulated three sets of scenarios: one per control measure, and
one as a combination of both. Each scenario was simulated 500 times using a Monte Carlo
model that randomly varied simulation parameters, as in [21]. In addition to the three
infection control measure groups, the base model run was also presented as a baseline for
comparison of control measure effectiveness. The first group of infection control scenarios
examined how differing effectiveness of PPE use can influence the spread of COVID-19.
The second group of infection control scenarios involved the administration of differing
numbers of COVID-19 tests within the LTCF: 10, 20, and 40 tests per day, evenly split
between the staff and the residents. The final group of scenarios combined both PPE use
and COVID-19 testing to examine how much these measures would be effective when used
together. These three scenarios consider (i) 50% effective PPE use and 10 COVID-19 tests
per day, (ii) 75% effective PPE use and 20 COVID-19 tests per day, and (iii) 90% effective
PPE use and 40 COVID-19 tests per day.

4.2.1. PPE Effectiveness

To examine the effect of PPE on controlling the spread of COVID-19, three levels of
PPE effectiveness were considered. Specifically, three scenarios regarding the consistent use
of PPE at 50%, 75%, and 90% effectiveness were simulated. These scenarios were simulated
with the assumption that PPE could be universally used within the facility. However, access
to PPE in LTCFs was not the same during the early days of the pandemic. The cumulative
number of resident deaths over the course of the simulation can be seen in Figure 5 (light
blue-colored curve). To clarify the percent effectiveness of PPE represents the proportionate
decrease in the likelihood of an individual to individual spread within the population.
The use of 50% effective PPE reduced the rate of spread, evident in the 68.2% reduction in
reported deaths at 25 days compared to the base model. It did not, however, reduce the
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cumulative number of deaths across 500 simulation runs, of 59 deaths in this scenario and
a mean of 61 deaths in the base model. This suggests that a 50% level of PPE effectiveness
would not significantly reduce the number of deaths.

Figure 5. The cumulative number of resident deaths in a simulated outbreak with universal use of
50%, 75%, and 90% effective PPE.

Having 75% effective PPE reduced both the rate of spread of the disease and the total
number of deaths at 50 days. Figure 5 shows the cumulative number of resident deaths
when 75% effective PPE is used, averaged across 500 simulation runs. The cumulative
number of resident deaths reported in this scenario at 50 days was 31, which represents a
reduction of 49.1% compared with the baseline scenario. At 100 days the 75% effectiveness
scenario showed a total of 52 resident deaths. This is only a 13.5% reduction from the
previous scenario suggesting that this level of PPE effectiveness is less effective long term.

The 90% PPE effectiveness scenario showed a significant reduction in the cumulative
number of resident deaths at 50 days compared to the previous PPE effectiveness scenarios
at 50% and 70%. Figure 5 (gray-colored curve) shows the daily mean number of resident
deaths with 90% effective PPE being used. The cumulative number of deaths, averaged
over 500 simulation runs, at 50 days was only about 3, indicating a 95.1% decrease in
resident deaths compared to the base model. This also represents a reduction of 90.3% from
the mean number of deaths in the 75% PPE effectiveness case at 50 days. At 100 days, the
90% effectiveness scenario showed 13 resident deaths. This is still a large reduction from the
previous conditions and base model. These results are consistent with previous literature
which suggests that there is a non-linear relationship between the mask use efficiency and
the infectiousness of the COVID-19 virus [40] that suggest that the current model produces
results that match the real-world observations.

4.2.2. Random Testing

Three scenarios were simulated to examine the effect of testing and self-isolation on the
number of resident deaths in 50 days. Figure 6 shows the outcome of these scenarios. Where
a total of 10 COVID-19 tests are administered to a combination of staff and residents per day,
a cumulative number of 59 residents die after 50 days, as averaged across 500 simulation
runs. This does not differ much from the cumulative number of 61 at 50 days in the
baseline scenario. At 25 days, however, this scenario showed a mean of 6 resident deaths
that indicates a 50% decrease from the base model mean of 12 resident deaths at 25 days,
suggesting that introducing this number of tests slows the rate of infection. However, the
very small reduction in the cumulative number of resident deaths suggests that this testing
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level does not significantly reduce the number of deaths expected in an outbreak. This
trend was consistent at 100 days.

Figure 6. The cumulative number of resident deaths in a simulated outbreak with 10, 20, 40 random
tests of staff and residents.

With 20 tests per day, the cumulative number of predicted deaths at 50 days was
reduced to 54. Introducing testing at this level did decrease the average number of resident
deaths by 11.5%. However, the wide distribution of results across the 500 simulation runs
makes it difficult to conclude if this testing level is actually effective at reducing the severity
of an outbreak. That being said, the 100-day cumulative number of about 56 resident deaths
suggests minimal effectiveness.

Increasing the number of tests to 40 per day produced a noticeable decrease in the
number of resident deaths at 50 days. The results, averaged across 500 simulation runs,
showed a cumulative number of 23 resident deaths, representing a 62.3% reduction from
the corresponding number in the baseline model. This large decrease suggests that random
testing at this level would reduce the number of deaths in a COVID-19 outbreak. Given that
this scenario involves only testing 7.6% of the total 525-person LTCF population (residents
and staff) on a daily basis, it makes a compelling case for the use of random testing as an
effective infection control tool. At 100 days, this testing scenario produced a mean of about
28 resident deaths. This is a 50% reduction from the previous scenario.

4.2.3. Combined Control Measures

Figure 7 shows the number of resident deaths reported under the scenarios involving
three different combinations of PPE effectiveness and random COVID-19 testing. Results
show that, with 50% PPE effectiveness and 10 COVID-19 tests per day, the cumulative
number of resident deaths at 50 days reach an average of 40 across 500 simulation runs.
This is a 34.4% reduction from the mean cumulative number of 61 resident deaths in the
base model, as well as a reduction of 32.2% from the 50% PPE effectiveness scenario and a
32.2% reduction from the 10 test per day scenario. The decrease in the cumulative resident
deaths supports a conclusion that the infection control measures, when used together, will
be more effective in reducing the resident deaths caused by COVID-19. This suggests
that when control measures are taken individually at lower levels, they do not have much
effect on the simulated cumulative number of resident deaths compared to the base model.
In practical terms, the result of this combined measures scenario suggests that several
minimally effective infection control strategies, when used together, can be more effective
than when used individually.
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Figure 7. Cumulative number of resident deaths with different PPE effectiveness rate and daily
number of random testing of residents and staff.

The next scenario involves the use of 75% effective PPE and 20 tests per day. The
simulation over 500 runs predicted that there would be a mean cumulative number of about
6 resident deaths at 50 days. This represents an 85% reduction from the mean cumulative
number of resident deaths at 50 days under the first mixed measures scenario and a 90.2%
reduction from the base scenario at 50 days. The current scenario also leads to an 80.6%
reduction in the mean number of deaths at 50 days under the 75% PPE effectiveness scenario
and an 88.9% reduction from the 20 tests per day scenario at the 50-day mark. This again
suggests that it is better to combine infection control measures even if these measures are
not fully effective individually. Even considering that the number of deaths at 100 days
in this scenario was about 18, this is still much lower than the control and first scenario.
Finally, with a combined use of 90% effective PPE and 40 tests per day, the simulation
shows the greatest reduction in the cumulative number of resident deaths, with a mean of
less than 1 resident death at 50 days. This scenario reached a maximum of about 1 resident
death at 100 days suggesting that there is almost no transmission.

5. Discussion

This study had two main goals. First, to develop and present a simulation tool that
models/characterizes the spread of COVID-19 in an LTCF. With respect to this goal, we
developed, using the AnyLogic version 8.7.3 simulation software, an agent-based modeling
tool based on a modified SEIRD model as earlier used in [21] in simulating preventative
COVID-19 testing in schools. A baseline model which did not involve the application
of infection measures was first tested on a small sample of five LTCFs that experienced
COVID-19 outbreaks to set the base run corresponding with the early days of the pandemic.
PPE and COVID-19 test kits were not yet readily available at that time. We performed, using
the baseline model, simulations of 500 runs to predict the number of resident deaths, and
compared the simulated death tolls with the observed numbers at the LTCFs in our sample.
We found that adjusted base parameters would predict death tolls accurate enough to fall
within a 0.1 variation of the observed death toll. The accuracy of the model outputs can be
further improved with the use of parameter settings specific to each of the individual LTCFs
that are currently known to the modeling team. This model is a predictive tool for how the
disease would affect an LTCF under different epidemiological transmission/infection and
mortality rates and different implemented control measures.

The second goal of the study was to examine how infection control measures can
potentially impact the spread of COVID-19 in an LTCF. Not surprisingly, higher levels of
PPE effectiveness or COVID-19 random tests were found to be more effective in reducing
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the simulated death tolls. In both the PPE effectiveness and test rate scenarios, the lowest
level simulated in each case led to a minimal effect on the number of resident deaths in
comparison with the observed number. However, when they were implemented together,
they significantly reduced the death toll. In practical terms, this is an interesting result
because it suggests that minimally effective control measures may become effective when
implemented together. These scenarios also suggest that daily testing and isolation of less
than 10% of the total population of the LTCF can reasonably decrease the number of deaths
associated with the disease. As rapid testing becomes more available and accurate, daily
COVID-19 test screening becomes a more viable option. Vaccination will also play a crucial
role in reducing the number of COVID-19 deaths in an LTCF [41]. Non-pharmaceutical
measures, however, such as PPE and testing will likely remain relevant throughout the
vaccination process and afterwards, depending on how effective the vaccine turns out to
be [41]. These results also support the idea that the infection control effects of wearing
PPE are accelerated as PPE efficiency increases non-linearly [40]. This is helpful when
PPE effectiveness in a facility is high because there would be a decline in the number of
associated COVID-19 deaths. However, when PPE effectiveness is low, the benefits of PPE
use become negligible.

Based on the results of this study, PPE effectiveness must be above 50% for a meaning-
ful reduction in COVID-19 deaths. The best-case scenario presented as the third scenario
in which both control measures were combined, suggests that it is theoretically possible
to nearly eliminate COVID-19 deaths of residents in an LTCF by high levels of multiple
infection control measures such as PPE use and random COVID-19 testing combined.
Further research is needed to understand how social distancing and other control measures
will influence the number of deaths in an LTCF.

The ability to understand these outcomes informs decision-makers regarding issues
such as PPE allocation, social distancing measures, and testing programs. This model
allows the user to adjust specific disease parameters. This means that model users can
simulate the virus transmission and effects of epidemiological diseases other than just
COVID-19. We learned from this most recent pandemic that having tools such as this model
available helps to better prepare for, and mitigate the effects of, future global health risks
faced by communities such as LTCF.

This modeling tool also has some academic applications. Similar models have been
used in this capacity in the past [21]. The use of the current model provides a low-cost,
readily available means of examining the vulnerability of LTCF. Future research in this
area should focus on adapting the model to a broader range of facility sizes that are very
different from an average LTCF. This would both improve the practical usefulness of the
model as well as provide an opportunity to test the model robustness when considering
smaller populations and different physical layouts. Further validation of the model would
also be valuable as more data becomes available from other LTCF outbreaks under different
conditions. Specifically, better data regarding the timeline of implementation of disease
control measures would allow for better validation of the outcomes predicted by the model
associated with these measures. Another area where this work could be expanded is to
focus on vaccination and the role that this would play in controlling a disease outbreak.
The impact of rapid testing as a screening option could also be examined. Fortunately, all
of these potential future research topics are within the capability of the model, which could
provide a platform for further inquiry and improvement.

6. Conclusions

Our study showed that agent-based modeling can be applied to develop a simulation
tool for communicable disease management in LTCF. We developed and tested a simulation
tool based on the attributes of COVID-19 in the province of Ontario (Canada) and disease
outbreaks in LTCF. Using a detailed contact mixing matrix, the simulation tool is able to
estimate potential impacts of disease outbreaks on LTCF residents and different staff. In
particular, this tool can be used to assess the impacts of different public health measures



Int. J. Environ. Res. Public Health 2022, 19, 2635 13 of 16

such as testing and personal protection measures. While the simulation tool developed in
this study works best for LTCF of specific size, where a contact matrix was available, it is
expected that advancement in contact tracing and contact matrix generation technologies
such as wearable devices, mobile applications, and artificial intelligence will soon enable
access to contact matrices for LTCF of different sizes.
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Appendix A

Table A1. Overview, design concepts and details of ABMs.

Purpose

To develop a simulation tool for disease spread in
long-term care facilities and examine the impact of
different infection scenarios, public health measures
including PPE usage, and COVID-19 testing

Entities, state variables, and scales

ABM consists of seven entities: (1) resident, (2) personal
support worker (PSW), (3) nurse, (4) allied health
professional (AHP), (5) administrative staff (admin), (6)
housekeeper (HK), and (7) visitor, and each entity has
several state variables

• Susceptible
• Exposed
• Symptomatic

◦ Infectious pre-symptomatic
◦ Infectious symptomatic
◦ Self isolated

• Asymptomatic

◦ Self isolated

• Recovered
• Diseased
• COVID-19: Not test
• COVID-19: Tested
• COVID-19: Tested quarantined
• At home
• At work
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Table A1. Cont.

Process overview and scheduling

(1) Movement

• Human: Non-patient agents move between their
home and workplace (long-term care facility)

(2) A SEIR model is used for disease transmission

• All individuals are in a susceptible state at the start
of the model Infection is triggered by one or more
random infectious person(s) entering the system

(3) Except patients, staff are going to long-term care
facility during their shifts in a daily basis
(4) COVID-19 testing state chart processes the random
testing of agents

Design concepts Basic principles

The ABMs purpose is to model disease transmision in
long-term care facilities based on residents distribution
in the facility, close contacts between the residents and
various staff working in the facility, and use of different
public health meaures to control the disease

Interaction Details

There are interactions between patients with other
human agents and among other human agents. The
interactions are reflected in the contact matrix, see
Table 1

Initialization The simulation models long-term care facilities with a
selected number of LTCFs residents and staff

Input data
(1) Contact matrix (Table 1)
(2) Initial size of the LTCFs
(3) Initial number of infected individuals

Parameters The parameters of COVID-19 disease transmission as
provided in Table 2
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