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SARS-CoV-2 Omicron infections are common among individuals who are

vaccinated or have recovered from prior variant infection, but few reports

have immunologically assessed serial Omicron infections. We characterized

SARS-CoV-2 humoral responses in an individual who acquired laboratory-

confirmedOmicron BA.1.15 ten weeks after a third dose of BNT162b2, and BA.2

thirteen weeks later. Responses were compared to 124 COVID-19-naive

vaccinees. One month post-second and -third vaccine doses, the

participant’s wild-type and BA.1-specific IgG, ACE2-displacement and virus

neutralization activities were average for a COVID-19-naive triple-vaccinated

individual. BA.1 infection boosted the participant’s responses to the

cohort ≥95th percentile, but even this strong “hybrid” immunity failed to

protect against BA.2. Reinfection increased BA.1 and BA.2-specific responses

only modestly. Though vaccines clearly protect against severe disease, results

highlight the continued importance of maintaining additional protective

measures to counteract the immune-evasive Omicron variant, particularly as

vaccine-induced immune responses naturally decline over time.
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Introduction

SARS-CoV-2 infections, predominantly fueled by the

Omicron (B.1.1.529) variant, are increasingly common among

individuals who are vaccinated and/or have recovered from prior

infections (1–3). Globally, the highly transmissible and immune-

evasive Omicron variant has rapidly overtaken the previously

dominant Delta variant (3–7), and the original Omicron BA.1

strain is being outcompeted by newer Omicron sub-lineages

BA.2, BA.3, BA.4 and BA.5 (8, 9). In British Columbia (BC),

Canada, Omicron BA.1 had overtaken Delta by December 2021,

and BA.2 had largely outcompeted BA.1 by March 2022 (10, 11).

COVID-19 vaccine coverage in BC is relatively high, with

93%, 90% and 57% of individuals aged 12 years or older having

received one, two and three COVID-19 immunizations,

respectively, by May 2022 (12). Persons at elevated risk of

severe COVID-19 were also eligible for fourth doses at this

time (13). Despite this, the province experienced fifth and sixth

waves of COVID-19, dominated by BA.1 and BA.2, respectively,

as public health measures were gradually relaxed (10, 11).

Indeed, it is estimated that between December 2021 and

March 2022, nearly half of British Columbians experienced a

SARS-CoV-2 infection, likely due to Omicron (14, 15).

Several reports have examined post-vaccination Omicron

infections, or Omicron reinfections following exposure to prior

variants (16–23), but we are aware of only one study that

assessed repeat Omicron infection incidence through viral

genomic surveillance (24). The prior study however did not

measure immune responses (24). In fact, at the time of writing,

no studies to our knowledge appear to have investigated vaccine-

and infection-induced immune responses after serial Omicron

infections. Here, we longitudinally characterize SARS-CoV-2

humoral responses in an individual who experienced serial

BA.1 and BA.2 Omicron infections following three-dose

COVID-19 mRNA vaccination. Responses were compared to

those of 124 COVID-19-naive vaccinees over the same period.

Taken together with existing literature, our results suggest that

vaccination provides limited protection against infection and/or

reinfection by Omicron variants, though the fact that the

individual’s symptoms were not serious enough to require

hospitalization demonstrates that vaccination was nevertheless

effective in its primary goal of preventing severe disease.
Methods

Observational COVID-19 vaccine cohort
and SARS-CoV-2 infection monitoring

In December 2020, we established a prospective longitudinal

study in Vancouver, Canada, to examine SARS-CoV-2 specific

humoral immune responses following vaccination with

BNT162b2 (Comirnaty; BioNTech/Pfizer) or mRNA-1273
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(Spikevax; Moderna) in a cohort of adults aged 24-98 years

[described in (25, 26)]. Serum and plasma were collected

longitudinally up to 6 months following the third dose

(Figure 1A). At each visit, serum was tested for the presence of

SARS-CoV-2 anti-nucleocapsid (N) antibodies, which indicate

seroconversion following infection, using the Elecsys Anti-

SARS-CoV-2 assay on a Cobas e601 module analyzer (Roche

Diagnostics). In addition to the case participant, immune

measures from a comparison group of 124 participants of this

cohort, who remained anti-N seronegative up until at least one

month post-third vaccine dose, are included for context.
Ethics approval

All participants or their authorized substitute decision

makers provided written informed consent. This study was

approved by the University of British Columbia/Providence

Health Care and Simon Fraser University Research Ethics

Boards (protocol H20-03906).
SARS-CoV-2 diagnostics and lineage
confirmation

Diagnostic samples from the case participant’s two SARS-

CoV-2 infections were tested at the St. Paul’s Hospital Virology

Laboratory using the cobas® SARS-CoV-2 Test which targets

conserved regions within the Orf1a/b and E genes (Roche

Diagnostics) followed by screening using a real-time reverse

transcription (RT)-PCR based algorithm for SARS-CoV-2

lineage classification that is frequently updated to detect

emerging variants (27, 28). Following this, the diagnostic

samples were subjected to full-genome SARS-CoV-2

sequencing in two independent laboratories: the BC Centre for

Disease Control, the provincial laboratory that performs all

SARS-CoV-2 sequencing for epidemiological surveillance, and

the BC Centre for Excellence in HIV/AIDS. Both laboratories

use the Illumina platform. The SARS-CoV-2 full genome

sequences for the participant’s BA.1.15 and subsequent BA.2

infections are available in GISAID (Accession IDs

EPI_ISL_12767799 and EPI_ISL_12662303, respectively) and

in Genbank (Accession Numbers OP237526 and OP237527).
Binding antibody assays

We quantified anti-Spike Receptor Binding Domain (RBD)

binding IgG concentrations in serum using the V-plex SARS-

CoV-2 (IgG) ELISA kit (Panel 22, Meso Scale Diagnostics),

which features wild-type and Omicron BA.1 RBD antigens. For a

subset of participants, Anti-Spike binding IgG concentrations in

serum were also quantified using the V-plex SARS-CoV-2 (IgG)
frontiersin.org
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ELISA kit (Panel 25, Meso Scale Diagnostics), which features

full-length S antigens from wild-type, Omicron BA.1 and

Omicron BA.2. This panel was used because, at the time of

analysis, no reagents featuring Omicron BA.2 RBD were offered
Frontiers in Immunology 03
by the manufacturer. Both assays were performed on a Meso

QuickPlex SQ120 instrument, with sera diluted 1:10000. Results

are reported as WHO International Standard Units (BAU/mL),

using the manufacturer-provided conversion factors.
A

B

D

C

FIGURE 1

Case participant history and longitudinal humoral responses against wild-type and Omicron BA.1 SARS-CoV-2. Panel (A) Case participant
timeline. Immunizations and SARS-CoV-2 Omicron infection history are shown at the top. Longitudinal SARS-CoV-2 anti-N serology results are
shown in small green (anti-N negative) or orange (anti-N positive) circles. Large black circles denote time points where additional humoral
functions, shown in panels below, were measured. Panel (B) Longitudinal anti-S-RBD IgG concentrations, expressed in log10 BAU/mL, in the
case participant (large circles) versus the comparison group of SARS-CoV-2-naive individuals (small circles) at various time points following two-
and three-dose COVID-19 vaccination. Wild-type (WT) specific anti-S-RBD responses are shown in red; Omicron BA.1-specific ones are shown
in blue. Matching solid lines connect the participant’s longitudinal values, while dotted lines connect the median values for the comparison
group. Approximate times of BA.1 and BA.2 infections are shown with arrows. Total Ns are shown at the bottom of the plot. Later time points
have smaller Ns because some control participants were censored due to post-vaccination SARS-CoV-2 infection or had not yet completed the
visit. Panel (C) same as (B), but for longitudinal ACE2% displacement function from wild-type (red) and BA.1 (blue) S-RBDs. Panel (D) same as (B),
but for longitudinal live virus neutralization function against wild-type (red) and BA.1 (blue) strains. ULOQ/LLOQ: upper/lower limit of
quantification.
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ACE2 competition assays

We assessed the ability of serum antibodies to block the

wild-type and Omicron BA.1 RBD-ACE2 receptor interaction

by competition ELISA (Panel 22 V-plex SARS-CoV-2 [ACE2];

Meso Scale Diagnostics). For a subset of 28 participants, we also

assessed the ability of serum antibodies to block the wild-type,

BA.1 and BA.2 Spike-ACE2 receptor interaction using the same

methods (Panel 25 V-plex SARS-CoV-2 [ACE2]). Both assays

were performed on a Meso QuickPlex SQ120 instrument, with

sera diluted 1:40. Results are reported as % ACE2 displacement.
Live virus neutralization assays

Neutralizing activity in plasma was examined in live SARS-

CoV-2 assays using a wild-type isolate (USA-WA1/2020; BEI

Resources) and a local Omicron BA.1 isolate (GISAID Accession

# EPI_ISL_9805779) on VeroE6-TMPRSS2 (JCRB-1819) target

cells. Viral stock was adjusted to 50 TCID50/200 µl in

Dulbecco’s Modified Eagle Medium in the presence of serial 2-

fold plasma dilutions (from 1/20 to 1/2560), incubated at 4°C for

1 hour and added to target cells in 96-well plates in triplicate.

Cultures were maintained at 37°C with 5% CO2 and the

appearance of viral cytopathic effect (CPE) was recorded three

days post-infection. Neutralizing activity is reported as the

reciprocal of the highest plasma dilution able to prevent CPE

in all triplicate wells. Samples exhibiting partial or no

neutralization at 1/20 dilution were defined as below the limit

of quantification (BLOQ).
Data analysis

Data visualization and analysis was conducted in Prism

v9.2.0 (GraphPad). As this is a report of a single case where

immune response data are contrasted to those observed in a

COVID-19-naive comparison group, response magnitudes are

characterized in detail, but no formal statistical tests

were applied.
Results

Case participant SARS-CoV-2 vaccination
and infection timeline

The participant was a frontline health care worker,

approximately 30 years of age. The participant had no major

health conditions, but did take medications for hypothyroidism

and familial hypercholesterolemia, both of which were well-

controlled. The participant received three doses of mRNA

vaccine (all BNT162b2; 30 mcg) in late December 2020, early
Frontiers in Immunology 04
February 2021 and late October 2021 (Figure 1A). All blood

samples collected up to one month following the third

immunization were anti-N seronegative.

In early January 2022, ten weeks after the third

immunization, the participant experienced moderate COVID-

19 symptoms including sore throat, fatigue, congestion, body

aches, severe headaches, loss of taste and smell, coughing,

shortness of breath and nausea. Symptoms, primarily cough,

intensified in the second week after diagnosis requiring

corticosteroid therapy. By the third week, symptoms had

subsided except for shortness of breath and fatigue, with

minimal improvement from short- and long-acting

bronchodilating agents. A saline gargle collected on January

10, 2022 tested positive on the cobas® SARS-CoV-2 Test with a

cycle threshold (Ct) value of 21 for both Orf1a/b and E gene

targets. Real-time RT-PCR-based molecular screening identified

the infection as Omicron BA.1, with subsequent full-genome

viral sequencing confirming the specific lineage as BA.1.15.

In early April 2022, 13 weeks following the BA.1 infection

(and 23 weeks following the third immunization) the participant

experienced a profile of milder COVID-19 symptoms that

differed compared to the first infection, consisting of a sore

throat, fever, body aches, headaches, and diarrhea. No change in

sense of taste or smell was noted. The participant noted

persisting weakness, fatigue and mental fog, as well as severe

long-term, treatment-resistant shortness of breath triggered by

mild activities or exercises. A nasopharyngeal swab collected on

April 9, 2022 tested positive on the cobas® SARS-CoV-2 Test

with Ct values of 24 (Orf1a/b) and 23 (E). This infection was

identified as BA.2 by molecular screening and confirmed by full-

genome viral sequencing.
Longitudinal humoral responses to wild-
type and Omicron BA.1 variants

We began by investigating the magnitude of the participant’s

humoral immune responses following immunization, in context

of a control group of 124 COVID-naïve individuals who were

vaccinated during the same period. The comparison group was

74% female with a median age of 57 (Interquartile Range [IQR]

38-76) years. We quantified antibody responses to wild-type and

Omicron BA.1 strains in the participant and the comparison

group at one month after the second and third vaccine doses, as

these time points should capture peak responses post-

vaccination (Figures 1B–D).

One month post-second dose, the participant’s wild-type

and BA.1-specific RBD IgG concentrations were 3.34 and 2.70

log10 BAU/mL respectively, which were equivalent to the 53rd

and 50th percentile values of the comparator cohort (Figure 1B).

One month post-third dose, the participant’s wild-type and

BA.1-specific RBD IgG concentrations had increased to 3.51

and 3.06 log10 BAU/mL respectively, equivalent to the 30th and
frontiersin.org
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50th percentile values of the cohort. Similarly, one month post-

second dose, the participant’s ability to disrupt the interaction

between the ACE2 receptor and the wild-type and BA.1 RBDs

were 97% (57th percentile) and 42% (55th percentile) respectively

(Figure 1C). At one month post-third dose, the participant’s

wild-type- and BA.1-specific RBD-ACE2 displacement activities

had increased to 99% (74th percentile) and 76% (73rd percentile)

respectively. Finally, at one month post-second dose, the

participant’s plasma neutralized wild-type and BA.1 SARS-

CoV-2 at reciprocal dilutions of 320 and 20, which were

equivalent to the 97th and 76th percentile values of the cohort.

At one month post-third dose, the participant’s wild-type and

BA.1 neutralization titers were 320 (78th percentile) and 40 (59th

percentile) respectively. These results indicate that the

participant’s overall vaccine responses were typical of the

cohort, but nevertheless insufficient to prevent infection by

BA.1 approximately six weeks later.

Seventeen days after testing positive with BA.1 (which

coincided with a three-month post-third-dose study visit), the

participant’s wild-type and BA.1-specific responses were boosted

substantially, reaching the cohort 95th percentile for most

measures at this time when immune responses had begun to

decline in the comparator cohort (Figures 1B–D). The

participant’s wild-type RBD IgG concentration increased to 4.15

log10 BAU/mL, while their BA.1-specific RBD IgG concentration

increased to 3.55 log10 BAU/mL (Figure 1B). For context, these

values would have placed the participant in the 94th and 91st

percentiles of “peak” cohort values, measured at one month post-

third vaccine dose. Similarly, the participant’s wild-type-specific

RBD-ACE2 competition activity remained high at 99.9%, while

their BA.1-specific RBD-ACE2 competition activity increased to

96.3%. For context, these values would be equivalent to the 99th

percentiles of peak cohort values one month post-third vaccine

dose (Figure 1C). The participant’s wild-type and BA.1-specific

neutralization values held at 320 and 40, respectively, equivalent to

the 78th and 59th percentiles of peak cohort values (Figure 1D).

These results indicate that BA.1 infection boosted the participant’s

humoral response, particularly in terms of binding antibody

concentrations and ACE2 displacement activity. Nevertheless,

this boost was insufficient to prevent reinfection by BA.2

approximately 10 weeks later.

Sixteen days after testing positive with BA.2 (which

coincided with a six-month post-third-dose study visit), the

participant’s wild-type-specific responses remained steady or

declined slightly (e.g. RBD IgG) from prior measurements

(Figures 1B–D). Nevertheless, most of the participant’s wild-

type-specific responses remained at the cohort 100th percentile

at this time point, which is unsurprising given that vaccine-

induced responses had declined substantially over this time in

the COVID-19 naive comparison group. For context, the

participant’s wild-type-specific responses at this time point

would have represented the 84th (RBD IgG), 99th (ACE2
Frontiers in Immunology 05
competition) and 78th (neutralization) percentiles of peak

cohort values measured at one month post-third vaccine dose.

By contrast, the BA.2 reinfection had mixed effects on BA.1

responses. While the participant’s BA.1-specific RBD IgG

concentration rose substantially to 4.01 log10 BAU/mL

(whereas the cohort median at this time point was nearly 2

log10 lower), no change was seen for BA.1-specific RBD-ACE2

competition, and BA.1 neutralization increased only modestly

(Figures 1B–D). The more pronounced impact of BA.2

reinfection was to extend the duration of BA.1-specific

responses in the participant, who maintained an RBD-ACE2

competition activity of 95.7% (compared to the cohort median

29% at this time point) and a neutralization activity of 80

(compared to the cohort median BLOQ at this time point).

For further context, the participant’s BA.1-specific responses at

this time point would represent the 99th (RBD IgG), 99th (ACE2

competition) and 83rd (neutralization) percentiles of peak cohort

values measured at one month post-third vaccine dose.

Nevertheless, despite BA.1 infection and BA.2 reinfection, the

participant’s virus neutralization activity against BA.1 at this

time point, which represented the highest activity measured

during the study, remained 4-fold lower compared to that

against the wild-type strain one month post-third vaccine dose

(Figure 1D). The substantially weaker ability of even “hybrid”

(vaccine and dual-infection induced) immune responses to

neutralize Omicron compared to wild-type suggests that the

participant may remain at risk of additional Omicron infection.
Longitudinal humoral responses to
Omicron BA.2

We next characterized BA.2-specific Spike IgG and ACE2

competition activities in the participant, compared to a subset of

28 control vaccinees (79% Female, median age 59 years)

beginning one month following the third vaccine dose

(Figure 2). As these analyses focus on whole Spike (rather than

RBD antigen), the corresponding wild-type and BA.1 Spike-

specific responses are also shown for context (Figure 2). We

additionally confirmed the (strong) correlations between wild-

type- and BA.1-specific RBD and Spike responses in these

individuals (all p<0.0001; Figure S1). At one month post-third

vaccine dose, the participant displayed wild-type, BA.1 and

BA.2-specific Spike IgG concentrations of 3.76, 3.14 and 3.41

log10 BAU/mL respectively (Figure 2A), and ACE2 competition

activities of 99.4%, 50.6% and 64.3% respectively (Figure 2B).

The participant’s wild-type and BA.2-specific Spike-specific IgG

concentrations and ACE2 competition activities were broadly

average compared to control vaccinees at this time (54th and 68th

percentiles for IgG, respectively; 46th and 54th percentiles for

ACE2 competition, respectively). The participant’s values for

BA.1-specific IgG and BA.1 Spike-specific ACE2 competition
frontiersin.org
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however were slightly lower than the averages of the control

group (37th and 39th percentiles, respectively).

Following BA.1 infection, the participant’s wild-type, BA.1

and BA.2-specific Spike IgG concentrations increased modestly,

to 3.77, 3.17 and 3.44 log10 BAU/mL, respectively (Figure 2A).

Though the magnitude of these increases was not as pronounced

as those observed in the RBD-based assays (shown in Figure 1B),

these values nevertheless placed the participant at or above the

85th percentile compared to control vaccinees at this time point,

when immune responses had begun to decline in the broader

cohort. For context, these values would place the participant in

the 57th, 39th, and 68th percentile of peak cohort values measured

at one month post-third vaccine dose. Similar to the ACE2

competition activities measured using RBD antigens (shown in

Figure 1C), the participant’s wild-type Spike-ACE2 competition

activities remained high at 99.7%, while BA.1 and BA.2 Spike-

ACE2 activities rose substantially to 87.9% and 89.3%,

respectively (Figure 2B); values that represented the 71st, 75th,

and 79th percentiles of peak values for the control vaccinees at

one month post-third vaccine dose.

Following BA.2 infection, the participant’s wild-type Spike

IgG concentration declined slightly to 3.73 log10 BAU/mL,

whereas their BA.1 and BA.2-specific values increased slightly

to 3.20 and 3.51 log10 BAU/mL, respectively (Figure 2A). These
Frontiers in Immunology 06
trends were consistent with the anti-RBD IgG concentrations

measured in the primary analysis (shown in Figure 1B), though

of a smaller magnitude. Similar to the ACE2 competition

activities measured using RBD antigens (shown in Figure 1C),

the participant’s wild-type Spike-ACE2 competition activity

remained high (99.5%) after BA.2 infection. BA.1 and BA.2

Spike-ACE2 activities increased, though only marginally, to

88.6% and 90% respectively (Figure 2B).

Together, these results confirm that the participant’s humoral

responses to wild-type and Omicron variants were broadly

average for a COVID-19-naive individuals one month post-

third vaccine dose. While subsequent BA.1 infection boosted

Omicron-specific immune responses (highlighted by an increase

in BA.1 and BA.2 Spike-ACE2 competition activities), BA.2

reinfection did not substantially augment these activities further,

but rather extended the duration of these responses.
Discussion

This study provides a detailed characterization of humoral

responses in a laboratory-confirmed case of serial infection by

SARS-CoV-2 Omicron subvariants BA.1 and BA.2 in an

individual who had mounted typical immune reactivity to
A B

FIGURE 2

Longitudinal humoral responses against wild-type, BA.1 and BA.2 Spike antigens. Panel (A) Anti-Spike IgG concentrations, expressed in log10
BAU/mL, in the case participant (large circles) versus a subset of the comparison group of SARS-CoV-2-naive individuals (small circles) at one,
three and six months following three-dose COVID-19 vaccination. Wild-type-specific (WT) anti-Spike responses are in red; BA.1-specific ones
are in blue; BA.2-specific ones are in black. Matching solid lines connect the participant’s longitudinal values; dotted lines connect the median
values for the comparison group. Approximate times of BA.1 and BA.2 infections are shown with arrows. Total Ns are shown at the bottom of
the plot; the final time point has a smaller N because some control participants were censored due to post-vaccination SARS-CoV-2 infection
or had not yet completed the visit. Panel (B) same as (A), but for longitudinal ACE2% displacement function from wild-type (red), BA.1 (blue) and
BA.2 (black) Spike protein.
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three doses of COVID-19 mRNA vaccine. While data on repeat

Omicron infections remain limited, a recent genomics-based

study from Denmark identified 47 cases of BA.2 reinfection that

occurred between 20 and 60 days following BA.1 infection (24).

The authors concluded that such events were rare (<0.1% of

cases during the brief window of analysis) and more likely to

occur among unvaccinated individuals, but further evaluation of

the data indicates that most reinfection cases were due to BA.2

following BA.1. The fact that the present case participant was

one of only 151 original enrollees of our observational COVID-

19 vaccine study (25, 26), which would translate into an

Omicron serial infection prevalence of 0.7%, suggests that the

risk of serial infection with Omicron subvariants may be higher

than existing estimates. We note however that the participant’s

status as a frontline healthcare worker may have resulted in an

increased risk of exposure and infection over the general

population (29). The potential influence of the participant’s

hypothyroidism and familial hypercholesterolemia (though

well-controlled by medication) on the symptoms profile

following infection is also unknown.

Acknowledging that our ability to generalize from a single

case is limited, we note that initial vaccine-induced IgG, ACE2

competition and virus neutralization response magnitudes

against wild-type and Omicron BA.1 in the participant were

comparable to the median values observed in diverse COVID-

19-naive controls who were vaccinated along the same timeline.

The observation that average humoral responses to three-dose

vaccination failed to protect the participant against Omicron

BA.1 infection is consistent with the extremely high rates of

community transmission observed in many regions during

recent Omicron-driven pandemic waves. Given that third

vaccine doses substantially boost humoral responses in

individuals of all ages (30–33), the relative risk of Omicron

breakthrough infection is likely to be even higher among

individuals who have received fewer than three doses (18, 34).

Relative risk is also likely to increase with time following

vaccination due to natural declines in antibody responses (26,

35–38), which, combined with natural Spike antigenic drift, may

lead to ongoing risk of periodic re-infection (39). Additional

studies are needed to assess these factors, as well as to investigate

the impact of Omicron (re)infections following three-dose

vaccination in larger numbers of individuals.

While it is perhaps unsurprising that COVID-19 vaccines based

on ancestral SARS-CoV-2 sequences will not generate sterilizing

immunity against Omicron strains that have evolved to evade host

immune responses (4, 40–44), various lines of evidence suggest that

“hybrid” immunity resulting from vaccination plus infection

nevertheless provides enhanced protection against SARS-CoV-2

variants (5, 45), due in part to maturation of Spike-specific

antibodies (46–48) and expansion of antiviral T cells (49–54). In

light of this, we note that symptomatic BA.1 infection boosted the

case participant’s vaccine-induced humoral responses against both

BA.1 and BA.2. The heightened response nevertheless failed to
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prevent subsequent symptomatic infection by BA.2 ten weeks later,

suggesting that these responses were insufficient to block infection,

or that they had already declined to below-protective levels in this

relatively short timeframe. Moreover, even after vaccination plus

two Omicron infections, the participant’s ACE2 competition and

virus neutralization responses against BA.1 (as well as ACE2

competition activity against BA.2) plateaued at levels substantially

lower than those seen against the wild-type strain, suggesting that

the participant will remain at risk of new Omicron infections. A

limitation of our study is that it did not assess T cell responses,

which can reduce disease severity but may have less impact on virus

transmission (55, 56), and thus we may be underestimating the

protection that results from infection and reinfection in this case.

Despite documentation of this case, it is important to keep in

perspective that the participant’s symptoms following both

infections were not severe enough to require hospitalization.

This clearly demonstrates that vaccination was nevertheless

effective in its primary goal of preventing severe disease.

Results of our study should therefore not be mis-interpreted to

suggest that COVID-19 vaccines (including booster doses) are

not effective at their primary goal - indeed, substantial evidence

clearly indicates that a third COVID-19 dose significantly

reduces the risk of severe disease outcomes, including against

Omicron (40, 57–59). Rather, our observation that “typical”

antibody responses to vaccination failed to prevent Omicron

infection in the case participant, and that the resulting enhanced

“hybrid” immunity also failed to prevent Omicron re-infection,

are consistent with the potentially limited ability of current

vaccines to prevent recurrent symptomatic Omicron

infections. Our study thus highlights the importance of

additional preventive measures to reduce transmission,

including masking, pre-exposure prophylaxis [e.g (60)], and

potentially variant-specific immunizations (61–64), particularly

as vaccine-induced immune responses naturally decline

over time.
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Correlations between wild-type (WT) and BA.1-specific anti-S-RBD and

anti-Spike humoral responses measured following three COVID-19
vaccine doses using Meso Scale Diagnostics V-plex panels 22 and 25.
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in Figure 2) are included in this analysis. Symbols are colored based on
post-vaccination time point, though the Spearman’s rho (r) and p-value

reported are for the combined data.
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