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ABSTRACT Colonization with multidrug-resistant Escherichia coli strains causes a 
substantial health burden in hospitalized patients. We performed a longitudinal 
genomics study to investigate the colonization of resistant E. coli strains in critically 
ill patients and to identify evolutionary changes and strain replacement events within 
patients. Patients were admitted to the intensive care unit and hematology wards at a 
major hospital in Lebanon. Perianal swabs were collected from participants on admis
sion and during hospitalization, which were screened for extended-spectrum beta-lac
tamases and carbapenem-resistant Enterobacterales. We performed whole-genome 
sequencing and analysis on E. coli strains isolated from patients at multiple time points. 
The E. coli isolates were genetically diverse, with 11 sequence types (STs) identified 
among 22 isolates sequenced. Five patients were colonized by E. coli sequence type 
131 (ST131)-encoding CTX-M-27, an emerging clone not previously observed in clinical 
samples from Lebanon. Among the eight patients whose resident E. coli strains were 
tracked over time, five harbored the same E. coli strain with relatively few mutations over 
the 5 to 10 days of hospitalization. The other three patients were colonized by different 
E. coli strains over time. Our study provides evidence of strain diversity within patients 
during their hospitalization. While strains varied in their antimicrobial resistance profiles, 
the number of resistance genes did not increase over time. We also show that ST131-
encoding CTX-M-27, which appears to be emerging as a globally important multidrug-
resistant E. coli strain, is also prevalent among critical care patients and deserves further 
monitoring.

IMPORTANCE Understanding the evolution of bacteria over time in hospitalized 
patients is of utmost significance in the field of infectious diseases. While numerous 
studies have surveyed genetic diversity and resistance mechanisms in nosocomial 
infections, time series of within-patient dynamics are rare, and high-income countries are 
over-represented, leaving low- and middle-income countries understudied. Our study 
aims to bridge these research gaps by conducting a longitudinal survey of critically 
ill patients in Lebanon. This allowed us to track Escherichia coli evolution and strain 
replacements within individual patients over extended periods. Through whole-genome 
sequencing, we found extensive strain diversity, including the first evidence of the 
emerging E. coli sequence type 131 clone encoding the CTX-M-27 beta-lactamase in 
a clinical sample from Lebanon, as well as likely strain replacement events during 
hospitalization.

KEYWORDS epidemiology, E. coli, colonization, longitudinal study, whole-genome 
sequencing, ST131

M ultidrug-resistant Gram-negative bacteria represent an important threat in 
hospital settings (1–3). During hospitalization, patients may be colonized with 
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bacteria that develop resistance due to changes in gene expression or that evolve 
resistance via point mutation or horizontal gene transfer (4–6). In hospitalized 
patients, resistant strains’ survival and replication may depend on the selection pressure 
exerted by antibiotics (6). When resistant bacteria colonize the gastrointestinal tract, 
this provides an opportunity for transfer of resistance genes among pathogens and 
gut microbiome commensal bacteria (7–9). Multidrug-resistant Escherichia coli are a 
burden on healthcare systems and are often responsible for treatment failures in patients 
(10–12). However, the success of the globally prevalent E. coli sequence type 131 
(ST131) is not explained simply by its antibiotic resistance profile and likely involves 
diverse colonization and virulence factors (13, 14). Resistant bacteria disseminate among 
critically ill patients in hospitals, causing life-threatening infections (7, 15). The pathoge
nicity of E. coli is multifaceted, including genetic and environment factors allowing E. coli 
to expand its range of infection beyond the intestine, which increases disease severity 
(16–19).

Mixed infections of distinct E. coli strains within a single patient have been observed 
previously, and these strains can also evolve within patients (20). Studies tracking E. 
coli diversity within patients over time are still relatively rare and have focused mainly 
on extraintestinal infections. For example, the transition of E. coli from urine to blood 
usually involves very few genetic changes but occasionally involves colonization by 
genetically distant strains (21). In acute infections, extraintestinal E. coli can rapidly evolve 
hypermutator phenotypes, generating dozens to hundreds of mutations that could 
provide adaptation to new tissue types (22). Over time scales of a few years, up to 32% 
of samples (n = 41) from US military personnel were colonized by multiple distinct E. 
coli phylogroups, indicating co-existence of distinct strains or replacement of one strain 
by another in the gut (23). In a UK hospital study, over 25% (n = 24) of patients were 
colonized by multiple distinct strains (19). Whether such strain dynamics occur during 
intestinal colonization over shorter time scales, or within hospitalized patients, remains 
unclear. We hypothesize that the hospital environment provides a diverse pool of strains 
for co-colonization or strain replacements and may also select for antibiotic resistance 
genes as critically ill patients are treated with broad-spectrum antibiotics.

In Lebanon, the prevalence of extended-spectrum beta-lactamase (ESBL)-producing 
E. coli has increased over time, from 12% (n = 57) in 2005 to 29% (n = 244) in 2012 (24). 
E. coli was the most frequently isolated bacterium from bloodstream infections (45.6%, 
n = 103), with 79.6% (n = 82) of the isolates producing ESBLs (25). Most studies to 
date have described the prevalence of resistant E. coli strains isolated from hospitals or 
community settings in Lebanon (26–33). Others described their prevalence in animals 
and the environment (22, 34–42). Here, we analyzed whole-genome sequence data using 
a longitudinal approach to describe the colonization and evolution of multidrug-resist
ant E. coli in critically ill patients in Lebanon.

MATERIALS AND METHODS

Study design

A prospective observational cohort study was conducted over a 6-month period from 
June 2021 to December 2021 at Makassed General Hospital in Lebanon. This is a 200-bed 
hospital located in a heavily populated area of Beirut with a medically underserved 
population. It serves nearly 15,000 in-patients per year that are mostly from middle- to 
low socioeconomic status groups.

Sampling, bacterial culture, and data collection

A standard protocol for infection and prevention control to screen for any patient 
admitted to the intensive care unit and to the hematology oncology unit has previously 
been established at Makassed General Hospital. As described below, a perianal swab 
was collected from each patient and screened for extended-spectrum beta-lactamases 
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and carbapenem-resistant Enterobacterales (ESBL and CRE, respectively). In total, 144 
patients were admitted to the intensive care and oncology units; they were recruited for 
this study and followed during their hospitalization. Only patients that were hospitalized 
for more than 3 days were included. In total, 97 patients were dropped because of 
their early discharge, death, or transfer to another hospital ward, leaving 47 remain
ing patients. Perianal swabs were collected by healthcare workers at admission and 
during hospitalization. A minimum of 5 days was required between the first, second, 
or third collection time. A standardized questionnaire for each patient was filled by the 
resident consultee. The questionnaire included information about age, gender, cause 
of hospitalization, duration of hospitalization, antibiotics exposure (past and during 
hospitalization), types of antibiotics used, and bacterial infection during hospitalization.

Bacterial culture

Anal swabs were cultured on three different culture media plates: MacConkey agar 
without antibiotics to confirm the absence of susceptible Gram-negative strains, 
MacConkey agar with ertapenem (0.5  mg/L) to isolate carbapenamase-producing 
bacteria, and MacConkey agar with ceftriaxone (4  µg/mL) for isolation of ESBL-produc
ing bacteria. Resistant strains were collected from the selective plates that includes 
antibiotics for further analysis. All plates were incubated at 37°C for 24 h. Following 
bacterial growth, two colonies of the same color, morphology, and shape were picked 
and pooled and then taxonomically classified using matrix-assisted laser desorption/ioni
zation time-of-flight mass spectrometry (MALDI-TOF). Antimicrobial susceptibility using 
the disk diffusion method was determined for all E. coli isolates for the follow
ing antibiotics: amoxicillin (20 µg), amoxicillin/clavulanic acid (20/10 µg), cefepime 
(30 µg), ceftriaxone (30 µg), piperacillin-tazobactam (100/10 µg), ceftazidime-avibac
tam (20/10 µg), cephalothin (30 µg), ertapenem (10 µg), fosfomycin (200 µg), trimetho
prim/sulfamethoxazole (1.25/23.75 µg), ciprofloxacin (5 µg), colistin (10 µg), imipenem 
(10 µg), nitrofurantoin (300 µg), amikacin (30 µg), tetracyclin (30 µg), and gentamicin 
(10 µg).

Whole-genome sequencing

Genomic DNA was extracted from the E. coli isolates using the QIAamp DNA Mini Kit 
(Qiagen) following the manufacturer’s guidelines. DNA concentrations were measured 
using Qubit (Thermo Fisher Scientific) with the Qubit dsDNA HS Assay Kit (Thermo Fisher 
Scientific). Sequencing libraries were made with Nextera XT DNA Library Preparation 
Kit (Illumina) according to the manufacturer’s instructions. Illumina sequencing was 
performed on a Novaseq-6000 producing paired-end 2 × 150-bp reads, with an average 
base quality (Phred score) of 36 and G + C content of 54.1%.

Genomic analysis

Reads were processed with Trimmomatic v0.39 (43) to remove adaptor sequences 
and quality filter the reads; we specified the TruSeq3 adapters and the quality fil-
tering parameters of LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, and MINLEN:30. 
The assembly was performed using SPAdes Genome Assembler v3.15.4 with default 
parameters (44). Assemblies were annotated with Prokka v1.14.5 (45) with the kingdom 
specified as bacteria. The resulting annotated genes were processed by Panaroo v1.3.0 
to create the core genome alignment and pangenome (46). This was run with the 
“strict” clean mode parameter and with the “clustal” option specified for the core 
genome alignment. Plots were generated using Roary v3.12.0 including the pangenome 
frequency plot, a presence and absence matrix against a tree and a pie chart of the 
pangenome, breaking down the core, soft core, shell, and cloud (47). The phylogenetic 
tree along with the pangenome of the isolates was visualized with Phandango v1.1.0 
(48). The genomes of this study were aligned with 32 previously published E. coli 
genomes identified from clinical settings to create first an extended core genome 
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alignment from Panaroo and second to generate a maximum-likelihood phylogeny from 
the combined alignment using RAxML (46, 49). The resulting tree was visualized with 
the Interactive Tree of Life (iTOL v6) (50). SRST2 (v0.2.0) was used to identify multi-locus 
sequence types (MLST) and serotypes (51). Phylogroups were classified based on the 
ClermonTyping method (52). FastANI v1.33 was used to calculate the average nucleotide 
identity (ANI) of orthologous genomic regions between pairs of genome assemblies 
(53). The presence of antimicrobial resistance genes, putative virulence factors, and 
plasmid replicons were studied using ABRicate with the ResFinder database, Virulence 
Factor database, and PlasmidFinder database (54). In silico plasmid replicon typing was 
performed using PlasmidFinder v2.1 (https://cge.food.dtu.dk/services/PlasmidFinder/) 
and IncF replicon sequence types were characterized through the pMLST v2.0 tool 
(https://cge.food.dtu.dk/services/pMLST/) (55). We used Snippy v4.6.0 to compare E. 
coli genomes from the same patient and identify single nucleotide variants (SNVs). 
The reference genome used was the E. coli strain identified at T0 (at hospital admis
sion) or at T1 (the first collection time during hospitalization) (56). The major allele 
frequency distribution was also based on the identified variants, including SNVs and 
insertions/deletions.

RESULTS

Study participants and microbial carriage

In total, 20 (43%) patients were eligible for this study, all of whom were colonized 
by antibiotic-resistant isolates. Throughout their hospitalization, 14 (70%) patients 
were colonized with E. coli, one with Raoultella ornithinolytica and one with Klebsiella 
pneumoniae. Four patients were colonized by multiple bacterial species during their 
hospitalization. Here, we focus on the E. coli-colonized patients. The median age of 
patients infected with E. coli was 67 years (range = 17–88 years), eight were female 
(57%) and six (43%) were male. These 14 patients were admitted to different hospital 
wards: the intensive care unit (n = 7), the hematology and oncology ward (n = 3), and 
the isolation ward (n = 4). The median duration of hospitalization for these patients was 
29 days (range = 9–73 days). The cause of admission was either pneumonia, chemother
apy, bleeding, or sepsis (Table S1). In total, 11 out of 14 patients had an indwelling 
catheter during hospitalization and 13 patients were under corticosteroid therapy. The 
patients were exposed mostly to broad-spectrum antibiotics during their hospitalization, 
including the following: meropenem which was used in 50% of patients; colistin and 
piperacillin/tazobactam in 50%; amikacin, ceftriaxone, and ceftazidime/avibactam in 
50%; and levofloxacin in 29% of patients. Vancomycin was used in 43% of patients; 
trimethoprim-sulfamethoxazole, teicoplanin, gentamycin, and clarithromycin were used 
in less than 20% of patients. The median time between first sample collection (T0) and 
second collection (T1) was 9 days (range = 5–28 days). During hospitalization, 7/14 
(50%) of patients were documented to have infectious episodes (Table S1), including 
respiratory tract infections (n = 5), followed by bacteremia (n = 5), urinary tract (n = 3), 
and skin and soft tissues (n = 3).

Genomic typing and phylogeny of E. coli isolates

In total, 12 out of 14 patients infected with E. coli were selected for further analysis, 
of which 8 patients had isolates from multiple time points, yielding 22 whole-genome 
sequences in total. Two patients (MGH 3 and MGH 12) and two isolates (MGH 2A and 
MGH 6B) were dropped since their assembly sizes exceeded 8 Mbp, much larger than 
expected for an E. coli genome. Two of these assemblies also had median SNV major 
allele frequencies in the 0.93–0.97 range, whereas all others were very close to 1 (Fig. S1). 
This suggests that some of the unexpectedly large assemblies could have been due to 
contamination or due to pooling colonies of two distinct E. coli strains. The remaining 22 
genomes considered for further analysis can be considered single strains.
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These 22 E. coli genomes were genetically diverse, with 11 STs (ST10, ST44, ST69, 
ST131, ST224, ST227, ST540, ST648, ST1286, ST1431, and ST1491) identified (Fig. 1). The 
most common was ST131 which was carried by 5/12 patients (41%).

We inferred the maximum-likelihood phylogeny of these isolates using a core-gene 
alignment. We included 32 E. coli genomes previously sequenced from clinical samples 
collected in Lebanon (31, 32). Based on this phylogeny, we identified five phylogroups. 
Five isolates were phylogroup C, eight were phylogroup A, and phylogroups F and D 
were each represented by one isolate. The ST131 strains (within phylogroup B2) were the 
most frequent (n = 7). In total, 11 serotypes were identified with the most common being 
O25:H4 and O9:H30 (Fig. 2).

Of the six patients sampled at two time points 5–11 days apart, five patients (MGH 1, 
MGH 8, MGH 9, MGH 10, and MGH 11) had pairs of isolates that clustered very closely on 
the phylogeny (Fig. 2) and had identical profiles of AMR genes (Fig. 1). This is consistent 
with E. coli lineages persisting in patients between sampling points, although we cannot 
exclude transmission events of near-identical genomes among patients, for example, the 
two isolates from patient MGH 8 were very closely related to isolates from patients MGH 
4, 6, and 14, suggesting possibly recent transmission of ST131 strains. In contrast, the two 
isolates from patient MGH 13 sampled 7 days apart came from entirely different phy
logroups (C and D; Fig. 2) and had distinct AMR gene and plasmid profiles (Fig. 1). This 
suggests either a mixed infection in patient MGH 13 (with phylogroup C sampled first 
and D sampled second) or a strain replacement that occurred between time points.

Prevalence and pangenome variation of ST 131 strains

Among the 12 patients with sequenced isolates, five harbored the ST131 type. Of these, 
four strains belonged to the O25:H4 serotype and fimH30 variant and one strain to the 
O16:H5 serotype and fimH41 variant. ST131 formed a distinct clade on the phylogenetic 
tree, classified as phylogroup B2 (Fig. 2). All ST131 genomes encode blaCTX-M-27, blaEC-5, 
and the IncF plasmid group F1:A2:B20 plasmid; 80% of them also encode blaOXA-181. 
They included type 1 fimbriae, P fimbriae, and enterotoxin TieB. All ST131 genomes were 
highly genetically similar, with average nucleotide identity values ranging from 99.5% to 
99.9% (Fig. S2). A pangenome analysis revealed 3,308 core genes present in all isolates, 
85 “soft core” genes, 2,520 “shell genes,” and 2,653 “cloud” genes. The gene presence/
absence patterns are shown alongside the phylogeny and strain typing information (Fig. 
3). Notably, ST131 strains with the O25:H4 serotype have a unique pattern of gene 
presence/absence, which is distinct from other ST131 strains and from other phy
logroups.

Antimicrobial susceptibility profiles and genetic determinants of AMR

Among the 14 patients carrying E. coli, 13 carried MDR strains. Only one patient (MGH 11) 
carried a strain that was resistant to cephalosporins, yet it was susceptible to all other 
antibiotics (Table S2).

Susceptibility testing was performed on 29 E. coli isolates collected from patients at 
different time points. Identical strains (defined as ANI of 99.9% or more) isolated from the 
same patient at different time points were omitted from the analysis (n = 7). Among the 
remaining 22 E. coli strains, 55% (n = 12/22) were ESBL producing, 5% (n = 1/22) CRE, and 
41% (n = 9/22) ESBL/CRE. All patients enrolled in this study carried resistant strains upon 
admission. A total of 95% (n = 21/22) were resistant or intermediate to cefotaxime, 86% 
to ceftriaxone (n = 19/22), 54% (n = 12/22) to ceftazidime, 63% (n = 14/22) to ciprofloxa-
cin, 50% (n = 11/22) to ertapenem, 32% (n = 7/22) to imipenem and meropenem, and 
10% (n = 2/22) to ceftazidime/avibactam (Table S2).

The genomes of these isolates were screened for known genetic determinants of AMR 
using the ABRicate pipeline. More than 46 different acquired AMR genes were detected; 
β-lactamases (n = 19 genes) and aminoglycosidases (n = 9 genes) were among the most 
common, and patients contained 2–16 resistance genes, with a median of 11 per patient 
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(Fig. 1). Among the 12 patients with non-identical E. coli strains, Class A, C, and D beta-
lactamases were mostly identified, including blaCTX-M-15 (n = 5/12, 41%), blaCTX-M-27 (n = 
5/12, 41%), blaEC-5 (n = 5/12, 41%), blaEC-15 (n = 4/12, 33%), and blaOXA-181(n = 4/12, 
33%). The beta-lactamases blaNDM-5 and blaOXA-244 were seen in one and two patients, 
respectively. Several other AMR genes were also detected (Fig. 2), with qnrS1 (encoding 
quinolone resistance) being quite prevalent (n = 9/12, 75%). There was a correlation 
between the observed antibiotic resistance phenotypic profile and the specific genes 
identified through sequencing.

During hospitalization, beta-lactam antibiotics were used to treat critically ill patients, 
all of whom were colonized with cephalosporinase-producing E. coli. Notably, in addition 
to this treatment regimen, six patients were infected with E. coli encoding carbapene
mase genes and were administered meropenem. This approach raises critical questions 
about the selection for resistance genes and the effectiveness of treatment in individuals 
colonized with these resistant isolates. Evaluating whether patients with such coloniza
tion could still respond positively to antibiotic therapy is essential in our ongoing efforts 
to address antibiotic resistance and improve patient outcomes.

Plasmid and virulence factor identification

The ABRicate pipeline was also used to identify the incompatibility groups for the 
recovered plasmid replicons (Fig. S3). IncFI was the most common plasmid (73%; n = 
16/22), followed by IncFII (63%; n = 14/22), IncX (41%, n = 9/22), IncI (23%; n = 5/22), IncB 
(27%; n = 6/22), and IncH (14%; n = 3/22).

We screened the isolates for virulence genes which are often encoded by E. coli and 
detected a wide variety (Fig. S4). Some virulence genes were commonly detected, 
including ompA (100%) which is an outer membrane protein required for conjugation. 
Iron regulatory proteins (IRP1 and IRP2) were detected in 86% (n = 19/22) of isolates.

We recovered some of the known markers of intestinal and extraintestinal virulence in 
some isolates, such as the invasion and evasion factors (kpsM and kpsD [1%, n = 9/22]) 
and adherence factors (fim [86%, n = 19/22]) and pap genes (41%, n = 9/22) that are 
associated with intestinal and extraintestinal infections in humans. One patient (MGH 9) 
harbored an enteroaggregative E. coli strain with an anti-aggregation gene and 

FIG 1 Distribution of antimicrobial resistance genes across the E. coli genomes recovered from patients. Genetic determinants of resistance are grouped 

according to their corresponding antimicrobial classes, which are color coded. Sequence-type profiles, serotypes, phylogroup, and Fim type are indicated for 

each isolate. The time differences between T0/T1 or T1/T2 are indicated under Collection Timeline. *MGH 2B, MGH 5B, MGH 6A, and MGH 14A strains were 

sequenced only at T0 or T1. The plasmid replicons identified in each isolate were included in the table. The patients are differentiated by numbers, and each 

letter next to the number represents the different time points of collection: A (T0), B (T1), and C (T2).
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dispersin-encoding gene (aap) and another patient (MGH 5) an enterotoxigenic E. coli 
with heat-labile (eltA and eltB) enterotoxin genes. Other virulence genes detected in the 
study included chu, which codes for an outer membrane hemin receptor (41%, n = 9/22), 
and the enterotoxin gene, senB (32%, n = 7/22).

FIG 2 Maximum-likelihood phylogenetic tree of 54 E. coli isolates from clinical samples in Lebanon. The tree includes genomes sequenced in the current study 

(indicated by asterisks) as well as 32 previously sequenced genomes identified in clinical samples from Lebanon. The phylogroup of the samples is shown in 

different colors.
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Strain dynamics within patients

A comparative genomic analysis was performed to compare the strains isolated from 
patients at different time points. Among the eight patients who were followed over time, 
five (MGH 1, MGH 8, MGH 9, MGH 10, and MGH 11) had very closely related E. coli isolates 
at T0 and T1 (Fig. 1 and 2). The duration of hospitalization for these patients ranged 

FIG 3 Gene presence/absence matrix from pangenome analysis of 22 E. coli isolates. The Pangenome and maximum-likelihood tree and distribution of accessory 

genes were visualized using Phandango. Blue and white represent the presence and absence of genes, respectively.

FIG 4 Summary of E. coli genetic diversity and putative strain replacements within patients over time. Each patient is shown on a separate row, with time 

indicated along the horizontal axis. E. coli genomes are indicated with rectangles or triangles, connected by arrows showing the number of days between 

samples and their ANI. Genomes sharing a high ANI (99.9% or more) are shown with the same shape, and those with lower ANI (different strains) are shown with 

different shapes. The total number of genetic variants within each patient is indicated on the right: INS (insertion) and complex variants (the combination of SNVs 

and multiple nucleotide variants).
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between 5 and 11 days, and genomes differed by an average of 16 SNVs (range 10–22 
SNVs). In contrast, three patients (MGH 4, MGH 7, and MGH 13) were colonized by a 
highly divergent strain (different by >1000 SNVs or <97% ANI; Fig. S2) between time 
points, leading to marked changes in AMR gene profiles (Fig. 1). In two patients, MGH 
4 and MGH 7, there was a putative strain replacement between T0 and T1, with the 
same strain persisting between T1 and T2, differing by a few SNVs (Fig. 4). Comparing 
only closely related pairs of genomes from the same patient yielded no evidence for a 
molecular clock (Spearman’s correlation between number of SNVs and number of days 
separating isolates, rho = 0.24, P = 0.60). The lack of clock signal could be due to a small 
sample size, short duration of sampling, or sampling only one isolate per patient per time 
point.

Of the 120 genetic variants (SNVs or complex variants of multiple mismatch 
nucleotides or insertions/deletions) observed between closely related isolates from the 
same patient, half (n = 60/120) were located in non-coding regions and 29% (n = 35/120) 
were synonymous changes. Most occurred in hypothetical proteins (n = 18/35, 51%) 
(Table S3). Missense variants or insertions were observed in 21% of the total variants 
detected (n = 25/120). These were detected in hypothetical proteins (n = 12/25, 48%), 
transposases (n = 5/25, 20%), a putative protein YjdJ (n = 1/25, 4%), antigen 43 (n = 2/25, 
8%), cytoskeleton bundling-enhancing antitoxin (n = 1/25, 4%), ompF outer membrane 
porin F (n = 1/25, 4%), and D-alanine-D-alanine ligase A (n = 1/25, 4%) (Table S3). We 
next tested the hypothesis that the frequency of known AMR genes or virulence factors 
(VFs) might increase within patients over time, due to exposure to antibiotics and other 
selective pressures in the critical care hospital environment. Although certain patients 
(e.g., MGH 13) acquired several AMR genes and VFs over time, there was no consistent 
trend across patients (Table S3; Fig. 5). Changes were most pronounced in patients MGH 
4, MGH 7, and MGH 13, who experienced a putative strain replacement between time 
points (Fig. 4 and 5).

FIG 5 Summary of genes acquired or lost in E. coli strains isolated from eight patients at two different points. Gene gains (values above 0) or losses (below 0) 

over time (between T0 and T1) are indicated for AMR genes, VF, plasmids, and insertion sequences (IS).
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DISCUSSION

The carriage rate of resistant E. coli isolates has been increasing in both healthcare 
and community settings. A recent systematic review has shown that at least one in 
five inpatients worldwide were carriers of ESBL-producing E. coli and that the Eastern 
Mediterranean, which includes Lebanon, had the highest carriage rate (45.6%) (57). Such 
high prevalence was in agreement with our study while screening patients for resistant 
Gram-negative bacteria: 70% of patients was colonized with a multidrug-resistant E. 
coli isolate upon admission and during their hospitalization. All patients were critically 
ill and were given broad-spectrum antibiotics during their hospitalization. Despite the 
limited number of patients enrolled, we were able to identify that rectal colonization 
by ST131 subgroup fimH30-O25b, clade C1-M27, harboring blaCTX-M-27 was prevalent, 
sampled in 33% (n = 4/12) of patients. One additional patient harbored a closely related 
isolate: ST131 subgroup fimH41-O25b, clade A-M27, harboring blaCTX-M-27. Comparative 
analyses of the five ST131 isolates showed that these strains share an average nucleo
tide identity of more than 99% and harbor identical virulence factors including type 1 
fimbriae (FimH30) and the secreted autotransporter toxin, both of which are involved 
in uropathogenesis by mediating human bladder epithelial cell adhesion, invasion, and 
biofilm formation (58–61). This strain is also resistant to cephalosporins, carbapenems, 
quinolones, and tetracyclines. ST131 E. coli isolates differ from most other MDR E. coli by 
being more pathogenic causing often urinary tract infections (62).

The ST131 strains carrying CTX-M-15 have been reported to cause many infections 
globally. Recently, the CTX-M-27-producing clade C1 of E. coli ST131 has emerged and is 
thought to have epidemic potential both in community and healthcare settings (63–65). 
To the best of our knowledge, our study reports the first description of E. coli ST131 clade 
C1-M27 circulating in patients in Lebanon. ST131 in Lebanon was first described in 2016 
in animals; however, it was associated with blaCTX-M-15 (39). In our study, we have also 
shown the dominance of blaCTX-M-15 in different strains. This gene generally colonizes 
the gastrointestinal tract of farmed cattle and birds, as well as raw meat intended for 
human consumption which is a part of the Lebanese weekly diet, and was also identified 
in surface water (27, 39, 42). Further surveillance should be implemented in Lebanon to 
understand the transmission of blaCTX-M-15 and blaCTX-M-27 from animals to humans. We 
also identified blaOXA-181 in the ST131 clone. The blaOXA-181 gene is mainly found in E. 
coli and K. pneumoniae. It was first reported in 2007 (66) and was subsequently identified 
in several countries (67–70). However, it is not often isolated in ST131 but mostly linked 
with ST410 and ST1284 (71–73). The presence of both blaOXA-181 and blaCTX-M 27 genes 
in ST131 was first observed in a young man with a war-related wound E. coli infection, 
which escalated to a series of recurrent infections over 3 months; this strain was shown 
to harbor a blaCTX-M 27 gene that was transferred from Morganella morganii (74). This 
exemplifies the ability of E. coli to rapidly acquire resistance genes from other species and 
highlights the need for continuous surveillance of gene transfer and resistance evolution 
in different E. coli sequence types.

To date, few studies have investigated within-patient diversity of E. coli in the same 
patient over time (75). In this pilot study, we sequenced E. coli genomes upon admis
sion and during hospitalization. A limitation of our study is that we only sequenced 
two pooled isolates per patient per time point, making it difficult to distinguish strain 
replacement events from persistent mixed infections. Future efforts should ideally 
sequence multiple genomes from each sample to better characterize within-patient 
diversity and improve inference of transmission events (19, 60–62). In addition, using 
short-read sequencing, it was difficult to confidently link resistance genes to plasmids; 
long-read sequencing could be used to fully assemble plasmids and make these linkages 
with confidence. Finally, our study only sampled perianal swabs. Sampling additional 
body sites and tissues could help establish E. coli transmission routes within patients.

Despite the limitations, we identified three patients with a possible strain replace
ment over a few days of hospitalization. In two of these patients sampled at a third 
time point, the new strain was retained. While we cannot exclude stable co-colonization 
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of these different strains over time, which could have been missed by sequencing two 
pooled genomes per sample, our study opens the possibility that strain replacement 
events could plausibly occur during hospitalization. We also hypothesized that the 
frequency of AMR genes would increase over time in our patients, who were all treated 
with antibiotics. Although patients and strains both varied widely in their AMR and 
virulence gene content, there was no evidence for increasing the frequency of AMR 
genes over time. Our work has therefore shown no major changes in SNV occurrence that 
accounts for disease susceptibility and resistance; this could be due to a lack of power to 
detect an effect in our small cohort or could also suggest that resistant strains are already 
circulating and that resistance is transmitted upon infection rather than evolving within 
patients.

In conclusion, our results provide evidence for the recent emergence of ST131 
subgroup fimH30-O25b, clade C1-M27, in Lebanon and reinforces the need for contin
uous genomic surveillance of this clone among patients in critical care units. Our study 
enables longitudinal stain tracking of E. coli strains, their colonization dynamics, and their 
diversity within hospitals over time.
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