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The distribution of fitness effects (DFE) of new mutations is key to our understanding
of many evolutionary processes. Theoreticians have developed several models to help
understand the patterns seen in empirical DFEs. Many such models reproduce the broad
patterns seen in empirical DFEs but these models often rely on structural assumptions
that cannot be tested empirically. Here, we investigate how much of the underlying
“microscopic” biological processes involved in the mapping of new mutations to fitness
can be inferred from “macroscopic” observations of the DFE. We develop a null model
by generating random genotype-to-fitness maps and show that the null DFE is that
with the largest possible information entropy. We further show that, subject to one
simple constraint, this null DFE is a Gompertz distribution. Finally, we illustrate
how the predictions of this null DFE match empirically measured DFEs from several
datasets, as well as DFEs simulated from Fisher’s geometric model. This suggests that
a match between models and empirical data is often not a very strong indication of the
mechanisms underlying the mapping of mutation to fitness.

evolution | adaptation | theory | mutation | fitness landscape

Mutations are a key source of heritable variation and therefore they play a fundamental
role in how evolution by natural selection occurs. One of the most important properties
governing the fate of a new mutation is its effect on the fitness of the organism in which it
appears. Even though mutations are often classified as deleterious, neutral, or beneficial,
their fitness effects can be viewed as falling along a continuum. The relative frequency
of the different fitness effects of mutations is referred to as the distribution of fitness
effects (DFE). Describing and understanding the DFE is important for many reasons,
including understanding the likely pathways of adaptation (1), the evolutionary potential
for responding to environmental change (2, 3), the driftload (4), and the evolution of
sex (5).

Empirical estimates of the DFE are difficult to obtain. The most direct way to estimate
the DFE is to induce mutations on identified target genes and then compare the growth
rate of each mutant genotype with that of a reference genotype (6). For logistical reasons,
these methods have primarily been used in microorganisms (7–9), and in such studies, the
DFE is generally found to be bimodal (10). One peak of the DFE corresponds to lethal
mutations while the other encompasses mutations that range from mildly deleterious to
beneficial. When excluding lethal mutations, and measuring selection as s = exp(rx− ry)
where rx and ry are the Malthusian growth rates of the focal and reference strains (11), the
DFE often has a shape similar to a Gamma distribution (6). For multicellular organisms, a
targeted mutation approach is often not feasible, but analogous studies can be done using
mutation-accumulation experiments (10, 12). In either case, the goal is to estimate the
DFE arising from de novo mutations. This contrasts with other approaches that attempt
to infer the DFE from standing genetic variation using sequence data (see ref. 13).

Several theoretical frameworks have been developed to provide an understanding of
the DFE and for making predictions about the form of the distribution that we expect
to observe. The general approach is to construct a fitness landscape that maps genotypes
to fitness (14). For example, the house of cards model (15), the NK model (16), and
the rough Mount Fuji model (17), all assign a fitness value directly to each genotype
in a way that depends on the mutational “distance” between them. In a second type
of model, mutations are assigned a fitness value indirectly, by first considering their
phenotypic effect and then mapping this phenotype to fitness. Within this approach,
Fisher’s geometric model has been a common choice to analyze various evolutionary
questions related to the DFE (e.g., refs. 18–23, reviewed in ref. 24). Fisher’s geometric
model assumes that fitness is maximized at a particular value of some quantitative trait
and that fitness declines smoothly as the distance of the trait from the optimum increases
(24). The popularity of this model stems from its mathematical tractability, its intuitive
appeal, and its emergence from primary biological principles (24, 25).
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Some of the above models make predictions that match the
properties of empirical DFEs remarkably well (see ref. 6). For
example, Fisher’s geometric model predicts that the DFE should
follow a modified Gamma distribution (20) and also generates
relatively accurate predictions about other quantities such as epis-
tasis and dominance (21). Recent studies, however, have shown
that several fitness landscape models can produce predictions
close to empirical observations (23, 24, 26). Indeed, it might well
be very difficult to distinguish between theoretical models based
on available data because empirical estimates of the DFE are often
inferred from a limited number of observations. Furthermore,
the underlying assumptions of some fitness landscape models—
even though classically used in theoretical genetics—are very
difficult to verify empirically. For example, the predictions of
Fisher’s geometric model depend on unverifiable assumptions
about the complexity of the organism’s phenotype, which is
usually quantified by some notion of phenotypic dimension (see
below for a more precise explanation).

What does a match between the predictions of fitness landscape
models and empirical DFEs tell us about the underlying biology
of mutation and fitness? Put another way, how much about
the underlying “microscopic” biological processes involved in
the mapping of genotypes to fitness can be inferred from
“macroscopic” observations of the DFE? If many different
underlying processes lead to the same predicted DFE then little
would be learned about these underlying biological processes
from empirical patterns of DFEs alone (27). One way to address
this question is to determine the statistical properties of the
DFE that are expected based on some kind of null or random
underlying model. Any deviation from the null model could
then be taken as a signal of the underlying biological processes
involved. The goal of this paper is to develop one possible
such null model for the DFE. We will show that this null
model produces several predictions that match empirical data
very well. We conclude by discussing how our results can be
used, together with existing fitness landscape models, to better
infer the mechanisms underlying empirical measurements of the
DFE.

1. Modeling the DFE

In this section, we first cast previous theory for the DFE into
a more abstract setting in order to better see the relationship
between this theory and the null model. Then, we derive the null
model.

1.1 A General Setting for Landscape Models of the DFE. Land-
scape models of the DFE can be viewed as having three main
ingredients. The first is the set, G, of all genotypes of the
organism. For the moment we make no assumption about how
the genotypes in this set are related to one another, nor do we
impose any structure on the set. Thus,G is simply a set containing
all distinguishable genotypes in terms of their sequence identity,
sequence length, karyotype, etc. Second, for models of the de
novo DFE, an assumption is made about how to select a subset
Gm ⊆ G of genotypes through mutation from a wild-type
genotype gWT ∈ G. Third, some method of assigning a fitness
value to each genotype is assumed. With these ingredients, one
then asks questions about the resulting distribution of fitness
values of genotypes in the subset Gm.

Rather than working directly with the set of genotypes G,
Fisher’s geometric model restricts things by assuming that each
genotype in G can be assigned a real-valued n-dimensional
number x ∈ Rn. In this way, a structure is imposed on the

set G by assuming that the elements of G can be embedded in
what is, mathematically, called a metric space (Rn, d) where
d is the usual (possibly weighted) Euclidean “distance.” In
particular, under this embedding it then becomes meaningful to
talk about the distance between different genotypes. Biologically,
x is usually viewed as an n-dimensional phenotype corresponding
to that genotype, but a precise definition of what constitutes a
dimension or a phenotype is not typically given. Furthermore,
since not all properties of an organism’s phenotype can be
described mathematically by a value in Rn, x does not have a
clear biological interpretation. Notice that this also introduces
the implicit assumption that there exists a continuum of possible
genotypes rather than a discrete set since each genotype’s identity
can take any value in Rn. For the second ingredient, we begin
by choosing a particular genotype to label as the wild type.
Then, because we have a way to quantify the distance between
genotypes, the set of mutant genotypes Xm (which is the set in
Rn that corresponds to Gm in G) is then generated by a form
of nearest neighbor mutation from the wild type. Specifically, it
is usually assumed that the set Xm is obtained by drawing values
of x from an n-dimensional Gaussian density centered at xWT .
Finally, for the third ingredient, it is assumed that the fitness
of a genotype x ∈ Rn is a Gaussian function of x centered at
some optimum. With these three restrictions, Fisher’s geometric
model thus essentially maps a particular chosen form for the
distribution of mutation effects in phenotype space, through a
particular chosen form of fitness function, to the DFE.

The Mt. Fuji and NK models are constructed in a similar way.
Again, rather than working directly with the set of genotypes G,
these models restrict things by characterizing each genotype as
a string of letters of length n, where each letter is one of a set
of possible choices (e.g., A, T, C, G). Often this is simplified
further by allowing only two choices, and therefore a genotype
is characterized as a binary string, x, of zeroes and ones. In this
way, a structure is again imposed on the set G, but now by
assuming that the elements of G can be embedded in a metric
space ({0, 1}n, d) where d is typically taken to be the hamming
distance (i.e., the number of differences between two strings
across all of the n sites). This thereby again allows us to talk
meaningfully about the distance between genotypes. For the
second ingredient, we again choose a particular genotype to label
as the wild type, and the set of mutations is again generated by a
form of nearest neighbor mutation from this wild type, but now
using the hamming distance as the metric. Finally, for the third
ingredient, many such models again simply assume a particular
fitness mapping (e.g., fitnesses are assigned randomly from a
uniform distribution). This description provides a different way
to characterize genotypes than Fisher’s geometric model, with
the benefit that it has a clear biological interpretation. One
shortcoming, however, is that it excludes the possibility of
genotypes of different lengths or karyotypes. Nevertheless, as
with Fisher’s geometric model, these three restrictions mean that
again the particular chosen form for the distribution of mutation
effects in sequence space is then mapped, through a particular
chosen fitness function, to the DFE.

1.2 Null Model for the DFE. The null model developed here
also falls within this general three-ingredient framework. We
focus on asexually replicating organisms whose replication rate is
measured while in the exponential growth phase because this
is how most of the existing data were collected (7). In this
context, empirical studies typically measure the fitness of a mutant
genotype by estimating its population size at two (or more) time
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points. The ratio of these estimates then gives a multiplicative
measure of absolute fitness, which we denote by λ; i.e., λ is
the factor by which a typical mutant individual multiplies over
the time period in question. Sometimes this growth factor is
log-transformed to give an additive measure of absolute fitness
(i.e., the Malthusian growth rate), but either way the raw data
are usually simply estimates of population size at different time
points. Since reproduction is inherently a multiplicative process,
we therefore take λ to be the fundamental measurement for
which we seek a null model. Once a null model is obtained for
this multiplicative measure of fitness, we can then derive the
corresponding null model for other fitness measures from it (SI
Appendix, Appendix 1). We wish to emphasize, however, that
deriving a null model by starting with a fitness measure other
than λ can produce different results, and this should be a focus
of future research.

Most studies of the DFE focus on relative fitness rather than
absolute fitness. They do so by normalizing the absolute fitness
of each mutant genotype with the fitness of a reference genotype.
Therefore, defining λ∗ as the fitness of a reference genotype, we
seek a null model for the values of ρ = λ/λ∗. The reference
genotype used for λ∗ could be the wild type from which the
set of mutations is generated but it need not be. As with many
previous studies, we focus on genotypes that allow population
growth, meaning that λ ≥ 1. Notice that this still allows for both
beneficial and deleterious genotypes in terms of relative fitness, ρ.
For the moment, we impose an upper bound b on possible values
of relative fitness and we discretize the fitness axis into m fitness
bins, each of width 1ρ (meaning that m1ρ = b − 1

λ∗
; Fig. 1).

However, these are temporary restrictions and are used only to
clarify the presentation and to ensure that the limiting results for
arbitrarily large upper bounds b, and arbitrarily narrow fitness
bins 1ρ, are well-justified mathematically. Thus, using f (ρ) to
be an approximating, continuous, DFE, each bar i of them fitness
bins in the discretized version will correspond to a probability
pi = f (ρ̂i)1ρ for some ρ̂i in the ith interval (Fig. 1).

A null model is a “statistical descriptor of (the) expected pattern
(in data) in the absence of a particular mechanism” (28). There
is a subtle but important distinction between null models and
models of neutrality (e.g., the neutral theory of evolution). A null
model is a statistical description of a null hypothesis, whereas a
neutral model can also serve as an alternative, mechanistic, or
process-based, hypothesis for observed patterns (28). Thus, a null
model is not meant to be taken as a theory of how the natural
world works. Instead, the chief purpose of a null model is to
determine whether the observed data are unusual, or unexpected,
if focal mechanism X were not occurring. By “not occurring,” one
typically means that the data are instead generated in a completely
unbiased fashion with respect to the focal mechanism X.

Landscape models of the DFE are based on specific mecha-
nistic assumptions about how mutations get mapped, through
development, to fitness. For example, Fisher’s geometric model
assumes that, when mutation occurs, it has a small effect on a
set of quantitative traits, that an intermediate value of each trait
has the highest fitness according to a Gaussian function, and that
there are no other fitness consequences of mutation. The Mt. Fuji
model assumes that, when mutation occurs, it has a small effect on
genome sequence identity, and that sequence identity is mapped
to fitness via a particular function. Therefore, a reasonable null
hypothesis for landscape models is that the genotype-fitness map
is instead chosen randomly and in an unbiased way from the
set of all possible maps. The rationale is that, if observed DFEs
do not differ appreciably from this null hypothesis, then even
if a landscape model’s predictions also matched the observed
DFE very well, this alone would not be sufficient evidence to
conclude that the landscape model has explanatory power. Of
course, this does not mean that real genotype-fitness maps are
actually randomly chosen (failure to reject the null hypothesis
does not mean acceptance of the null hypothesis), but simply
that the data contained in the DFE do not provide any evidence
that the mapping of mutation to fitness is anything other than
random.

Fig. 1. An example of a genotype-fitness map and the resulting DFE. Region G denotes the set of all genotypes (indicated by black dots), gWT the wild type
(indicated by a red dot), and the subset Gm of genotypes generated from gWT by mutation (indicated as the red region). The set of arrows represent a randomly
chosen genotype-fitness map, where � denotes relative fitness. The resulting DFE is shown (orange). pi denotes the frequency of bin i and f (�) denotes the
probability density of relative fitness value �.
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To construct such a null model, we follow the same three-
ingredient framework used by landscape models. For the first
ingredient of the null model, we work directly with the set of
genotypes G and do not impose any structure on this set. For
the second ingredient, we again choose a wild-type genotype
gWT ∈ G but, because there is no structure imposed on the set
G, we cannot generate the set of mutations Gm using any notion
of distance from the wild type. In other words, there is no way to
distinguish between any particular genotypes in G because there
is no structure imposed on the setG. Thus, all we can do is specify
the statistical properties of a set of mutant genotypesGm and how
this relates to gWT . We will explain how this is done shortly. To
specify the third ingredient, we begin by considering all possible
genotype-fitness maps for the set Gm. Any such map will assign
each one of the genotypes in Gm to some fitness value and so
it will produce a DFE. We take the null DFE to be the fitness
distribution that arises from a randomly chosen genotype-fitness
map. To make this idea concrete, Fig. 1 displays a total of eight
genotypes within the set Gm and six relative fitness bins. Any
given genotype-fitness map assigns each of the eight genotypes
to one of the six relative fitness bins, and thus, there are a total
of 68 = 1, 679, 616 genotype-fitness maps. One of these maps is
shown in Fig. 1.

A key observation is that some genotype-fitness maps give
rise to the same DFE. To appreciate the consequences of this,
suppose that there are n genotypes and m fitness bins, and let us
first consider how many DFEs are possible. A crude upper bound
can be obtained by noting that each bin can have anywhere from
zero to n genotypes assigned to it. Thus, bin 1 can have at most
n + 1 different possibilities. The same is true for bin 2 etc. but,
because the number in each of the bins is interdependent, there
must certainly be less than (n + 1)m different possible fitness
distributions. On the other hand, the number of genotype-fitness
maps grows exponentially with n. In particular, any genotype-
fitness map places each genotype into one of the m fitness bins.
Since there are m possibilities for each of the n genotypes, this
gives a total of mn different genotype-fitness maps (m = 6 and
n = 8 in Fig. 1). Thus, the number of possible DFEs grows at
most polynomially in the number of genotypes, whereas the
number of genotype-fitness maps grows exponentially in the
number of genotypes. This suggests that, for large genomes (i.e.,
large n), there are many genotype-fitness maps that give rise
to some common DFE(s). This already hints at the idea that
inferring properties of the genotype-fitness map from the DFE is
not likely to be easy.

The above qualitative ideas can be formalized by using a
simplified version of Sanov’s Theorem (29) from probability
theory (see also ref. 30). When the number of genotypes n is
large, the number of genotype-fitness maps that give rise to a
particular DFE pi is given by

enH(pi)+O(ln n), [1]

whereH(pi) is the information entropy of the DFE (SI Appendix,
Appendix 2). From expression [1], we can then infer that the
DFE with the largest information entropy will be generated
by exponentially more genotype-fitness maps than any other
distribution. To put this another way, if the number of genotypes
n is large and we were to choose a genotype-fitness map at random
from the set ofmn possible maps, then the DFE that results would
almost certainly be one that has the highest possible information
entropy (the probability of choosing a genotype-fitness map that
gives rise to any other distribution is exponentially smaller; SI
Appendix, Appendix 2). This result shows that a suitable null

model of the DFE of the set Gm is the distribution of fitness
values with the largest possible information entropy.

Now that we have shown that the null DFE maximizes the
information entropy of the fitness distribution on the set Gm,
the final thing we need to specify to completely characterize the
null distribution is some information about the subset Gm that is
generated by mutation. Recall that there is no structure imposed
on the set G (e.g., no notion of distance between genotypes)
and therefore there is no way to distinguish between the identity
of those particular genotypes that are likely to be generated
by mutation from gWT versus the identity of those genotypes
that are not (if there was such a way to classify the identity of
individual genotypes, then this classification could also be used
as a measure of distance between genotypes). Therefore, we
can only specify statistical properties of the entire collection of
mutations Gm as a whole.

The simplest approach is to assume nothing about the
statistical properties of Gm. It is then not difficult to show that
the resulting DFE is a fixed uniform distribution. However, this
is not a particularly useful null model because, even if mutations
were randomly mapped to fitness, these fitness values would still
depend on the environment in which they were assessed as well
as the reference genotype used for computing relative fitness (and
a fixed uniform distribution cannot account for these features).
Therefore, in keeping with the general approach for constructing
a null model (28), we seek to constrain the model in a way that
accounts for these generic statistical features of the data. There
are many ways to do so but all require that we tie at least some of
the statistical properties of Gm to the environment of the assay
and the reference genotype used.

The simplest specification is to assume that the null distribu-
tion of relative fitness values of Gm is “centered” at a specific
location on the fitness axis and that this center depends on the
environment and the fitness of the reference genotype, λ∗. There
are several ways to characterize the center of a distribution,
and the most convenient is the mean. Thus, we will take
the null DFE to be the fitness distribution that results from
choosing a random genotype-fitness map (i.e., the distribution
with the largest possible information entropy) subject to the
constraint that the DFE of Gm has a given mean determined
by the environment and reference genotype used in the assay.
It is well-known in the statistical literature that, if the upper
bound b is large and the bin width 1λ is small, this maximum
entropy distribution is approximated by the shifted exponential
(SI Appendix, Appendix 3)

f (ρ) =
e−

ρ−a
ρ̄−a

ρ̄ − a
, [2]

where a = 1/λ∗ is the lower bound of possible values of relative
fitness, and is determined by the reciprocal of the multiplicative
fitness λ∗ of the reference genotype. Finally, most microbial
experiments quantify the DFE using a transformation of mul-
tiplicative fitness that corresponds to the ratio of Malthusian
growth rates (i.e., the distribution of z = r/r∗, see ref. 7).
Using the relationship ρ = e(r−r

∗)τ we can write z = 1 + ln ρ
ln λ∗

and so obtain the null distribution of z, which is (SI Appendix,
Appendix 3)

g(z) = αβeαeβz−αe
βz
, [3]

where α = 1
ρ̄λ∗−1 and β = ln λ∗. This is a Gompertz

distribution. Both null DFEs [2] and [3] implicitly assume that
the wild type is relatively poorly adapted since they assume no
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upper bound on the allowable fitness effects of mutations. More
general results can be found in SI Appendix, Appendix 3.

2. Results

We now examine how the DFE predicted from the null model
compares with empirical DFEs obtained through site-directed
mutagenesis in several microorganisms. We also examine how
these predictions compare with DFEs simulated using Fisher’s
geometric model, as well as how the patterns of epistasis predicted
by the null model compare with data.

2.1 Fitting Empirical DFEs to the Null Model. We found that the
null model matches empirical DFEs from microorganisms very
well. Fig. 2 shows the fitted null model for z (i.e., Eq. 3) along
with data for several organisms. The datasets include viruses
and bacteria where the fitness of mutations has been measured
in different environments. Further examples are provided in

SI Appendix, Appendix 4. For comparison, we also fitted a
Gamma distribution to these data (blue curves in Fig. 2), because
this is the prediction from Fisher’s geometric model (20, 24).
Consistent with previous studies, the Gamma distribution also
fits very well. In some cases, however, we observe important
discrepancies between the observed DFE and that predicted from
both Fisher’s geometric model and the null DFE, including some
examples of bimodality in the bacterial data under certain growth
conditions (SI Appendix, Appendix 4).

2.2 Fitting DFE Simulated from the Fisher’s Geometric Model
(FGM). We further investigated how easy it is to distinguish the
true fitness landscape from the null model when the former is
known. To do so, we simulated DFE under the FGM following
the method of ref. 20 (SI Appendix, Appendix 5). Briefly,
the FGM considers a n-dimensional phenotype in a landscape
where fitness decreases smoothly (in its classical form, see ref.

0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Fitness effect, r/r0

D
en

si
ty

A  bacteriophage F1

0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Fitness effect, r/r0

D
en

si
ty

B  bacteriophage ΦX174

0.6 0.8 1.0 1.2
0

2

4

6

8

10

0.6 0.8 1.0 1.2
0

2

4

6

8

10

Fitness effect, r/r0

D
en

si
ty

C Tobacco Etch Virus

0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.4 0.6 0.8 1.0
0

2

4

6

8

10

Fitness effect, r/r0

D
en

si
ty

D Vesicular Stomatitis Virus

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Fitness effect, r/r0

D
en

si
ty

E Escherichia coli

0.6 0.7 0.8 0.9 1.0
0

5

10

15

0.6 0.7 0.8 0.9 1.0
0

5

10

15

Fitness effect, r/r0

D
en

si
ty

F Salmonella typhimurium

Fig. 2. Fit of model predictions to empirical DFE. In all cases, the relative fitness was measured as z = r/r∗. Red: prediction of the null model (Gompertz
distribution from Eq. 3), blue: shifted negative Gamma distribution (SI Appendix, Eq. S20). The distributions (parameters � and � in Eq. 3 and y0, �, and �
in SI Appendix, Eq. S20) were fitted by maximum likelihood using the Nelder–Mead algorithm from “nmkn” function in package dfoptim (31) in R (32). (A–D)
Compilation of DFE in viruses from ref. 7. (E) DFE of 3985 nonessential deletions from the Keio collection in Escherichia coli from ref. 33. (F ) DFE of random base
pair substitutions on the ribosomal protein S20 (growth media M9) in Salmonella typhimurium from ref. 34. See SI Appendix, Appendix 4 for the full results.
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Fig. 3. DFE of mutations simulated under the FGM, as measured by z = r/r∗. Simulation of 2,000 mutants from the reference genotype. Blue: Distribution
expected under the FGM (SI Appendix, Eq. S22). Red: expectation under the null model, corresponding to a Gompertz distribution (Eq. 3). The parameters of the
distribution were fitted by maximum likelihood similarly to Fig. 3. We varied the fitness of the reference phenotype �∗ relative to that of the optimum phenotype
(set at 0) �max = 3.3 (the value of �max is chosen from ref. 7), as indicated in each panel, while keeping the net strength of selection constant (S = 0.05). (A–C)
Depict increasing levels of adaptedness of the reference genotype from which mutations were generated. The number of dimensions of the phenotype is 5,
with weak correlation (m = 1,000, see ref. 20).

24) with the distance to an optimum phenotype (SI Appendix,
Appendix 5). In the FGM theory, selection is usually measured
as s = λ/λ∗ − 1 e.g., ref. (20). However, we here choose to
follow empirical studies (see above) by measuring relative fitness
of mutants as z = r/r∗.

When relative fitness is measured by z, we found that the
DFE expected under the null model (Eq. 3) often matches DFE
simulated from the FGM very well (Fig. 3, red curves). For com-
parison, Fig. 3 also shows the fit with a shifted negative Gamma
distribution as expected under the FGM (blue curves). Interest-
ingly, a Gompertz distribution (Eq. 3) can be better fitted to the
simulated DFE obtained when the reference phenotype is poorly
adapted than a Gamma distribution [predicted under the FGM
when the reference phenotype is well adapted (20); Fig. 3A].

As a further investigation of the relationship between the null
model predictions and FGM, we estimated the fitness of the
reference genotype and the mean relative fitness in the population
from the fitted Gompertz distribution parameters (SI Appendix,
Table S2). These closely match those used in the simulated FGM
data when the reference genotype is poorly adapted (Fig. 3A). The
estimated values from the null model diverge from those used in
the FGM simulations when the reference phenotype gets closer
to the optimum (Fig. 3 B and C ). However, the null model
nevertheless captures qualitatively the expectation that the mean

relative fitness decreases with increasing fitness of the reference
genotype (Fig. 3 A–C and SI Appendix, Table S2).

Some discrepancies between the null model and the FGM
arise when considering the ratio of the multiplicative growth
rates, ρ, instead of the ratio of the Malthusian growth rates, z
(Fig. 4). When the wild type is very far from the optimum in
FGM the resulting DFE for relative multiplicative fitness tends
to be monotonically decreasing and the null model from Eq. (2)
captures this pattern very well (Fig. 4A). Similarly, when the wild
type is at the optimum in FGM the resulting DFE for relative
multiplicative fitness tends to be monotonically increasing, and
then the (general) null model with both minimum and maximum
fitness bounds from SI Appendix, Appendix 3 and Eq. S14 can
capture this pattern (Fig. 4C, orange curve). However, when the
wild type is an intermediate distance from the optimum in FGM,
the resulting DFE tends to have a bell shape as a result of the
assumption that mutations deviate from the wild type according
to a Gaussian distribution (Fig. 4B). The general null DFE for
multiplicative relative fitness never has a bell shape (Fig. 4).

This large qualitative difference between model fits for
multiplicative fitness measures versus the ratio of Malthusian
growth rates might at first be surprising since the two are related to
one another via a simple log transform. However, it can be shown
that the ratio of Malthusian growth rates tends to be unimodal
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Fig. 4. DFE of mutations simulated under the FGM, as measured by � = �/�∗ and corresponding to Fig. 3. Blue: Distribution expected under the FGM (SI
Appendix, Eq. S21, the parameters are fitted by maximum likelihood similarly to Fig. 2). Red: expectation under the null model without an upper fitness bound,
which is a shifted exponential distribution (Eq. 2, where a is calculated from �∗ and �̄ is calculated from the simulated distribution). Orange: expectation under
the null model bounded to the maximum fitness (SI Appendix, Appendix 3 and Eq. S14) in the simulated Fisher’s landscape, where a = min(�), b = max(�) (see
Fig. 1), and we numerically calculated the constant �2 in SI Appendix, Eq. S14 such that

∫
�f̄ (�)d� = �̄ with �̄ calculated from the simulated distribution. In (A),

the red and orange curves are identical.
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under a wide variety of different forms for multiplicative fitness,
not just the exponential form used here. The nonlinearity of the
log transform stretches out the density lying in the interval (0, 1)
over the entire negative axis and this (apparently) tends to make
distinguishing between different distributions more difficult on
this scale.

2.3 Null Model Predictions for Epistasis. Landscape models, like
Fisher’s geometric model, have also been used to make predictions
about the pattern of epistasis among new mutations. For example,
Fisher’s geometric model predicts that pairwise epistasis among
new mutations should follow a bell-shaped distribution with a
mean close to zero. Moreover, it predicts that the mean should be
negative when the wild type is poorly adapted and it should tend
toward positive when the wild type is well adapted (21). These
predictions tend to agree with documented empirical patterns
(e.g., refs. 35 and 36).

We can also use the results presented here to generate null
model predictions for the patterns of epistasis. To do so, we
first take two draws from the null DFE [2] to represent the
relative multiplicative fitness of two single mutations (denoted
ρA and ρB). Then, because the null model does not impose
any relationship among the genotypes within the set Gm, the
double mutant is simply a third independent draw, ρAB, from
this same distribution. A commonly used measure of epistasis is
then ε = ln( ρAB

ρAρB
) = ln ρAB − ln ρA − ln ρB. It can be shown

that the probability density of x = ln ρ is p(x) = exe(a−e
x)/(ρ̄−a)

ρ̄−a
for x ∈ (ln a,∞) and p(x) = 0 otherwise. Denoting the pdf of
ε by h(ε) we then have h(ε) =

∫
�
p(x)p(y)p(ε + x + y)dxdy

where � is the set of all values of x and y. The null distribution
of epistasis, h(ε), has a bell shape, and it can be proved that the
mean epistasis E[ε] is positive if the average fitness of mutations
is less than the reference genotype (i.e., ρ̄ < 1), and it is negative
if the average fitness of mutations is large enough relative to the
reference genotype. The reason for this is most easily understood
by considering an alternative definition of epistasis that is not
log-transformed: ε̂ = ρAB − ρAρB. By independence, the mean
of ε̂ is E[ε̂] = ρ̄(1 − ρ̄), showing that epistasis is positive if
ρ̄ < 1 and it is negative if ρ̄ > 1. Also notice that if the reference
genotype used for fitness comparison with the mutations is the
wild type, then the distribution of deleterious mutations will tend
to display positive epistasis, whereas the distribution of beneficial
mutations will tend to display negative epistasis, in agreement
with empirical studies.

The above findings about epistasis can be intuited as follows.
Under the null model, the fitness of the double mutant is
randomly assigned in a way that is independent and identically
distributed to that of the fitness of each single mutant. As a
result, if we consider the set of deleterious mutations (i.e., those
mutations whose fitness is smaller than that of the wild type; i.e.,
ρ = λ/λWT < 1), then the fitness of the double mutant will (on
average) be higher than that expected based on the multiplied
effects of the two single deleterious mutants (i.e., there will be
positive epistasis). On the other hand, if we consider the set of
beneficial mutations (i.e., those mutations whose fitness is larger
than that of the wild type; i.e., ρ = λ/λWT > 1), then the
fitness of the double mutant will (on average) be lower than
that expected based on the multiplied effects of the two single
beneficial mutants (i.e., there will be negative epistasis).

Fig. 5 illustrates how the null model compares with data
from the vesicular stomatitis virus for both the DFE of relative
multiplicative fitness ρ and the distribution of epistasis, ε̂. For
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Fig. 5. Fit of the null model to the DFE (A) and epistasis (B) generated with
47 mutations in the vesicular stomatitis virus (data from ref. 37, and details
therein). Fitness of mutant i is measured relative to a reference genotype by
�i and epistasis between mutations i and j is measured by �̂ij = �ij − �i�j .
However, the data from ref. 37 are for the values of �1/� for a characteristic
generation time � (SI Appendix, Appendix 1). We have no way to determine �
and so we have arbitrarily chosen � = 2 for the purpose of illustration. (A)
The fitness effects of mutations from ref. 37. Red: SI Appendix, Eq. S14 is fitted
to the distribution by maximum likelihood using a = min(�) and b = max(�)
(�2 = 1.145, see caption of Fig. 4). Yellow: DFE from SI Appendix, Eq. S14
when the distribution of epistasis is better matched to data (a = 0.2, b = 1.1,
and �2 = 8). (B) Observed distribution of epistasis and two distributions
of epistasis generated from the null model corresponding to the curves in
panel (A). Distributions of �̂ from the null model are generated by drawing
three fitness values from the red and yellow DFE in (A) and using the above
definition of �̂ (repeated 106 times).

this dataset, it appears that the wild type has an intermediate level
of adaptation, and so, the DFE is unimodal. As a result, the null
DFE does not fit the data particularly well (red curves in Fig. 5).
On the other hand, it is possible to fit the null distribution of
epistasis to the data remarkably well (Fig. 5B, yellow). Doing so,
however, requires that the fit of the DFE be altered substantially
(Fig. 5A, yellow).

3. Discussion

Fitness landscape models have been developed to predict the
properties of empirically observed DFEs. Some of these models
(e.g., Fisher’s geometric model) produce predictions that match
some of the general properties of empirical DFEs very well
(but see, e.g., ref. 26). Although such models often depend on
parameters that do not have a clear biological interpretation,
this fit between theory and data has been taken as an indication
that the models capture the fundamentally important biology
involved in mapping the process of mutation to fitness.

But how good of a fit is good enough? For example, should an
excellent fit between Fisher’s geometric model and the empirical
DFE from E. coli in Fig. 2E be taken as evidence that this model
captures important features of the map between mutation and
fitness in E. coli? In other words, does this excellent fit mean
that when mutations occur in E. coli they cause small changes
in a set of quantitative traits, that intermediate values of each
trait have the highest fitness according to a Gaussian function,
and that there are no other significant fitness consequences of
mutation? Informally, if the model predictions fit the empirical
DFE “surprisingly well” then we might have strong confidence
in this conclusion. On the other hand, if the model predictions
did not fit the data any better than if the mapping of mutation to
fitness were completely random, then we likely would have much
less confidence that the model predictions were informative. The
purpose of this paper is to provide a quantitative analysis of
this “completely random” null model for the DFE in order to
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help assess the strength of evidence supporting various fitness
landscape models.

The null model constructed here assumes that the genotype-
fitness map is chosen randomly, in an unbiased way, from the set
of all possible maps. Under this assumption, we then proved that
the distribution of fitness values that results (i.e., the DFE) is the
distribution that maximizes information entropy. We have also
then shown that if the mean fitness value of the set of mutations
generated from a wild type is fixed by the environment and
the reference genotype against which fitness is measured, then
the null DFE for a commonly used index of relative fitness is
a Gompertz distribution. Intuitively, under the null model, the
relative fitness of a genotype generated randomly by mutation can
take any value with equal probability, subject to the constraint
that the mean relative fitness of all such genotypes is fixed. In
a sense, mutant genotypes are thus spread maximally on the
relative fitness surface subject to the constraint that they have a
fixed mean.

We compared published data on the DFE of several different
microorganisms including viruses and bacteria with the predic-
tions of the null model. Overall the null model matched the
data remarkably well, and typically just as well as landscape
models such as Fisher’s geometric model. This suggests that
DFEs alone contain limited information for inferring the nature
of the genotype-fitness map. We also showed that the null model
matches the predictions of simulations from Fisher’s geometric
model very well, meaning that the DFE predictions from Fisher’s
geometric model are very similar to what would be expected if,
instead, fitness values were assigned randomly to genotypes.

Interestingly, landscape models have also been used to make
predictions about other properties of new mutations such as epis-
tasis. It has been shown, for example, that the pairwise epistasis
of new mutations is expected to follow a bell-shaped distribution
with a mean close to zero, but that is somewhat negative when the
wild type is far from the optimum and somewhat positive when
the wild type is close to the optimum (21). We have shown that
the null model makes these same predictions as well. Under the
null model, the fitness of a double mutant is randomly assigned
in a way that is independent and identically distributed to that
of the fitnesses of each single mutant. As a result, if the wild type
is close to the optimum then new mutations will, on average, be
deleterious, and so the fitness of the double mutant will be higher
than that expected based on the combined effects of the two single
mutants (yielding positive epistasis). Likewise, if the wild type is
far from the optimum then new mutations will, on average, be
beneficial, and so the fitness of the double mutant will be lower
than that expected based on the combined effects of the two
single mutants (yielding negative epistasis). This null expectation
for patterns of epistasis arises for reasons closely related to the
phenomenon of “regression to the mean.”

What implications do these results have for the study of
DFEs? Perhaps most importantly, our results suggest that an
examination of DFEs alone is not a very powerful approach
for understanding how mutations get mapped to fitness. Several
different genotype-to-fitness maps are consistent with observed
DFEs, meaning that broad patterns of the fitness effects of
mutations are not diagnostic of underlying mechanisms. How-
ever, this should not be taken as an undermining of the utility
or value of landscape models. Indeed, the purpose of the null
model is to help determine whether a fit between a particular
fitness landscape model and data is better than one might expect
solely through chance (i.e., solely by assigning fitness values to
genotypes through a randomly chosen genotype-fitness map).

Another benefit of having an explicit, quantitative, null model
is that it can be used to help determine the kinds of analyses
that are better suited for assessing the fit of landscape models.
To this end, our results suggest that patterns in the DFE are
likely to be most informative when fitness is measured on a
multiplicative scale and when the wild type has an intermediate
level of adaptation. Furthermore, fitness landscape models such as
FGM also make predictions about how the DFE changes during
the process of adaptation. For example, the amount of epistasis
is predicted to change during adaptation, as the fitness of the
wild type increases (23). Empirical investigations focused on such
changes might provide a more powerful way to distinguish among
different models (see, e.g., ref. 38). Lastly, the results in Fig. 5
also suggest that examining the fit of models to multiple different
quantities simultaneously, like both the DFE and the distribution
of epistasis, is a more powerful approach. Measuring the DFE
in different environments can also provide more information on
the underlying fitness landscape than measurements in a single
environment (39). Looking forward, however, it also seems likely
that studies aimed at directly testing different mechanisms will be
needed to unambiguously determine the causes driving patterns
of fitness in mutations.

Ideas related to entropy from statistical physics have been used
previously by evolutionary biologists in several different contexts.
For example, such ideas have been used to analyze problems in
multilocus population genetics, where the dimensionality of the
system being studied is very large (see for example a review in
refs. 40 and 41). A common analogy in this context between
statistical physics and population genetics is that phenotypes
(including fitness) are observable “macrostates” that arise from
a combination of numerous and often unknown factors (e.g.,
genes) referred to as “microstates.” Barton and Coe (42) have
shown that, all else equal, we expect populations to evolve to a
phenotypic (macro)state that is produced by the largest number
of combinations of allelic (micro)states. In other words, subject
to any external constraints (e.g., selection) the population ends
up displaying a phenotype corresponding to the set of microstates
that are most numerous. This is similar to our characterization
of the null DFE as the fitness distribution that results from
the largest number of genotype-fitness maps, subject to the
constraint that this DFE has a fixed mean relative fitness. Indeed,
a similar approach could be developed for the mapping of
genotype to any phenotype of interest. Our derivation showing
that the null distribution is that which maximizes information
entropy would still hold, but the resulting distribution might
differ from that of the null DFE depending on the values
that are possible for the phenotype of interest, as well as the
restrictions on the statistical properties of Gm that are imposed.
Interestingly, empirical genotype-to-phenotype maps often find
that the dimensionality of genotype space is much larger than
that of phenotype space (e.g., ref. 43). If many genotypes express
the same phenotype, they thus have the same fitness in a given
environment. Such genotype-to-fitness redundancies therefore
support the argument for building a null model which relies on
the observation that the number of GP maps grows faster than the
number of fitness (phenotype) distributions when the number of
genotypes increases.

In summary, we have derived a null model for the DFE and
showed that the null DFE maximizes information entropy. This
null model is a potentially useful tool for generating reference
predictions about what the DFE should be like if the genotype-
fitness map were chosen at random from the set of all possible
maps. This, in turn, can help to determine how empirical DFEs
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can be used to distinguish among various mechanistic fitness
landscape models.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information. Previously published data were used
for this work (7, 33, 34, 44).
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