## \* Conceptual models of immunity

Jonathan Dushoff

BIRS Canmod meeting, Nov 2023

### History of this work

- Innovative influenza cross-immunity models by Julia Gog
  https://pubmed.ncbi.nlm.nih.gov/11942531/
- My attempts to understand conceptual under-pinnings
- Michael (WZ) Li (PHAC) asking practical questions that made me share my ideas
- Daniel (Sang Woo) Park took the lead in making this a real project
  - With help from Jess Metcalf and Bryan Grenfell
- https://www.medrxiv.org/content/10.1101/2023.07. 14.23292670

### What do modelers assume about vaccines?

- Leaky model: 80% efficacy means that each individual is 80% protected (20% chance of infection relative to naive individual)
- Polarized model: 80% efficacy means that 80% of individuals are completely protected (20% are unprotected)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What does it mean to be protected?

Against death?

- Severe outcomes?
- Transmission?
- Measurable infection?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Immune response?

## How do we model immunity?

#### History-based

What exposures has an individual had?

 Maps naturally to leaky immunity (vaxxed individuals are all the same)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Status-based

- What is an individual immune to?
- Maps naturally to polarized immunity

# Modeling immunity



SAR

#### Limitations

- Polarized approach assumes that a substantial proportion of the population is completely unprotected
  - Unrealistic

But how intrinsic is this assumption?

- Leaky approach ignores failed challenges
  - These are challenges that would counter-factually infect with protection

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

But I could resist one today and succumb next week

Leaky v. polarized



 $\mathcal{O} \mathcal{O} \mathcal{O}$ 

# Leaky with boosting v. polarized



## Leaky vaccine



# Polarized vaccine



# Leaky vaccine with boosting





▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



### Vaccine effectiveness

- Efficacy: protection with a controlled exposure
- Effectiveness: protection in a population
- Project effectiveness under different assumptions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Cumulative incidence
- Instantaneous hazard

### Incidence-based effectiveness



### Hazard-based effectiveness



 $\mathfrak{I} \mathfrak{I} \mathfrak{I}$ 

# Questions going forward

Vaccine vs infection-driven immunity

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Protection against what?
- Immune waning
- A broader view of leakiness

## Transmission reduction



・ロト・四ト・モート ヨー うへの

## Doses and timing

 We can define leakiness as any gap between efficacy and effectiveness

We can imagine different standard challenges for efficacy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Should we be thinking only about number of challenges?
  - What about dose-dependence?
  - Can these be cleanly disentangled?

### Connecticut correctional study

|                                                                            | Delta Predominant Period |               |   |                     |             | Omicron Predominant Period |              |   |   |                   |             |
|----------------------------------------------------------------------------|--------------------------|---------------|---|---------------------|-------------|----------------------------|--------------|---|---|-------------------|-------------|
| Prior Infection, Vaccination,                                              |                          | Facility      |   |                     | Ratio of HR |                            | Facility     |   |   |                   | Ratio of HR |
| and Type of Facility Exposure                                              | Infections               | Exposures     |   | HR (95% CI)         | (Pvalue)    | Infections                 | Exposures    |   |   | HR (95% CI)       | (Pvalue)    |
| Prior SARS-CoV-2 Infection                                                 |                          |               |   |                     |             |                            |              |   |   |                   |             |
| No Exposure<br>No Prior Infection<br>Prior Infection<br>Cellblock Exposure | 111<br>11                | 10502<br>6522 | • | 0.21 (0.11, 0.39)   | -           | 129<br>38                  | 7135<br>6329 | - |   | 0.36 (0.25, 0.54) | -           |
| No Prior Infection<br>Prior Infection<br>Cell Exposure                     | 199<br>34                | 3436<br>2180  | • | 0.32 (0.24, 0.44)   | 0.216       | 347<br>155                 | 3374<br>2606 |   |   | 0.61 (0.49, 0.75) | 0.019       |
| No Prior Infection<br>Prior Infection                                      | 41<br>12                 | 179<br>85     | - | - 0.59 (0.30, 1.16) | 0.029       | 73<br>36                   | 448<br>254   |   | - | 0.89 (0.58, 1.35) | 0.002       |
| Prior Vaccination <sup>b</sup>                                             |                          |               |   |                     |             | i                          |              |   |   |                   |             |
| No Exposure<br>Unvaccination<br>Vaccinated                                 | 92<br>30                 | 7883<br>9141  | - | 0.32 (0.21, 0.49)   | -           | 97<br>70                   | 5771<br>7693 | - |   | 0.57 (0.42, 0.78) | -           |
| Unvaccination<br>Vaccinated<br>Cell Exposure                               | 169<br>64                | 2603<br>3013  |   | 0.35 (0.26, 0.47)   | 0.727       | 255<br>247                 | 2579<br>3401 |   |   | 0.69 (0.58, 0.83) | 0.313       |
| Unvaccination<br>Vaccinated                                                | 36<br>17                 | 155<br>109    |   | 0.74 (0.37, 1.48)   | 0.033       | 48<br>61                   | 323<br>379   | - |   | 0.96 (0.64, 1.46) | 0.041       |
| Hybrid Immunity                                                            |                          |               |   |                     |             | ·                          |              |   |   |                   |             |
| No Hybrid Immunity<br>Hybrid Immunity<br>Colliderk Exposure                | 85<br>4                  | 5650<br>4289  |   | 0.05 (0.02, 0.10)   | -           | 81<br>22                   | 3537<br>4095 | • |   | 0.24 (0.15, 0.39) | -           |
| No Hybrid Immunity<br>Hybrid Immunity<br>Cell Exposure                     | 147<br>12                | 1802<br>1379  |   | 0.10 (0.05, 0.19)   | 0.203       | 190<br>90                  | 1702<br>1729 |   |   | 0.41 (0.31, 0.55) | 0.053       |
| No Hybrid Immunity<br>Hybrid Immunity                                      | 28<br>4                  | 115<br>45     |   | 0.29 (0.07, 1.12)   | 0.026       | 36<br>24                   | 237<br>168   |   | _ | 0.80 (0.46, 1.39) | 0.001       |
|                                                                            | 0 0.5 1 1.5              |               |   |                     |             | 0 0.5 1 1.5                |              |   |   |                   |             |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lind et al., Nat Commun, 2023. https://doi.org/10.1038/s41467-023-40750-8

### Time scales of challenge

Challenges a week apart are likely antagonistic
 Immune boosting, polarized-like dynamics

Challenges an hour apart are likely synergistic
 Potentially overwhelming, leaky-like dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

These are questions for Jane!

### Dose dependence



### Interacting strains



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

# Interacting strains



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

## Immune waning (whiteboard)



Michael WZ Li, PHAC

# Cross immunity (whiteboard)



Michael WZ Li, PHAC

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

### Thanks

#### Organizers and audience

Daniel, Mike and other collaborators

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

#### ▶ PHAC, CIHR