What portion of the Americans relied on others' satisfaction when deciding to take the COVID-19 vaccination?

Azadeh Aghaeeyan

Department of Mathematics and Statistics Brock University

Supervisors: Pouria Ramazi & Mark Lewis

Introduction

Brock University

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Vaccination coverage

- Vaccination is a key to achieve a desired public health status.
- Achieving timely high enough vaccination coverage is important.
- High vaccination coverage requires high vaccine acceptance.
- Vaccine acceptance is the collective outcome of the individuals' decision-making processes.

Vaccination coverage

- Vaccination is a key to achieve a desired public health status.
- Achieving timely high enough vaccination coverage is important.
- High vaccination coverage requires high vaccine acceptance.
- Vaccine acceptance is the collective outcome of the individuals' decision-making processes.

When it came to COVID-19 vaccination, how did people decide whether to get immunized?

- In some contexts¹², people are assumed/reported to be mainly one of the followings:
- Success-based learners (imitators): who follow the decisions of the perceived most satisfied (successful) individuals in the population;
- Myopic rationalists (influentials): who take the action that maximizes their instant perceived payoff.

 $^{1}\mathrm{Van}$ den Bulte, C., & Joshi, Y. V. (2007). New product diffusion with influentials and imitators. Marketing science, 26(3), 400-421.

²Molleman, L., Van den Berg, P., & Weissing, F. J. (2014). Consistent individual differences in human social learning strategies. Nature Communications, 5(1), 3570.

(日) (종) (종) (종) (종)

- In some contexts¹², people are assumed/reported to be mainly one of the followings:
- Success-based learners (imitators): who follow the decisions of the perceived most satisfied (successful) individuals in the population;
- Myopic rationalists (influentials): who take the action that maximizes their instant perceived payoff.
- In the context of vaccination, a large body of studies assumed either of these two types of decision-makers³.

 $^{1}\mathrm{Van}$ den Bulte, C., & Joshi, Y. V. (2007). New product diffusion with influentials and imitators. Marketing science, 26(3), 400-421.

²Molleman, L., Van den Berg, P., & Weissing, F. J. (2014). Consistent individual differences in human social learning strategies. Nature Communications, 5(1), 3570.

(日) (종) (종) (종) (종)

- In some contexts¹², people are assumed/reported to be mainly one of the followings:
- Success-based learners (imitators): who follow the decisions of the perceived most satisfied (successful) individuals in the population;
- Myopic rationalists (influentials): who take the action that maximizes their instant perceived payoff.
- In the context of vaccination, a large body of studies assumed either of these two types of decision-makers³.

 $^{^{1}\}mathrm{Van}$ den Bulte, C., & Joshi, Y. V. (2007). New product diffusion with influentials and imitators. Marketing science, 26(3), 400-421.

²Molleman, L., Van den Berg, P., & Weissing, F. J. (2014). Consistent individual differences in human social learning strategies. Nature Communications, 5(1), 3570.

³Bauch, C. T., & Bhattacharyya, S. (2012). Evolutionary game theory and social learning can determine how vaccine scares unfold. PLoS computational biology, 8(4), e1002452.

• The two types of decision makers also differ in the type of information they attend to⁴.

 $^{^4 \}rm van$ den Berg, P., Molleman, L., & Weissing, F. J. (2015). Focus on the success of others leads to selfish behavior. PNAS, 112(9), 2912-2917.

- The two types of decision makers also differ in the type of information they attend to⁴.
- Myopic rationalists seek information that shapes their payoffs⁵.

⁴van den Berg, P., Molleman, L., & Weissing, F. J. (2015). Focus on the success of others leads to selfish behavior. PNAS, 112(9), 2912-2917.

 $^{^{5}\}mathrm{Van}$ den Bulte, C., & Joshi, Y. V. (2007). New product diffusion with influentials and imitators. Marketing science, 26(3), 400-421.

Success-based learners & myopic rationalists

- The two types of decision makers also differ in the type of information they attend to⁴.
- Myopic rationalists seek information that shapes their payoffs⁵.
- Success-based learners focus on the satisfaction achieved by others⁶.

 $^{^4 \}rm van$ den Berg, P., Molleman, L., & Weissing, F. J. (2015). Focus on the success of others leads to selfish behavior. PNAS, 112(9), 2912-2917.

 $^{^{5}\}mathrm{Van}$ den Bulte, C., & Joshi, Y. V. (2007). New product diffusion with influentials and imitators. Marketing science, 26(3), 400-421.

⁶McElreath, R. et al. (2008). Beyond existence and aiming outside the laboratory: estimating frequency-dependent and pay-off-biased social learning strategies. Philos. Trans. R. Soc., B, Biol. Sci, 363(1509), 3515-3528.

Success-based learners & myopic rationalists

- The two types of decision makers also differ in the type of information they attend to⁴.
- Myopic rationalists seek information that shapes their payoffs⁵.
- Success-based learners focus on the satisfaction achieved by others⁶.
- Hence, knowing the proportion of the two types may inform health management and media about more tailored vaccine promotion communication strategies.

 $^{^4 \}rm van$ den Berg, P., Molleman, L., & Weissing, F. J. (2015). Focus on the success of others leads to selfish behavior. PNAS, 112(9), 2912-2917.

 $^{^{5}\}mathrm{Van}$ den Bulte, C., & Joshi, Y. V. (2007). New product diffusion with influentials and imitators. Marketing science, 26(3), 400-421.

⁶McElreath, R. et al. (2008). Beyond existence and aiming outside the laboratory: estimating frequency-dependent and pay-off-biased social learning strategies. Philos. Trans. R. Soc., B, Biol. Sci, 363(1509), 3515-3528.

Success-based learners & myopic rationalists

- The two types of decision makers also differ in the type of information they attend to⁴.
- Myopic rationalists seek information that shapes their payoffs⁵.
- Success-based learners focus on the satisfaction achieved by others⁶.
- Hence, knowing the proportion of the two types may inform health management and media about more tailored vaccine promotion communication strategies.

When it came to COVID-19 vaccination, what population proportion of people behaved as Myopic rationalists (α)?

 $^{^4 \}rm van$ den Berg, P., Molleman, L., & Weissing, F. J. (2015). Focus on the success of others leads to selfish behavior. PNAS, 112(9), 2912-2917.

 $^{^{5}\}mathrm{Van}$ den Bulte, C., & Joshi, Y. V. (2007). New product diffusion with influentials and imitators. Marketing science, 26(3), 400-421.

⁶McElreath, R. et al. (2008). Beyond existence and aiming outside the laboratory: estimating frequency-dependent and pay-off-biased social learning strategies. Philos. Trans. R. Soc., B, Biol. Sci, 363(1509), 3515-3528.

Goal

To estimate the proportion of myopic rationalists in each US state, including D.C., when deciding whether to take the first dose of a COVID-19 vaccine

(Wikipedia)

æ

Model Formulation

Model Formulation

The excess payoff of vaccination

$$\Delta \pi(t) = \pi_v - \pi_{\bar{v}}$$

 $\pi_{\bar{v}}$ (resp. π_{v}): the perceived benefit of remaining unvaccinated (getting a dose of a COVID-19 vaccine),

The excess payoff of vaccination

$$\Delta \pi(t) = \pi_v - \pi_{\bar{v}}$$

 $\pi_{\bar{v}}$ (resp. π_{v}): the perceived benefit of remaining unvaccinated (getting a dose of a COVID-19 vaccine),

Population structure

- For each state, we have a large-enough, fixed-size, and well-mixed population,
- N: Number of people aged 12 and above,
- $N_n: (N VR)$: Number of non vaccine-refusers,
- $\alpha_1 N_n$: Number of Myopic rationalists,
- $(1 \alpha_1)N_n$: Number of Success-based learners.
- $\alpha : \alpha_1 \frac{N_n}{N}$

(日) (종) (종) (종) (종)

 $\bullet M(t)$ (resp. L(t)): Number of vaccinated myopic rationalists (resp. success-based learners)

æ

•M(t) (resp. L(t)): Number of vaccinated myopic rationalists (resp. success-based learners) • $M_s(t)$ (resp. $L_s(t)$): Number of unvaccinated myopic rationalists (resp. success-based learners) who are vaccine-seeker

$$M_s(t) = (\alpha_1 N_n - M(t)) \mathbf{1}(\Delta \pi(t)),$$

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ ― ≧ …

$$M_s(t) = (\alpha_1 N_n - M(t))\mathbf{1}(\Delta \pi(t)),$$
$$L_s(t) = ((1 - \alpha_1)N_n - L(t))\frac{L(t) + M(t)}{N}\sigma \max\{0, \Delta \pi(t)\},$$

ь

$$M_s(t) = (\alpha_1 N_n - M(t)) \mathbf{1}(\Delta \pi(t)),$$

$$L_s(t) = ((1 - \alpha_1)N_n - L(t))\frac{L(t) + M(t)}{N}\sigma \max\{0, \Delta\pi(t)\},\$$

$$\underbrace{\dot{i}(t)}_{\text{rate of change of vaccinated of class i}} = \kappa \underbrace{i_s(t) \min\{1, \frac{v(t) - L(t) - M(t)}{L_s(t) + M_s(t)}\}}_{\text{#of vaccine-seekers of class i who can get a vaccine}}, \quad i = L, M.$$

・ロト ・ 日 ・ ・ 主 ・ ・ 主 ・ うへぐ

$$\Delta \pi(t) = C_{\bar{v}} - C_v(t) + C_d \frac{D(t)}{\mathbb{N}} + C_i \frac{I(t)}{\mathbb{N}},$$

- $C_{\bar{v}}$ (resp. C_v): the perceived risk of remaining unvaccinated (getting a dose of COVID-19 vaccine) in a disease-free situation,
- C_i (resp. C_d): the perceived cost reduction in morbidity (mortality) due to contracting COVID-19 obtained from a dose of a COVID-19 vaccine,
- D(t) (resp. I(t)): number of newly confirmed deaths due to COVID-19 (resp. cases of COVID-19 infection),
- N: total population.

$$\begin{aligned} \Delta \pi(t) &= C_{\bar{v}} - c_{v0}(t - t_0 + 1)^{\lambda} + 1 \frac{D(t)}{N} + C_i \frac{I(t)}{N} \\ M_s(t) &= (\alpha_1 N_n - M(t)) \mathbf{1} (\Delta \pi(t)), \\ L_s(t) &= ((1 - \alpha_1) N_n - L(t)) \frac{L(t) + M(t)}{N} \sigma \max\{0, \Delta \pi(t)\}, \\ \dot{i}(t) &= \kappa i_s(t) \min\{1, \frac{v(t) - L(t) - M(t)}{L_s(t) + M_s(t)}\}, \quad i = L, M. \end{aligned}$$

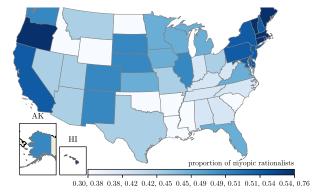
λ < 0 was estimated using the experimental Household Pulse Survey.
t₀: date of roll-out of COVID-19 vaccine.

Fitting phase

optimization: $\min_{\underline{\theta}} \sum_{i} (e(t_i))^2$

$$e(t_i) = \underbrace{\tilde{n}_v(t_i)}_{n_v(t_i) - n_v(t_{i-1})} - \underbrace{\tilde{n}_v(t_i, \underline{\theta})}_{\Delta M(t_i) + \Delta L(t_i)},$$

where $\underline{\theta} = (\kappa, \alpha_1, C_{\overline{\nu}}, c_{\nu 0}, C_i, \sigma).$


• Optimization algorithm: Simulated Annealing approach

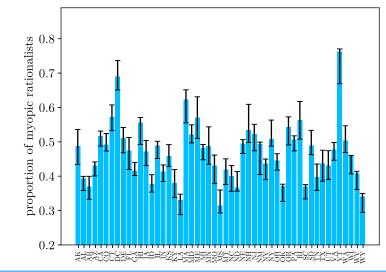
æ

(1)

Model Formulation

Proportion of myopic rationalists, $\alpha = \alpha_1 N_n / N$

臣


• Are we sure about the results?

- Are we sure about the results?
- What do we mean by "being sure"?

< □ > < □ > < □ > < □ > < □ > = Ξ

Model Formulation

- Are we sure about the results?
- What do we mean by "being sure"?

- Are we sure about the results?
- What do we mean by "being sure"?
- Is it possible that the data could be fitted by other values of α 's, equally well?

臣

- Are we sure about the results?
- What do we mean by "being sure"?
- Is it possible that the data could be fitted by other values of α 's, equally well?

 \rightarrow Identifiabiliy

æ

 ${\it Identifiability}$

Identifiability

Brock University

æ

・ロト ・四ト ・ヨト ・ヨト

Consider the following reference state space model Σ_{θ}

$$\Sigma_{\theta} \begin{cases} \dot{x}(t) = f_{\theta}(x(t), u(t)), \\ y(t) = h_{\theta}(x(t), u(t)), \end{cases}$$

where

- $x(t) \in \mathcal{X} \subseteq \mathbf{R}^n$ is the state vector,
- $u(t) \in \mathcal{U} \subseteq \mathbf{R}^m$ is the input vector,
- $y(t) \in \mathcal{Y} \subseteq \mathbf{R}^p$ is the output vector,
- $\theta \in \Theta \subseteq \mathbf{R}^l$ is the parameter vector.

Consider the following reference state space model Σ_{θ}

$$\Sigma_{\theta} \begin{cases} \dot{x}(t) = f_{\theta}(x(t), u(t)), \\ y(t) = h_{\theta}(x(t), u(t)), \end{cases}$$

where

- $x(t) \in \mathcal{X} \subseteq \mathbf{R}^n$ is the state vector,
- $u(t) \in \mathcal{U} \subseteq \mathbf{R}^m$ is the input vector,
- $y(t) \in \mathcal{Y} \subseteq \mathbf{R}^p$ is the output vector,
- $\theta \in \Theta \subseteq \mathbf{R}^l$ is the parameter vector.

Now consider the emulated state space model $\Sigma'_{\hat{a}}$

$$\Sigma'_{\hat{\theta}} \begin{cases} \dot{x}'(t) = f_{\hat{\theta}}(x'(t), u(t)), \\ y'(t) = h_{\hat{\theta}}(x'(t), u(t)). \end{cases}$$

Consider the following reference state space model Σ_{θ}

$$\Sigma_{\theta} \begin{cases} \dot{x}(t) = f_{\theta}(x(t), u(t)), \\ y(t) = h_{\theta}(x(t), u(t)), \end{cases}$$

where

- $x(t) \in \mathcal{X} \subseteq \mathbf{R}^n$ is the state vector,
- $u(t) \in \mathcal{U} \subseteq \mathbf{R}^m$ is the input vector,
- $y(t) \in \mathcal{Y} \subseteq \mathbf{R}^p$ is the output vector,
- $\theta \in \Theta \subseteq \mathbf{R}^l$ is the parameter vector.

Now consider the emulated state space model $\Sigma'_{\hat{a}}$

$$\Sigma'_{\hat{\theta}} \begin{cases} \dot{x}'(t) = f_{\hat{\theta}}(x'(t), u(t)), \\ y'(t) = h_{\hat{\theta}}(x'(t), u(t)). \end{cases}$$

Definition

The parameter θ^i is structurally globally identifiable if for almost all $\theta \in \Theta$

$$y(u(t), \theta) = y'(u(t), \hat{\theta}) \Rightarrow \hat{\theta}^i = \theta^i.$$

Brock University

Inputs and the outputs

$$M_{s}(t) = (\alpha_{1}N_{n} - x_{2}(t))\mathbf{1}\left(\frac{1}{\sigma}\sum_{i=0}^{i=3}c_{i}u_{i}(t)\right),$$

$$L_{s}(t) = ((1 - \alpha_{1})N_{n} - x_{1}(t))\frac{x_{1}(t) + x_{2}(t)}{N}\max\{0,\sum_{i=0}^{i=3}c_{i}u_{i}(t)\},$$

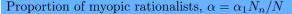
$$\dot{x}_{1}(t) = \kappa L_{s}(t)\min\{1,\frac{u_{4}(t) - x_{1}(t) - x_{2}(t)}{L_{s}(t) + M_{s}(t)}\},$$

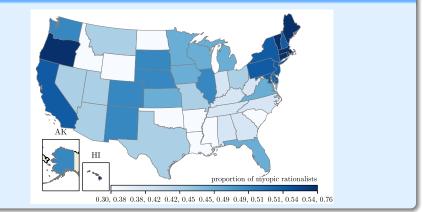
$$\dot{x}_{2}(t) = \kappa M_{s}(t)\min\{1,\frac{u_{4}(t) - x_{1}(t) - x_{2}(t)}{L_{s}(t) + M_{s}(t)}\},$$

$$y(t) = x_{1}(t) + x_{2}(t)$$

$$(2)$$

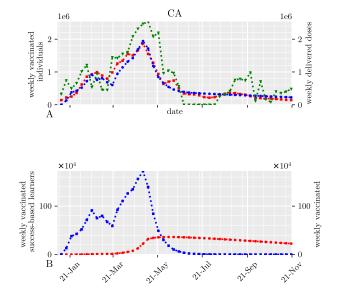
Proposition


The parameters $\kappa, \alpha_1, C_i, C_{\bar{v}}, c_{v_0}, \sigma$ of the dynamical system (2) with single output y(t), and five inputs, $u_i, i = 0, \ldots, 4$ are uniquely identifiable provided that some assumptions hold.


Results

Results

・ロト ・四ト ・ヨト ・ヨト ・ヨ


Results

- The nationwide estimated proportion of myopic rationalists was 47%.
- There was a high degree of variation across the 51 jurisdictions, i.e., 31% for Mississippi to 76% for Vermont.

Results

æ

・ロト ・日ト ・ヨト ・ヨト

Table: Linear correlation between explanatory variables and the estimated proportion of myopic rationalists.

Predictor variable	Pearson-r	r-squared
Vaccination coverage	0.87	0.76
Proportion of votes in favor of Democrats	0.82	0.68
Education score	0.74	0.54

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Conclusion

Conclusion

Brock University

• We considered vaccination coverage as a collective outcome resulting from decisions of individuals where we assumed are mainly either myopic rationalists or success-based learners.

- We considered vaccination coverage as a collective outcome resulting from decisions of individuals where we assumed are mainly either myopic rationalists or success-based learners.
- We found that 47% of Americans behaved as myopic rationalists and 47% as success-based learners.

- We considered vaccination coverage as a collective outcome resulting from decisions of individuals where we assumed are mainly either myopic rationalists or success-based learners.
- We found that 47% of Americans behaved as myopic rationalists and 47% as success-based learners.
- We proved that the proportion of myopic rationalists is identifiable, and the obtained narrow confidence intervals supported the validity of the estimated values.

(日) (종) (종) (종) (종)

- We considered vaccination coverage as a collective outcome resulting from decisions of individuals where we assumed are mainly either myopic rationalists or success-based learners.
- We found that 47% of Americans behaved as myopic rationalists and 47% as success-based learners.
- We proved that the proportion of myopic rationalists is identifiable, and the obtained narrow confidence intervals supported the validity of the estimated values.
- Hopefully, the approach may be useful for health management and guide tailored communication towards promoting vaccination uptake.

(日) (종) (종) (종) (종)

Acknowledgments

Pouria Ramazi Department of Mathematics and Statistics Brock University Mark Lewis Department of Mathematical and Statistical Sciences Department of Biological Sciences University of Victoria

イロト イヨト イヨト イヨト

æ

Thank you!