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Abstract
Introduction: Public health preparedness is based on timely and accurate information. 
Time series forecasting using disease surveillance data is an important aspect of pre-
paredness. This study compared two approaches of time series forecasting: seasonal 
auto- regressive integrated moving average (SARIMA) modelling and the artificial neu-
ral network (ANN) algorithm. The goal was to model weekly seasonal influenza ac-
tivity in Canada using SARIMA and compares its predictive accuracy, based on root 
mean square prediction error (RMSE) and mean absolute prediction error (MAE), to 
that of an ANN.
Methods: An initial SARIMA model was fit using automated model selection by 
minimizing the Akaike information criterion (AIC). Further inspection of the autocor-
relation function and partial autocorrelation function led to ‘manual’ model improve-
ments. ANNs were trained iteratively, using an automated process to minimize the 
RMSE and MAE.
Results: A total of 378, 462 cases of influenza was reported in Canada from the 2010–
2011 influenza season to the end of the 2019–2020 influenza season, with an average 
yearly incidence risk of 20.02 per 100,000 population. Automated SARIMA model-
ling was the better method in terms of forecasting accuracy (per RMSE and MAE). 
However, the ANN correctly predicted the peak week of disease incidence while the 
other models did not.
Conclusion: Both the ANN and SARIMA models have shown to be capable tools in 
forecasting seasonal influenza activity in Canada. It was shown that applying both 
in tandem is beneficial, SARIMA better forecasted overall incidence while ANN cor-
rectly predicted the peak week.
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1  |  INTRODUC TION

Seasonal influenza is caused by the influenza virus that tar-
gets the respiratory system with potentially fatal consequences. 
Approximately 3500 deaths are recorded annually in Canada due 
to influenza (Government of Canada, 2019). There are four types 
of influenza viruses: Influenza A, Influenza B, Influenza C and 
Influenza D with only three affecting humans: A, B and C (World 
Health Organization, 2018). The elderly, pregnant women, children 
under 5 years and individuals with chronic conditions are more sus-
ceptible to adverse outcomes due to influenza- related complications 
(Government of Canada, 2019). This study presents a time series 
analysis of seasonal influenza incidence. Type C cases are infrequent 
and typically result in mild illness thus the focus was on type A and 
type B (World Health Organization, 2018).

Seasonal influenza follows an annual pattern, which peaks in 
the fall and winter months and begins to decline around mid- spring 
(Lagacé- Wiens et al., 2010). Despite the seasonal pattern, the mag-
nitude of the seasonal peak is difficult to estimate. The seasonal 
characteristic of the influenza virus is still poorly understood; how-
ever, it has been theorized that one of the primary driving factors is 
the antigenic variation that occurs within the virus season to sea-
son (Lagacé- Wiens et al., 2010; Yaari et al., 2013). Variation refers 
to the seasonal mutation of genes within the virus, thus making a 
person susceptible to reinfection with the influenza virus (Lagacé- 
Wiens et al., 2010). This mutation combined with the possibility of 
co- circulation of different subtypes may largely determine the ex-
pected magnitude and duration of the influenza season as well as the 
epidemic potential (Lagacé- Wiens et al., 2010).

Time series forecasting can be applied to aid in disease sur-
veillance and serve as part of an early warning system for efficient 
allocation of public health resources and timely initiation of public 
health control measures. Time series techniques have been effec-
tively used for analysis and forecasting of seasonal influenza (Choi 
& Ahn, 2020; Cong et al., 2019; Kraay et al., 2017; Song et al., 2016). 
For the present study, the focus was on SARIMA (seasonal ARIMA) 
models and machine learning algorithms using the ANN (artificial 
neural network) algorithm.

Traditional time series analysis utilizes the SARIMA modelling 
approach proposed by Box and Jenkins (Box & Jenkins, 1970). 
SARIMA modelling has been extensively used and reviewed 
(Hyndman & Athanasopoulos, 2021; Zeger et al., 2006). Cong et al. 
demonstrated the robustness of SARIMA in infectious disease 
modelling by accurately predicting seasonal influenza in Mainland 
China (Cong et al., 2019). Xu et al. (Xu et al., 2017) and Tian et al. 
(Tian et al., 2019) reported similar findings for forecasting the in-
cidence of mumps in Zibo City, China, and hand, foot and mouth 
disease in China.

Machine learning algorithms including ANN have been grow-
ing in popularity for time series forecasting. Unlike traditional 
time series forecasting (which is model- based, i.e. a probability 
distribution), ANNs are data- driven algorithms and learn from 
data (i.e. extract patterns from data they are trained on) (Zhang 

et al., 1998). Therefore, ANNs require sufficient data (i.e. long 
time series) to train the algorithm for a given situation. Although, 
high data volume should not be a replacement for high data ve-
racity or it may introduce the problem of ‘Big Data Hubris’ (Fuller 
et al., 2017). ANNs are thus advantageous in situations where 
underlying relationships in the data are complex and largely un-
known. The literature presents several instances where the 
proficiency of the ANN was compared to the robustness of the 
SARIMA model in forecasting. Zhang and Qi showed that, assum-
ing data is sufficiently pre- processed, neural networks will outper-
form the SARIMA model in terms of predictive accuracy (Zhang & 
Qi, 2005). Furthermore, Zhang et al. produced a comparison study 
of typhoid fever in China, where the traditional SARIMA model 
was compared to three separate ANN models (Zhang et al., 2013). 
Based on a simulation study employing the root mean squared 
prediction error (RMSE) and the mean absolute prediction error 
(MAE) as accuracy measures, the three ANNs outperformed the 
SARIMA modelling approach. Contrary to this, Berke et al. forecast 
the monthly cryptosporidiosis incidence for Ontario and found no 
evidence for better performance of the ANN over the SARIMA 
approach as measured by the MAE and RMSE (Berke et al., 2020).

The goal of this study was to present and compare time series 
forecasts based on the SARIMA model and ANN algorithm, using 
weekly seasonal flu incidence risk per 100,000 population for 
Canada from the start of the 2010–2011 flu season to the end of the 
2018–2019 season. The study objectives were to:

1. Conduct a descriptive time series analysis of seasonal influenza 
activity in Canada.

2. Conduct a traditional time series analysis using the SARIMA 
model to study seasonal influenza activity in Canada and forecast 
future incidence.

3. Train an ANN algorithm to forecast seasonal influenza incidence 
in Canada.

4. Compare the forecast from the SARIMA and ANN approaches 
via their RMSE and MAE to learn about their relative predictive 
accuracy.

Impacts

• Time series analysis indicates a year- to- year growth in 
seasonal peaks for seasonal influenza activity in Canada 
from the 2010–2011 influenza season to the 2019–2020 
influenza season.

• The study showed an automated SARIMA model had 
the better forecasting accuracy than a ‘manual’ built 
SARIMA model as well as the ANN.

• Although SARIMA had better forecast accuracy in meas-
ures of RMSE and MAE, public health may benefit from 
applying the ANN as well since it correctly predicted the 
week at which the seasonal influenza incidence peaked.
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    |  3ORANG et al.

2  |  MATERIAL S AND METHODS

The weekly incidence data are publicly available and were acquired 
through the global web- based tool FluNet from the World Health 
Organization database (World Health Organization, n.d.). Forecasting 
was done for the 2019–2020 influenza season. According to the 
FluWatch calendar from the Public Health Agency of Canada, the influ-
enza season begins on the 35th week (Government of Canada, 2020). 
Thus, for consistency, this was set as the beginning of every influenza 
season in the data set. The data set was then split into training data 
(35th week in 2010 to the 34th week in 2019 [August 25th]) and vali-
dation data weekly incidence from the 35th week in 2019 (August 26) 
to the 34th week in 2020 (August 23) for analysis. Data were adjusted 
for population growth by factoring in population- at- risk (Statistics 
Canada, n.d.). All data analysis was done in R 3.6.2 (Team RC, 2019) 
and RStudio (RStudio Team, 2019). Ethics approval was not required as 
this study only used publicly available surveillance data.

Data pre- processing was performed to filter and prepare the 
data for analysis. Two weeks of missing data were identified, week 
33 from 2011, and week 41 from year 2012. Using weekly reports 
from FluWatch (Government of Canada, 2013) the missing data were 
imputed. For practical reasons, equal observation frequency be-
tween years is important. In 2015, there were 53 weeks as opposed 
to the usual frequency of 52 weeks; therefore, the weekly counts for 
week 52 and week 53 from 2015 were aggregated and recorded as 
week 52.

The objectives of time series analysis are generally three- fold: 
describe (i.e. identify components), filter (i.e. remove noise) and 
forecast (i.e. predict future observations). Additional objectives in-
clude outbreak detection and to estimate intervention effects, but 
the focus of this study was the former three. The following methods 
were utilized to achieve those goals. For exploratory and descriptive 
purposes, the seasonal and trend decomposition using LOESS (STL) 
method was employed (Cleveland et al., 1990). STL filters the data 
through the application of the LOESS smoother to reveal the trend, 
seasonal and remainder components. Trend refers to the long- term 
changes in the incidence, while the seasonal component refers to 
cyclical variation. The remaining variation, which is unexplained 
by trend or seasonality, is the remainder component (Cleveland 
et al., 1990).

All SARIMA models and ANN algorithms were fit with an auto-
mated Box–Cox transformation to normalize the skewed distribution. 
The forecasts were automatically back- transformed as described by 
Hyndman (Hyndman & Athanasopoulos, 2021). Back- transformation 
ensures that results can be interpreted on the original observation 
scale, which is the incidence risk scale in this study.

2.1  |  Seasonal autoregressive integrated moving 
average (SARIMA)

Full notation for the SARIMA model is SARIMA(p, d, q)(P, D, Q)S, 
where p and q are the order of lagged observations and white noise 

error terms represented by the auto- regressive (AR) and moving av-
erage (MA) elements, respectively, while d represents the order for 
difference filter to remove a trend component. Similarly, P, D and Q 
represent the orders at the seasonal length s, that is, D is the order 
of a difference filter to remove a seasonal component.

For this study, two SARIMA models were built. First, an auto-
mated SARIMA model was fit by maximum likelihood estimation 
(MLE) through an automated model selection process, combining 
unit root tests and minimizations of the Akaike information crite-
rion (AIC). Differencing order at the trend and seasonal length was 
determined through the STL decomposition plot. When inspection 
of the autocorrelation function (ACF) and partial autocorrelation 
function (PACF) indicated the presence of residual autocorrelation, 
manual methods were employed to find a better fitting model, that 
is, the second, manual SARIMA model was fit. The manual model 
revised the automated model through an iterative process, where 
subsequent models were fitted with slight adjustments made to 
parameters. Adjustments were determined from inspecting their 
ACF and PACF graphs. Residual autocorrelation was further as-
sessed through the Ljung–Box Q test (Ljung & Box, 1978). Lag (k) 
was set at 20 as suggested by Petris, Petrone and Campagnoli (Petris 
et al., 2009). Significant residual autocorrelation (p- value <0.05) sig-
nalled a lack of fit. As the objective of this study was forecasting ac-
curacy, forecasts from both manual and automated SARIMA models 
were explored to see if and how much the efforts of manual model 
optimization improved accuracy. SARIMA residuals are assumed 
Gaussian white noise, and this was assessed through quantile–quan-
tile plots. If assumption of normality was not met, residuals were 
bootstrapped for more accurate forecasting intervals (Hyndman & 
Athanasopoulos, 2021). The selected model as fitted to the 2010–
2019 training data was then used to forecast the weekly incidence 
for the 2019–2020 validation data. The 80% and 95% prediction 
intervals were based on bootstrapped residuals and visualized to-
gether with the point forecasts.

2.2  |  Artificial neural network

The ANN is a machine learning algorithm, which extends the linear 
regression model (18) to a non- linear combination of weighted input 
data until these are summarized into output, that is, a forecast value. 
In time series analysis, the lagged values of a time series are its predic-
tors for future values, like that of an autoregressive model. Weights 
are determined through a learning algorithm, which minimize a cost 
function (e.g., RMSE or MAE) (Hyndman & Athanasopoulos, 2021).

This study implemented a multilayer feed- forward neural net-
work denoted as neural network autoregressive (NNAR). In a feed- 
forward neural network, data is passed only forward, where each 
layer receives inputs from the previous layer and is then merged 
through a weighted linear combination. The result is further mod-
ified by a linear or non- linear function (such as identity or sigmoid 
transformations) before being sent to the output layer (Hyndman & 
Athanasopoulos, 2021). Through this process, an ANN can capture 
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4  |    ORANG et al.

even non- linear behaviour in a time series. Figure 1 shows a simple 
framework of this procedure.

The NNAR is denoted similar to that of SARIMA models and as 
follows (Berke et al., 2020): NNAR(p, P, k)S where p indicates the 
number of lagged inputs, P indicates the number of seasonal lags 
to be used as inputs and k denotes the number of neurons in the 
hidden layer. Inside the hidden layer, inputs are linearly combined 
and then passed through an activation function (which is either a 
linear or non- linear function) to the next neuron or the output, that 
is, the final forecast. S indicates the seasonal length. The order p 
was found as the optimal number of lags for a linear autoregressive 
model according to the AIC. P was held constant at 1 to control for 
linear seasonality. The initial algorithm assessed p = 7. Successive al-
gorithms were built by incrementally increasing k. The algorithm ar-
chitecture was chosen through MAE and RMSE. Ensemble forecasts 
were generated from 100 random starts to provide variations in the 
training weights for each model. The NNAR algorithm was applied to 
the 2010–2019 training data and then tested on the 2019–2020 val-
idation data. A prediction interval was based on 1000 bootstrapped 
sample paths (Hyndman & Athanasopoulos, 2021).

Forecasts from the SARIMA model and the NNAR were com-
pared through the Diebold–Mariano test (Diebold & Mariano, 1995). 
The Diebold–Mariano test assesses equal predictive accuracy be-
tween forecasts by comparing their loss differential (Diebold, 2015). 
A significant result (p- value ≤0.05) indicates that the forecasts are 
different from one another thus variations in the forecasts are not 
due to chance alone.

3  |  RESULTS

There were a total of 378,658 cases of influenza (type A and type 
B) with an average yearly seasonal incidence of 20.019 cases per 
100,000 and 0.385 incidence cases per 100,000 cases per week 
from 2010 to 2020. The lowest incidence was recorded in the 
2011–2012 influenza season with a total of 12,690 reported cases 
(37.136 incident cases per 100,000 population). The maximum inci-
dence occurred in the 2017–2018 influenza season with a total of 
64,250 reported cases (174.568 incident cases per 100,000 popu-
lation). Week 1 of year 2015 had the highest number of cases in 

a week with a total of 5313 reported cases (14.881 incident cases 
per 100,000 population). The lowest number of incident cases in a 
week was zero reported cases and was reported eight times. The 
time series of weekly reported influenza incidences in Canada from 
the years 2010–2011 to the end of the 2019–2020 influenza season 
is shown in Figure 2.

The time series indicated a strong seasonal component and 
slight positive trend in seasonal peaks. The STL decomposition plot 
(Figure 3) supported these results: the trend component accounted 
for only a small proportion of the total variation in the data and 
seasonal peaks developed at regular intervals during the winter 
months. Thus, a differencing order of 1 was applied at the seasonal 
length and differencing at the trend level was not needed to achieve 
stationarity.

The model selected through the automated process was 
SARIMA(1, 0, 2)(2, 1, 0)52. A total of 13 models were additionally fit 
to the training dataset through the iterative SARIMA model- building 
process. SARIMA(4, 0, 6)(2, 1, 1)52 was selected as the best- fitting 
model for forecasting. Models had a Box–Cox transformation pa-
rameter λ = 0.12 with SARIMA(4, 0, 6)(2, 1, 1)52 having a smaller ΔAIC 
(difference in AIC) of 65.71. Quantile–quantile plots indicate a viola-
tion of the Gaussian assumption of the residual process as overdis-
persion of the residuals is apparent in both models. Forecasting 
residuals were thus bootstrapped for better prediction intervals.

The ACF and PACF from the manual model indicated the pres-
ence of some residual autocorrelation, contrary to the Ljung–Box 
Q test p- value = 0.74. For the automated model Ljung–Box test sig-
nalled autocorrelation (p- value <0.001). The ACF and PACF showed 
remaining correlation at both the observational (weekly) and sea-
sonal level for both models. Figure 4 displays time series and fore-
cast from SARIMA(4, 0, 6)(2, 1, 1)52. Figure 5 displays time series and 
forecast from the automated SARIMA(1, 0, 2)(2, 1, 0)52. The figures 
present 80% and 95% prediction intervals.

A total of 15 ANNs were trained and an ANN of order NNAR(7, 
1, 1)52 was determined to be the best according to its RMSE and 
MAE. NNAR(7, 1, 1)52 indicates an autoregressive order of seven, a 
seasonal autoregressive order of one and one node within the hid-
den layer. The last seven observations plus the first seasonal obser-
vation, that is, yt- 1, yt- 2, yt- 3, yt- 52 were linearly combined to form one 
node of a single hidden layer. Similar to Figures 4–6 displays the time 

F I G U R E  1  Multilayer feed- forward neural network. The inputs (i.e., autoregressive parameters) are passed forward through the network 
and are then combined through a weighted linear combination. The result is then modified by the activation function (generally the identity 
or sigmoid function) to the next layer, where again a weighted combination of inputs is transformed by an activation function and passed on 
to the next layer until the output layer is reached presenting the final prediction.
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    |  5ORANG et al.

series and forecast of NNAR (1, 7) with 80% and 95% prediction 
intervals.

Table 1 shows summary statistics with the RMSE and MAE from 
the 2019 to 2020 seasonal forecasts for all stated models. Observed 

weekly incidences and rounded forecasts for ANN and SARIMA 
models are also shown in Figure 7. The Diebold–Mariano test was 
significant (p- value <0.001). Table 2 shows the total observed and 
forecasted influenza incidence for the 2019–2020 influenza season. 

F I G U R E  2  Time series plot of weekly influenza incidence in Canada from the 2010–2011 to the end of the 2019–2020 flu season. The 
dotted vertical line indicates break between the training data and validation dataset.

F I G U R E  3  Weekly influenza incidence in Canada from 2010–2011 to 2018–2019 flu season (top panel) split into its three additive 
components (trend, seasonality and remainder) through STL decomposition.
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6  |    ORANG et al.

Additionally, it presents the predicted number of cases at peak with 
the week in which this occurred for each.

The automated SARIMA(1, 0, 2)(2, 1, 0)52 outperformed the man-
ual SARIMA model (SARIMA(4, 0, 6)(2, 1, 1)52) with the MAE being 

smaller by 0.337 incident cases per 100,000 population and the 
RMSE smaller by 0.661 incident cases per 100,000 population.

The machine learning algorithm NNAR (7,1,1)52 was similarly, 
outperformed by the automated SARIMA model in predicting 

F I G U R E  4  Time series and weekly forecasts including forecasting intervals of the 2019–2020 influenza season in Canada from 
SARIMA(4, 0, 6)(2, 1, 1)52. The blue line indicates the forecasted values with darker and lighter shades of blue to indicate 80% and 95% 
prediction intervals, respectively.

F I G U R E  5  Time series and weekly forecasts including forecasting intervals of the 2019–2020 influenza season in Canada from 
SARIMA(1, 0, 2)(2, 1, 0)52. The blue line indicates the forecasted values with darker and lighter shades of blue to indicate 80% and 95% 
prediction intervals, respectively.
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    |  7ORANG et al.

the weekly incidence of influenza per 100,000 population during 
the 2019–2020 flu season. The automated SARIMA model had a 
smaller MAE by 0.654 incident cases per 100,000 population and a 

RMSE smaller by 0.864 incident cases per 100,000 population. The 
Diebold–Mariano test indicates the forecasts are different from one 
another thus variation in forecasts is not due to chance alone.

F I G U R E  6  Time series and weekly forecasts including forecast interval of the 2019–2020 influenza season in Canada from an NNAR(7, 
1, 1)52. The blue line indicates the forecasted values with darker and lighter shades of blue to indicate 80% and 95% prediction intervals, 
respectively.

TA B L E  1  AIC and p- values of the Ljung–Box test for SARIMA models and predictive accuracy measurements of SARIMA models and the 
ANN.

Model AIC Ljung–Box test
RMSE (per 100,000 
population)

MAE (per 100,000 
population)

SARIMA(1, 0, 2)(2, 1, 0)52 (automated) 419.81 <0.001 1.700 1.094

SARIMA(4, 0, 6)(2, 1, 1)52 (manual) 354.11 0.74 2.361 1.431

NNAR(7, 1, 1)52 N/A N/A 2.570 1.674

F I G U R E  7  Weekly influenza incidence 
from the 2019–2020 influenza season 
(25 August 2019 to 22 August 2020) 
in Canada as observed, and rounded 
forecast from SARIMA(4, 0, 6)(2, 1, 1)52, 
SARIMA(1, 0, 2)(2, 1, 0)52 and NNAR(7, 1, 
1)52 approaches.

 18632378, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/zph.13114 by T

est, W
iley O

nline L
ibrary on [28/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8  |    ORANG et al.

4  |  DISCUSSION

As expected, the seasonal influenza incidence in Canada had a domi-
nant seasonal pattern with peaks in fall and winter months during 
2010–2019 influenza seasons. There was no substantial long- term 
trend. As stated previously, the seasonal behaviour may be attrib-
uted to annual changes in genomes of the virus making the host 
population susceptible to reinfection. Seasonal variation may also 
be attributed to the host population's behaviour of increased crowd-
ing in the fall and winter months. This leads to greater person- to- 
person contact giving the virus a greater opportunity to spread and 
persist in the population. Furthermore, increased indoor heating in 
the colder temperature creates a continuous recirculated body of air 
with low humidity. This creates an ideal environment for viral patho-
gens to exist (Andrew, 2016; Fitch et al., 1991; Lofgren et al., 2007; 
Lowen & Steel, 2014; McCullers et al., 1999).

Evidently, manual model optimization did not improve fore-
casts of the SARIMA model. The automated SARIMA model was 
most accurate in forecasting the total number of incident cases per 
100,000 population as well as the number of cases per 100,000 
at peak. The ANN was accurate in predicting the week in which 
incidence risk peaked. Examining Figure 7, the manual SARIMA 
model appeared reasonably accurate in predicting the earlier part 
of the flu season. Differences in predictive accuracy were more 
pronounced during the seasonal peak. All models largely overesti-
mated the true incidence risk in the later part of the 2020 influenza 
season. This was likely due to the COVID- 19 control measures that 
were introduced around that time and abruptly ended the influ-
enza season.

Automated SARIMA modelling demonstrates the ability to cap-
ture and forecast seasonal influenza data accurately and, in this case 
study outperformed the manual SARIMA and the ANN in terms of 
both RMSE and MAE. ANNs are still powerful to capture and fore-
cast a time series; however, as ANNs are data- driven, they require 
longer time series to improve predictive performance. In terms of 
computational cost, automated SARIMA modelling was also more 
efficient than both ANNs and manual SARIMA modelling. However, 
the significant Ljung–Box test of the automated model signalled the 
presence of residual autocorrelation. As evident by measures of 
RMSE and MAE, the point forecasts are still reliable and automated 
SARIMA model is the better method for forecasting purposes. 
However, residual autocorrelation indicates that there is still infor-
mation left in the residuals that can be used to explain the spread 

of disease. The manual model improves on this and therefore, for 
explanatory purposes manually building a model is preferred.

4.1  |  Limitations

Analysis and forecasts are limited by the quality of the data. The 
dataset likely underestimates the true incidence of influenza as it 
is restricted to only the reported cases. Therefore, forecasts may 
underpredict the true incidence risk of disease; however, this does 
not reflect capabilities of the model as models are only capable of 
predicting reported cases.

As observed, the PIs of the models are wide. Given the varia-
tion in the amplitude of the seasonal peaks, this result may be ex-
pected as the prediction intervals reflect the variation in the data. 
Furthermore, the prediction intervals are limited to the size of the 
training data, that is, the information given by the fitted model. As 
the training data only consisted of nine influenza seasons, the infor-
mation used for forecasting is relatively small. Provided a longer time 
series, point forecasts are likely to improve and result in narrower 
PIs.

4.2  |  Implications and future research directions

Real- time infectious disease forecasting has historically been a great 
challenge for the public health sector. As demonstrated in this study, 
forecasting methods such as the SARIMA models provide a useful 
tool to further refine allocation of health resources and make more 
informed decisions to combat seasonal influenza activity in Canada. 
Reporting the point forecasts and PIs will be beneficial for public 
health as the former provides an estimate of the likely scenario while 
the upper limit of the PI estimates the worse scenario.

Future research may take into consideration the flu seasons in 
Oceania as they precede the flu seasons in North America by a few 
months. Thus, flu season data from Oceania is expected to improve 
forecasts of the flu seasons in Canada in terms of seasonal peaks and 
trends, as well as improve forecast accuracy.

The forecasting approaches considered here target the influenza 
incidence risk for all of Canada; however, to identify geographic dis-
ease clusters more precise forecasts are desirable. This aligns with 
the concept of precision public health (Dowll et al., 2016). Hierarchical 
forecasting models provide individual forecasts for sub- populations 

TA B L E  2  Observed and forecasted incidence risk of the 2019–2020 seasonal flu year as total number of cases, peak influenza cases and 
week in which peak occurred.

Model
Total incidence risk (per 
100,000) Peak incidence risk (per 100,000)

Week at which 
peak occurred

Observed 141.792 12.601 23

SARIMA(1, 0, 2)(2, 1, 0)52 (automated) 139.187 10.908 20

SARIMA(4, 0, 6)(2, 1, 1)52 (manual) 105.343 7.390 20

NNAR(7, 1, 1)52 109.982 8.316 23
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(or geographic regions), which are conditional on a forecast for the 
total (Hyndman & Athanasopoulos, 2021). Hierarchical forecasting 
thus allows for more precise detection of disease outbreaks and re-
sources can be allocated accordingly.

5  |  CONCLUSION

To conclude, seasonal influenza incidence in Canada exhibits a 
strong seasonal component with no long- term trend. Machine learn-
ing algorithms can provide accurate forecasts and are growing in 
popularity. In this case study, however, the automated SARIMA(1, 
0, 2)(2, 1, 0)52 outperformed the ANN based on RMSE and MAE. 
Machine learning algorithms generally benefit from having longer 
time series and thus should still be employed in those scenarios. 
However, machine learning algorithms, often described as a ‘black 
box’, provide little insight on explanations of the disease process. 
Conversely, SARIMA models provide detailed explanations on how 
past observations affect future cases (Shmueli, 2010). Therefore, 
SARIMA models and ANNs can complement each other when the 
time series is long to provide better explanations of disease patterns.
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