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Abstract

This study systematically reviews applications of three simulation approaches,

that is, system dynamics model (SDM), agent-based model (ABM) and discrete

event simulation (DES), and their hybrids in COVID-19 research and identifies

theoretical and application innovations in public health. Among the 372 eligi-

ble papers, 72 focused on COVID-19 transmission dynamics, 204 evaluated

both pharmaceutical and non-pharmaceutical interventions, 29 focused on the

prediction of the pandemic and 67 investigated the impacts of COVID-19.

ABM was used in 275 papers, followed by 54 SDM papers, 32 DES papers and

11 hybrid model papers. Evaluation and design of intervention scenarios are

the most widely addressed area accounting for 55% of the four main categories,

that is, the transmission of COVID-19, prediction of the pandemic, evaluation

and design of intervention scenarios and societal impact assessment. The com-

plexities in impact evaluation and intervention design demand hybrid simula-

tion models that can simultaneously capture micro and macro aspects of the

socio-economic systems involved.
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1 | INTRODUCTION

At the end of 2019, a series of pneumonia cases caused by
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) emerged in Wuhan, later formally named
COVID-19 by the World Health Organization (WHO).

Considering its rapid spread and highly infectious charac-
teristics, WHO declared on 30 January 2020 that the out-
break constituted a Public Health Emergency of
International Concern (PHEIC) (WHO, 2020a). Follow-
ing over a year's strenuous containment efforts, COVID-
19 remains poorly controlled in some countries while
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others witnessed effective results. As of 14 April 2022,
500 186 525 confirmed cases have been reported globally,
including 6 190 349 deaths (WHO, 2020b). As a public
health crisis, the outbreak of COVID-19 not only led to
high morbidity and mortality but also impacted every
sector of society and exacerbated the global economic
recession. Although vaccinations have been created, the
pandemic may yet resist rapid resolution due to limited
supply and debatable efficacy, particularly against rapidly
emerging variants. Therefore, it is crucial for policy-
makers, healthcare planners, manufacturers of medical
devices and healthcare providers to use available data
and appropriate tools to better understand transmission
dynamics, assess the uncertainty caused by mutations
and evaluate impacts of intervention measures. Situa-
tional analysis should be conducted, and optimal inter-
ventions strategy and resource portfolio employed
accordingly. More importantly, relevant research and pol-
icy implementation practices can provide critical insights
for future emerging infectious diseases.

Simulation models, including compartmental model,
system dynamics model (SDM), discrete event simulation
(DES), agent-based model (ABM), data-driven modelling
approach and machine-learning techniques, have been
widely used during outbreaks to characterize spreading,
capture relevant driving factors, make accurate predic-
tions on risks and turning points, help optimally allocate
resources and design and evaluate public health policies.
The aforementioned models have been employed to
model infectious diseases including smallpox (Epstein
et al., 2002), avian influenza (Casagrandi et al., 2006),
Ebola (Weitz & Dushoff, 2015), Zika (Morrison &
Cunha, 2020), SARS (severe acute respiratory syndrome)
(Anderson et al., 2004), MERS (Middle East respiratory
syndrome) (Lee et al., 2016) and COVID-19 (Jones
et al., 2020; Lai et al., 2020). Compartmental models, for
example, the Susceptible-Infected-Recovered (SIR) model
and its extensions, represent simplified mathematical
constructs, most often using ordinary differential equa-
tions (deterministic ODEs), for modelling and simulating
infectious diseases (Keeling & Danon, 2009). One of the
advantages of compartmental models is its simplicity and
ease of implementation, allowing for quicker implemen-
tation during an outbreak. Scholars have built a variety
of compartmental models to conduct transmission analy-
sis of COVID-19 (Mohamadou et al., 2020; Rahimi
et al., 2021).

Employing an identical mathematical structure to
compartmental models, SDM is broadly used to capture
the non-linear dynamics of complex systems over time.
It helps understand counterintuitive behaviours and
policy resistance in complicated socio-economic sys-
tems. It uses coupled feedback loops that capture real-

world systems using stocks (e.g., material, people and
money), flows (rate of change) and time delays
(response of the system). SDM has many applications
in routine and unexpected situations and acts as a deci-
sion support tool for policymakers (Allen, Mills, et al.,
2020). SDM is a great simulation paradigm for integrat-
ing conventional compartmental models of infectious
diseases into a more comprehensive structure used for
strategical assessment of potential policy interventions
(Bagni et al., 2002).

DES models are commonly used to simulate
operation of systems as discrete sequence of events over
time within particular contexts, such as hospitals
(Eldabi et al., 2007; Jacobson et al., 2006; Jun et al., 1999).
As a typical operations research technique, DES excels at
characterizing resource-limited workflows and has been
widely used to improve production processes, healthcare
capacity planning, programme evaluations, evaluation of
investment decisions and so forth (Liu et al., 2020).

ABMs, as a widely used computational modelling
approach, are stochastic, often spatially or network
explicit, discrete-time simulation models where the
agents represent interacting actors or items of interest.
One key feature is its usage of a synthetic social contact
network to represent each individual in the population
and heterogeneity that yields a realistic model of their
sociodemographic attributes and social interactions
(Lenormand et al., 2015; Liu et al., 2018). ABMs enable
decision makers to recreate, visualize and predict the
emergence of complex phenomena from heterogeneous
interacting individuals with distinct characteristics and
behaviours (Sun et al., 2020). Given its advantages of sim-
ulating heterogeneous agents in complex systems, ABM
has found intensive use in capturing the spread dynamics
of infectious diseases and evaluating the efficacy of rele-
vant interventions (Davey & Glass, 2008; Epstein, 2009;
Eubank et al., 2004; Kumar et al., 2013; Mabry
et al., 2010; Temime et al., 2009).

Data-driven modelling approaches and machine-
learning techniques are another class of models that have
been widely used to provide new insights. Representative
approaches, including Bayesian inference, gradient-
boosting machine models, logistic regression, decision
tree, support vector machine, artificial neural network
and Markov chain Monte Carlo (MCMC), have been used
for parameter estimation and prediction of COVID-19
outbreaks (Mbuvha & Marwala, 2020; Zoabi et al., 2021).
However, the literature size in this field is enormous, and
they should be categorized and reviewed separately. The
current review only focuses on applying three major
dynamic simulation modelling traditions, that is, SDM,
DES and ABM, and their hybrid models thereof in the
study of COVID-19.
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This systematic review aims at achieving three objec-
tives: (1) summarizing how three simulation models and
their hybrids were used in capturing and dealing with
issues with different characteristics (e.g., heterogeneous
agents, aggregate behaviour of homogeneous agents and
process dynamics) that arose during the outbreak of
COVID-19; (2) gaining a better understanding as to how
different simulation approaches can help conduct a holis-
tic situational analysis, make accurate outbreak predic-
tions, optimize medical resource planning, evaluate
alternative interventions and develop high-leverage con-
tainment policies; and (3) demonstrating how new appli-
cation trends, theoretical innovations or methodological
integrations (e.g., the hybrid model of ABM and SDM)
were used in those simulation approaches.

The rest of the paper is organized as follows: Section 2
provides the search strategy and selection criteria and the
method of search strategy, inclusion and exclusion cri-
teria, the selection process and an overview of the data.
Section 3 details the results of the systematic review. In
Section 4, discussion regarding results and limitations,
and public health implications are presented. Section 5
concludes this study with an executive summary and out-
look on using systems simulation models in investigating
emerging infectious diseases.

2 | METHODS

The review conducted is partially consistent with guide-
lines of Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA). The quality of search,
selection and analysis are guaranteed by using AMSTAR
(Assessing the Methodological Quality of Systematic
Reviews) (refer to Appendix A) (McCartney et al., 2019;
Shea et al., 2017).

2.1 | Search strategy and selection
criteria

The following academic web portals and databases were
searched within the designated time range: PubMed,
MEDLINE, EMBASE, Web of Science, Scopus, Science-
Direct, EBSCO, Wiley and the WHO COVID-19 Data-
base. The search strategy combined terms related to
‘discrete event simulation’, ‘discrete event system simu-
lation’, ‘agent-based models’, ‘agent-based modelling’,
‘individual-based model’, ‘multi-agent system’, ‘system
dynamics’, ‘compartmental model’, ‘hybrid simulation’,
‘coronavirus disease 2019’, ‘COVID-19’, ‘COVID-2019’,
‘severe acute respiratory syndrome coronavirus 2’,
‘SARS-CoV2’ and ‘SARS-CoV-2’. An illustration

depicting the search strategy through PubMed is provided
in Appendix B.

Two independent reviewers (H.Z. and W.Z.) per-
formed record selection by reading through papers to
determine their suitability for the systematic review. Dis-
agreements were resolved by discussion with a third per-
son (S.L. or P.J.). Eligible papers had to meet the
following inclusion criteria: (1) used any of the three sim-
ulation models (SDM, ABM and DES), their hybrid
models (such as ABM + SDM and DES + SDM) or a
compartmental simulation model (SIR, SEIR, modified
SIR or modified SEIR, all characterized as falling into the
SDM category) in investigating COVID-19; (2) included
multiple naming schemes such as COVID-19, severe
acute respiratory syndrome coronavirus 2 and SARS-
CoV-2 (detailed in Table C1 in Appendix C); (3) accept-
able COVID-19 topics were considered to include not
only transmission dynamics, prediction, prevention and
control strategies but also economical cost estimation,
resource management and other related issues; (4) was
an original study and not any form of review; (5) was
written in English; and (6) was published in a journal
and conference proceedings, or advance online publica-
tion, or appeared in preprint channels (e.g., https://www.
medrxiv.org/) between 1 December 2019 and
31 December 2021.

2.2 | Data extraction and analysis

The initial search identified 4554 records; 1741 were eligi-
ble for the title and abstract screening after duplicate
removal. By applying predefined criteria, 868 articles
were removed by scrutinizing title, abstract or both. The
remaining 873 articles were read, and 501 were excluded,
which included 298 papers using compartmental models
that were outside the sphere of systems simulation. As a
result, 372 papers were included in the systematic review
(Figure 1).

3 | RESULTS

The 372 papers cover three primary systems simulation
approaches of SDM, DES, ABM and hybrids
(e.g., ABM + SDM, ABM + DES and SDM + DES). Con-
sistent with the objectives of this study, two significant
categories of contribution—theoretic innovation and
applications—were identified. Issues investigated by
these models can be further divided into four areas:
transmission dynamics of COVID-19 (72 articles), pre-
dicting trends (29 articles), intervention measures
(204 articles) and impacts of COVID-19 on society
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(67 articles). It is worth noting that this categorization
reflects the authors' judgments rather than an objective
taxonomy. Figure 2 summarizes the type of simulation
models, key research areas and system scale to which
they were applied.

3.1 | Overview of the applications of
different simulation models

Among the 372 papers, 275 (74%) used ABM. To observe
emerging behaviours, the papers characterized each per-
son or a group of persons as a heterogeneous agent inter-
acting within a (censored) population in a synthetic
social network, placing their hypothetical relationships
within a region or nation (Agrawal et al., 2020; Bai, 2020;
Benneyan et al., 2021; Cremonini & Maghool, 2020;
Delcea et al., 2020; Raviraja et al., 2021). This social net-
work might also contain layers of households, schools,
workplaces or community and disease properties (Aleta
et al., 2020; Alqithami, 2021; Altun et al., 2021; Álvarez-
Pomar & Rojas-Galeano, 2021; Kamerlin & Kasson; 2020;
Panovska-Griffiths et al., 2020; Rockett et al., 2020; Yang

et al., 2020). To lend a more realistic context and conse-
quently provide more interventions, six papers also incor-
porated GIS-enhanced geospatial data into the
simulation platform (Agrawal et al., 2020; Alvarez
Castro & Ford, 2021; de Vries & Rambabu, 2021;
Gharakhanlou & Hooshangi, 2020; Mahmood
et al., 2020; Zhang et al., 2021) and five papers integrated
human mobility data (Aleta et al., 2020; Kishore
et al., 2021; Sewell & Miller, 2020; Wei et al., 2021; Zhou,
Zhang, et al., 2021). To demonstrate the dynamics of the
spread through interactions, 158 papers simulated the
disease transmission via regular or modified SIR- or
SEIR-based ABMs, where the labelled states of individ-
uals are Susceptible, Infected, Recovered, Dead (SIRD)
(Alsaeed et al., 2020; Mahmood et al., 2020) or Suscepti-
ble, Exposed, Infected, Recovered, Dead (SEIRD)
(Benneyan et al., 2021; Gharakhanlou &
Hooshangi, 2020). Some papers also introduced more
COVID-19 states, such as asymptomatic (Almagor &
Picascia, 2020; Head et al., 2021; Koehler et al., 2021;
Moghadas et al., 2021; Talekar et al., 2020), mild and
severe symptoms (Alagoz et al., 2020; Zhang, Vilches,
et al., 2020) and hospitalized (Nguyen et al., 2021;

FIGURE 1 Preferred Reporting Items for

Systematic Reviews and Meta-Analyses

(PRISMA) flow chart for systematic review of

using simulation models to help contain

COVID-19. ABM, agent-based model; DES,

discrete event simulation; HS, hybrid

simulation; SDM, system dynamics model
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Palomo-Briones et al., 2021; Son & RISEWIDs
Team, 2020; Tadi�c & Melnik, 2020; Xu et al., 2021). In
addition, spread through contaminated surfaces and
objects (Tadi�c & Melnik, 2020) and loss of immunity
(Alsaeed et al., 2020) were also simulated.

There are 54 simulation papers using SDM, accounting
for 14.5% of all selected research, where one paper used a
simple SIR model (Pornphol & Chittayasothorn, 2020),
one paper used a SIRD model (Ibarra-Vega, 2020), two
papers used a classic SEIR model (Kumar, Priya, &
Srivastava, 2021; Yusoff & Izhan, 2020) and seven papers
constructed a SEIRD model (Abdolhamid et al., 2021;
Khairulbahri, 2021; Liu et al., 2021; Mutanga et al., 2021;
Struben, 2020; Sy et al., 2021; Zhao et al., 2020). In the
modified papers, new states such as pre-symptomatic
(Rahmandad et al., 2021), asymptomatic (Fair et al., 2021;
Sy et al., 2020), symptomatic (Currie et al., 2020; Fair
et al., 2021), quarantined (Currie et al., 2020; Kumar,
Viswakarma, et al., 2021; Qian et al., 2021), isolated (Niwa
et al., 2020), hospitalized or in treatment (Hu et al., 2021;
Qian et al., 2021; Rahmandad et al., 2021) and vaccinated
(Brereton & Pedercini, 2021; Suphanchaimat,
Tuangratananon, et al., 2021) were introduced into the
models. In addition, without providing particular applica-
tion cases, three papers built conceptual macro-level
SDMs to understand the emergence of COVID-19 and sys-
tem resilience and vulnerability in response to public
health emergencies, respectively (Kontogiannis, 2021;
Wang et al., 2020; Wang & Mansouri, 2021).

There are 32 (8.5%) simulation papers using DES. The
simulation models were mainly used to assess the impact
of COVID-19 on an organization's workflow and empha-
sized its optimization (Allen, Bhanji, et al., 2020;

Das, 2020; de Brito Jr et al., 2021; Kim et al., 2021;
VanDeusen et al., 2021; Zeinalnezhad et al., 2020). Mean-
while, DES was also applied to process analysis and opti-
mization of service facilities that had effects on COVID-19
spread, including testing facility (Çaglayan et al., 2022; El
Hage et al., 2021; Gowda et al., 2021; Saidani et al., 2021;
Saidani & Kim, 2021), vaccination centres (Pilati
et al., 2021) and COVID-19-related hospitals (Frichi
et al., 2021; Melman et al., 2021). DES research was also
used to investigate different interventions for minimizing
transmission risk in lab facilities (Lim et al., 2020).

There are only 11 (3%) papers concerning hybrid sim-
ulation: Six papers were a combination of ABM and DES
(Asgary et al., 2020; Cimini et al., 2021; Possik
et al., 2021; Qiu et al., 2021; Stapelberg et al., 2021;
Tofighi et al., 2021), three papers were a combination of
DES and SDM (Kang et al., 2021; Lu, Guan, et al., 2021;
Warde et al., 2021) and two papers were an integration of
SDM and ABM (Guo, Tong, et al., 2021; Mokhtari
et al., 2021).

3.2 | Theoretic innovation and detailed
application areas

3.2.1 | Theoretical innovation in simulation
models

Although most research focused on specific applications
of the models, 11 papers, to some extent, offered certain
theoretic innovation. A study employing an individual-
level network-based model (ABM) used an ensemble Kal-
man filter to conduct parameter estimation. The study

FIGURE 2 Summary of simulation

models, research areas and system scale

applied. Note: Numbered references are

listed in the supporting information.

ABM, agent-based model; DES, discrete

event simulation; HS, hybrid

simulation; SDM, system dynamics

model [Colour figure can be viewed at

wileyonlinelibrary.com]
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also showed good use of non-Markovian models to better
capture the spreading dynamics (Yang et al., 2020). In a
school environment setting, a study proposed an artificial
intelligence (AI)-powered ABM (Valtchev et al., 2021) to
examine the challenges anticipated for preventative test-
ing of COVID-19. Two studies combined machine-
learning algorithms with ABM to model the COVID-19
transmission (Ozik et al., 2021) and calculated the effects
of the COVID-19 pandemic on the banking system and
the real economy (Polyzos et al., 2021), respectively. Six
studies integrated geospatial data with ABM, which adds
spatial-temporal characteristics of COVID-19 transmis-
sion to improve containment policy. In a study for
improving patients' workflow in a heart clinic during
COVID-19 outbreak, timed coloured Petri nets were
embedded into DES to analyse and improve the healthcare
organization's performance (Zeinalnezhad et al., 2020). To
capture the dynamics of health resource demand and dis-
ease transmission, a study proposed the use of Bayesian-
based SDMs (Yusoff & Izhan, 2020). Another study put
forward a framework for treating the total population as
an inhomogeneous random social network (IRSN)
(Hurd, 2020) and then conducted a theoretical exploration
of IRSN and IRSN-ABM and its advantages to inform pub-
lic health policy and health research.

3.2.2 | Decoding transmission dynamics of
COVID-19

There are 72 papers investigating COVID-19 transmission
dynamics, with 4 simulating it through biosocial stochas-
tic dynamics (Tadi�c & Melnik, 2020) and microscopic
dynamics (Castiglione et al., 2021; Marzban et al., 2021;
Tadi�c & Melnik, 2021). Seventeen papers simulated
spreading mechanism and transmission dynamics within
a particular venue, including the cruise ship Diamond
Princess (Hooten et al., 2020), a long-term care facility
(Smith et al., 2020), a typical large dialysis unit (Tofighi
et al., 2021), a hospital (Evans et al., 2022), a construction
site (Araya, 2021a, 2021b), a sporting facility (Qi
et al., 2021), a school (Tupper & Colijn, 2021), a college
(Gressman & Peck, 2020; Possik et al., 2021), a hypotheti-
cal facility (Cuevas, 2020), a retail store (Pantano
et al., 2021; Ying & O'Clery, 2021), a supermarket
(Harweg et al., 2021; Hernandez-Mejia & Hernandez-
Vargas, 2020; Lu, Wang, et al., 2021; Salmenjoki
et al., 2021) and a church (Farthing & Lanzas, 2021a).
Nineteen papers explored COVID-19 transmission at the
country level, including Australia, China, Italy, Liberia,
Sierra Leone, Spain, Ukraine, the United Kingdom and
the United States. Other papers also investigated the
effect of some factors, including social media and

individual behaviours (Du et al., 2021; Palomo-Briones
et al., 2021; Zhang et al., 2022), fear-driven behaviours
(Rajabi et al., 2021), human activity patterns (Wang
et al., 2021), the impact of cross-reactivity induced by
exposure to endemic human coronaviruses (eHCoVs)
(Pinotti et al., 2021), natural disasters (de Vries &
Rambabu, 2021) and misinformation diffusion (Prandi &
Primiero, 2020). In addition, one article simulated trans-
mission of the virus, and online panic and its adverse
effects on the control and prevention of COVID-19 out-
break (Guo, Li, et al., 2021). Another one study explored
the relationship between the spread of COVID-19 and
economic activities (Kano et al., 2021).

3.2.3 | Trend prediction of COVID-19
spreading

Twenty-nine papers focused on COVID-19 epidemic pre-
diction, of which seven tried to estimate the R0 in differ-
ent regions (Müller et al., 2021; Rypdal et al., 2021; Yang
et al., 2020) and countries (Guo & Xiao, 2020; Hoertel,
Blachier, Blanco, Olfson, Massetti, Rico, et al., 2020;
Kolokolnikov & Iron, 2021; Krivorotko et al., 2022). Most
studies made prediction regarding cumulative infections
(Hunter & Kelleher, 2021; Latkowski & Dunin-
Kȩplicz, 2021) and deaths (Ghaffarzadegan &
Rahmandad, 2020), mortality (Benneyan et al., 2021; Lu,
Guan, et al., 2021), daily testing capacity required (Fiore
et al., 2021), hospital admissions (Warde et al., 2021) and
demand for intensive care unit (ICU) beds (Bartz-Beielstein
et al., 2021; Garcia-Vicuña et al., 2021; Irvine et al., 2021)
and so forth as different interventions, such as physical dis-
tancing (Aghaei & Lohrasebi, 2021), various lockdown
(Hoertel, Blachier, Blanco, Olfson, Massetti, Rico,
et al., 2020; Uansri et al., 2021) and vaccination strategy
(Suphanchaimat, Nittayasoot, et al., 2021; Suphanchaimat,
Tuangratananon, et al., 2021). The rest predicted the future
spread under school reopening (España et al., 2021; Rypdal
et al., 2021; Son & RISEWIDs Team, 2020), city reopening
(Yin et al., 2021), society activities reopening (Cremonini &
Maghool, 2020) and international borders reopening (Pham
et al., 2021). By considering the Alpha, Gamma and Delta
variants, one study (Sah et al., 2021) evaluated the domi-
nance of these variants in the United States.

3.2.4 | Evaluation of intervention measures
for control and prevention

Among the papers, 204 mainly focused on evaluation of
both pharmaceutical interventions (PIs) and non-
pharmaceutical interventions (NPIs). The main objectives
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of these papers were not to provide point or path predic-
tion but rather to understand and evaluate the impacts of
intervention measures on the transmission dynamics of
COVID-19. Regarding PIs, 28 papers discussed vaccine
strategies and their effects. Fatehi et al. (2021) evaluated
the effectiveness of two forms of therapies, that is, remde-
sivir and convalescent plasma (CP) therapy. Forty-five
papers evaluated the impacts of different NPIs on
COVID-19 containment in specific organizations, includ-
ing elementary or secondary schools (Asgary et al., 2021;
Morrison et al., 2021; Zafarnejad & Griffin, 2021), col-
leges and universities (Bahl et al., 2021; Brennan
et al., 2021; Goyal et al., 2021; Kharkwal et al., 2021; Lv
et al., 2021), hospital (Campos et al., 2022; Huang
et al., 2021; Mukherjee et al., 2021), army training post
(Espana et al., 2021), refugee camp (Gilman et al., 2020),
nursing and care home (Holmdahl et al., 2021, 2022;
Kahn et al., 2022; Lasser et al., 2021; Nguyen et al., 2021;
Stevenson et al., 2021), long-term care facility (Vilches
et al., 2021), church (Rothrock et al., 2021), supermarket
(Tong et al., 2021) and construction site (Alzu’bi
et al., 2021). Three of them explored the effects of NPIs
on special events, including two rituals of the Hajj (Al-
Shaery et al., 2021), wedding ceremony (Alzu’bi
et al., 2021) and indoor gathering (Farthing &
Lanzas, 2021b).

There were 158 papers related to interventions evalu-
ation at the national and regional levels (refer to
Table 1). The six major categories of NPIs used are as fol-
lows: (1) mobility restrictions used to prevent seeding
during the early outbreak period, including public trans-
port and travel restrictions; (2) identification mecha-
nisms, including screening, testing, diagnosing and
reporting; (3) isolation and quarantine measures, includ-
ing forced isolation, self-quarantine, community isolation
and contact tracing of people who were suspected or con-
firmed to have the disease or who were exposed to the
infected; (4) social distancing or contact restrictions
implemented to reduce the risk of exposure at the com-
munity level, including lockdown, curfew, staying at
home and workplace and school closures; (5) personal
preventive measures including personal protective equip-
ment (PPE; e.g., facemasks) and frequent handwashing;
and (6) healthcare capacity or hospital capacity, includ-
ing isolation or quarantine beds and ICU beds. The PI at
the national and regional levels referred to vaccination
strategy.

Seen from Table 1, most papers investigated the out-
comes of enacting one to three types of NPIs. Isolation/
quarantine and social distancing were the most widely
studied NPIs. Three phases of the pandemic were often
observed by these studies: (1) Lockdown was imposed to
prevent rapid spread at the initial stage, necessitating

strict mobility restrictions; (2) normalized prevention and
control measures such as social distancing and personal
protective measures were enforced when lockdown was
lifted, production was resumed and schools and other
service outlets were reopened; and (3) when the vaccine
was developed and produced, NPIs and vaccination were
combined to fight against COVID-19. Hence, it is impera-
tive to use simulation research to understand the impacts
of different interventions during distinct stages to identify
cost-effective measures.

3.2.5 | Evaluating cross-sectoral impacts of
the COVID-19

Apart from research on COVID-19 spread dynamics and
evaluation of implementing different interventions, 67 rel-
evant papers investigated the impacts of the pandemic
and related NPIs on various sectors. Ten papers investi-
gated the disruptions and uncertainties to the supply
chain caused by the COVID-19 pandemic (Achmad
et al., 2021; Burgos & Ivanov, 2021; Choudhary
et al., 2021; Duan et al., 2021; Ghadge et al., 2021;
Moosavi & Hosseini, 2021; Nguyen, 2021; Sinha
et al., 2020) and the post-pandemic recovery strategies
(Ivanov, 2021; Rahman et al., 2021). Twenty papers
explored the other sectors at the national and regional
levels, including industrial network (Song et al., 2020),
tourism (Gu et al., 2021; Luo et al., 2021), national secu-
rity (Prikazchikov et al., 2021), food–energy–water
(Calder et al., 2021), economy (Chen et al., 2021; Fosco &
Zurita, 2021; Inoue et al., 2021; Inoue & Todo, 2020;
Sharma et al., 2021), financial (Spelta et al., 2021), social
activity (de Brito Jr et al., 2021; Schmidt & Albert, 2021;
Weibrecht et al., 2021), healthcare (Schlüter et al., 2021),
employment (Marreros et al., 2021) and transport and
land-use (Habib & Anik, 2021). As the pandemic led to
great collateral damage or process disruption to a variety
of organizations, including banks (Shahabi et al., 2021),
airlines (Delcea et al., 2020; Milne et al., 2020, 2021),
ambulatory endoscopy centres (Das, 2020), heart clinics
(Zeinalnezhad et al., 2020), laboratories (Lim et al., 2020)
and outpatient dialysis services (Allen, Bhanji, et al.,
2020), necessary countermeasures were adopted to lower
the risk of transmission and to improve effectiveness of
these measures. Simulation models can help organiza-
tions across diverse sectors develop and evaluate scenar-
ios, ask counterfactual ‘what-if’ questions and identify
and implement cost-effective organization-level infection
prevention and control mechanisms. In addition, one
paper simulated the consequences of medical costs of
keeping the US economy running as normal under differ-
ent counterfactual paths (Chen et al., 2020). Another
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TABLE 1 Evaluating pharmaceutical interventions (PIs) and non-pharmaceutical interventions (NPIs) at the national, regional and

organizational levels

Study
Mobility
restrictions Identification

Isolation
and
quarantine

Social
distancing

Self-
prevention Vaccination

Hospital
capacity

188 √ � � � � � �
85, 121, 266, 337 � √ � � � � �
35, 56, 167, 196, 216, 231,
236, 258, 273, 311

� � √ � � � �

8, 10, 22, 39, 41, 67, 74,
79, 106, 107, 111, 126,
143, 149, 156, 160, 168,
176, 195, 199, 203, 209,
219, 224, 226, 227, 232,
237, 253, 282, 291, 300,
312, 332, 352, 359, 364

� � � √ � � �

19 � � � � √ � �
6, 9, 50, 150, 198, 212,
213, 269, 275, 289, 306,
334, 336, 370

� � � � � √ �

20, 29 √ � √ √ � � �
338 √ � √ √ √ � �
172 √ � √ � � √ �
57 √ � � √ � � �
244 √ � � √ √ √ �
186 √ � � � √ � �
301 √ � � � � � √

103, 116, 133, 158, 164,
178, 184, 207, 250, 260,
369

� √ √ � � � �

66, 140, 159, 169, 205,
234, 242, 251, 305

� √ √ √ � � �

5, 181, 318, 365 � √ √ √ √ � �
182 � √ √ √ √ √ �
36, 131, 321 � √ √ √ � √ �
366 � √ √ � √ √ �
1, 2, 12, 37, 153, 155, 238,
265, 283, 296, 310, 340,
351, 353, 355, 368

� � √ √ � � �

183, 225, 285, 292, 319 � � √ √ √ � �
61, 320 � � √ √ √ √ �
32 � � √ √ � √ �
290 � � √ � � � √

51, 75, 223, 325 � � � √ √ � �
240 � � � √ √ √ �
95, 104, 361 � � � √ � √ �
108 � � � √ � � √

Note: The numbered reference table is attached in the supporting information.
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paper simulated the impacts of labour migration policies
under different hypothetical scenarios on the economic
growth of a host country during the pandemic
(Kozlovskyi et al., 2020).

4 | DISCUSSION

Most papers emphasized that their research objectives
were to simulate the transmission dynamics of COVID-
19 under multiple interventions and inform public health
decisions. About half focused on NPIs and vaccination
strategies. Because interventions practised at organiza-
tions and individual levels exhibited much greater het-
erogeneity, only cases of NPIs and vaccination strategies
implemented at the national or regional level were sorted
and summarized.

4.1 | Insights of policy design on NPIs

NPIs played a critical role in slowing the spread in the
absence of vaccination. Based on simulated results in
Canada, without appropriate NPIs, a majority of the
country's population might contract the disease, which
would collapse the health system and consequently lead
to even higher mortality (Ogden et al., 2020). Simulation
studies in other countries suggested possible epidemic
rebounds or a new wave spike if quarantine (Hoertel,
Blachier, Blanco, Olfson, Massetti, Limosin, &
Leleu, 2020) or social distancing (Brereton &
Pedercini, 2021; Rice et al., 2020) were lifted prematurely.
However, the pandemic will continue to batter the econ-
omy if stringent NPIs are not lifted (Ghaffarzadegan &
Rahmandad, 2020). Therefore, it is important for a
dynamically informed trade-off between designing and
implementing NPIs and minimizing their adverse effects
on society. Systems simulation models have contributed
significantly to informing public health decisions by test-
ing necessary assumptions from policymakers and identi-
fying solutions by considering the timing, stringency and
combination of NPIs.

4.1.1 | Timing of NPIs

A simulation paper concluded that the timing of NPI
implementations, adherence to the measures and timing
of lifting relevant measures have significant impacts on
the development of the epidemic (Alagoz et al., 2021). A
simulation paper in Shenzhen (Zhang, Cheng, et al.,
2020) revealed that the proper timing of NPIs not only
generated the most effective outcomes but also achieved

the minimum negative social costs. Specifically, their
results showed that local infection numbers could have
been reduced by 35% if migrant workers or travellers
coming from Hubei province followed the ‘14-day com-
pulsory quarantine’ 1 week ahead of schedule. By con-
trast, the local infection number could rise by 4% if
delayed by a week, demonstrating the advantage of using
simulation to identify an ideal intervention window. The
simulation results also revealed that the number of local
infections could have been 50% lower if patients were
hospitalized immediately after symptom onset.

4.1.2 | Duration of NPIs

One paper (Ibarra-Vega, 2020) simulated the infection
trends under three different lockdown arrangements: one
extended 60-day lockdown, a 30-day lockdown followed
by a 30-day smart lockdown and an initial 40-day lock-
down followed by a 30-day smart lockdown. The results
suggested that an extended initial lockdown and then
gradually returning to normal activities is highly effec-
tive, demonstrating the need for policymakers/
implementers to choose the lockdown duration carefully.
Niwa et al.'s (2021) study showed that mild and continu-
ous lockdown could have better containment outcomes
than strong and intermittent ones. Although extended
lockdown did have remarkable impacts on reductions in
infections and deaths (Kersting et al., 2021), a country or
region should make trade-offs between the control results
of COVID-19 spread and the economic development and
social well-being.

4.1.3 | Stringency of NPIs

Using the reduction in contact rate to stand for the strin-
gency of lockdown, an ABM was used to simulate the
number of infected people and death under 100%, 50%,
25% and 10% of the typical contact rate (Alsaeed
et al., 2020). The results revealed that minimized contact
rate—i.e., adopting stringent interventions—lowered
infection and mortality compared with mild interven-
tions. Another paper (Pornphol & Chittayasothorn, 2020)
used SDM to derive similar conclusions by simulating the
outbreak in Phuket, Thailand, using a contact rate of
33%, 23%, 11% and 5% of the normal. A paper (Makarov
et al., 2020) developed ABM to predict the epidemiologi-
cal dynamics in Moscow under three scenarios. The sim-
ulation results showed that the deployment of restrictive
measures could reduce cumulative mortality counts.
Another ABM simulation paper evaluated the effects of
different stringency levels in social distancing (Silva
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et al., 2020). The results concluded that lockdown and
conditional lockdown had the highest negative impacts
on the economy but were also best in lowering infections
and mortality. Wearing facemasks and 50% social isola-
tion adherence was identified as the best scenario to
achieve the balance between preserving lives and mini-
mizing negative economic impact. Kersting et al.'s (2021)
study proved that strict measures were an effective way
of buying time to expand healthcare system capacities
and improve prevention measures.

4.1.4 | The combination strategy of NPIs

Relying on a single NPI cannot effectively contain
COVID-19 and mitigate side effects (e.g., supply chain
disruption caused by lockdown) caused by NPI monoto-
nicity. Upon the reopening of society coexisting with
endemic SARS-CoV-2, only combining multiple NPIs can
prevent subsequent waves of COVID-19
(Gharakhanlou & Hooshangi, 2020).

The variances in demographic characteristics, culture,
socio-economic structures, transportation systems,
healthcare systems and public health governance
between regions induce differences in the transmission
dynamics of COVID-19. Consequently, region-specific
NPIs portfolios are demanded. A systems simulation
model is optimal to help find the most feasible combina-
tion of NPIs by testing various assumptions and imple-
mentation paths. More importantly, by considering
different timing and stringency of NPIs, simulation out-
puts can improve the public health policy and system
towards the evolving pandemic. Moreover, evaluating
those adopted implementation paths undoubtedly
increases the system preparedness and supports appropri-
ate countermeasures.

4.2 | Insights on vaccination

In our review, the vaccination-related literature mainly
investigated delayed second-dose vaccination, vaccine
compliance, vaccination effectiveness, daily vaccination
rate, daily vaccine administering capacity, vaccination
coverage and vaccination prioritizing strategies. Regard-
ing prioritizing vaccination, strategies had considered
age-stratified strategy, risk and vulnerable groups priori-
tizing strategy (Aguas et al., 2021; Moghadas et al., 2021)
and spatial distribution strategy (Tatapudi et al., 2021;
Zhou, Zhou, et al., 2021). However, given that many
countries, especially those third-world countries, are not
capable of producing vaccines, more simulation research

should be carried out to understand the dynamic inter-
play between the vaccine supply–demand and the choice
of different NPIs, which therefore can inform the public
health policy. Simulation models intending to understand
the interactions among the immune protection period
from vaccination, vaccine effectiveness against different
virus variants, vaccine administration capacity, vaccina-
tion coverage, vaccine supply capacity and hospital
capacity could also be explored.

4.3 | Outlook for applying systems
simulation models

4.3.1 | Demanding more application areas

This review identified under-served research areas. Only
one paper simulated the transmission of COVID-19 via
suburban railways (Talekar et al., 2020). With the avail-
ability of big data from air transportation, highway/
railway network and public transit, spatial ABMs can be
built based on mobility patterns of travellers or urban
populations to simulate the transmission of COVID-19
(or other emerging infectious diseases) via intra- or inter-
city transport network. It is worth noting that, consider-
ing the complexity and resources needed for modelling,
the purpose of modelling is to simply reality correctly by
capturing critical characteristics of the target system, not
entirely. Simulation models, for example, using DES, can
also help public design facilities to consolidate the imple-
mentation of NPIs.

Categorized literature shows that the scales of previ-
ous research range from individual, organizational,
regional to national levels. Some simulation papers evalu-
ate the impacts of COVID-19 and NPIs on the broader
socio-economic system, such as collateral damage to
healthcare system, national or regional economy. A key
opportunity exists to construct a macro-level SDM to bet-
ter understand the cascading impacts on the intercon-
nected global economy and, subsequently, global
governance of public health. Microscopic level simula-
tions were also not employed within the papers. Simula-
tion models such as SDM or ABM could be used to
simulate the airborne dynamics and transmission of
SARS-CoV-2, which can bolster NPIs, such as face
shields, more rigorous definitions of safe distance and
spraying disinfectant. Within-host microscopic level sim-
ulation can illustrate the competition between the virus,
immune system and associated inflammatory responses
such as cytokine storm syndrome (COVID-19-CSS), evo-
lutionary dynamics (e.g., new variants) and virus–host
cell interaction dynamics.
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4.4 | Demanding more theoretical
innovation and ensuing applications

4.4.1 | Hybrid systems simulation models

The ability of hybrid systems simulation models to concur-
rently capture heterogeneities of individuals and homoge-
neities of the population demonstrates good use in public
health, which requires public policy design from both
micro and macro angles (Brailsford et al., 2019). For
instance, in the research on COVID-19, hybrid models
such as ABM&DES, ABM&SDM or SDM&DES can simul-
taneously simulate the spread within a community or city
and evaluate the impact of treatment capacity improve-
ment in hospitals and their dynamic mutual interactions.
Taking another example, a hybrid DES&ABM model used
for studying a hospital providing COVID-19 treatment is
capable of simulating the following events and actions:
(1) DES can simulate the capacity change caused by staff
scheduling, process rearrangement and set-up of the quar-
antine area, which creates a process that might lead to the
infection of staffs; (2) ABM supports simulation of the
infection of staff under the settings, which informs the
removal of infected staffs; (3) removal of infected staff
necessitates the rescheduling of staff in (1), which
increases the workload on incumbent staff; and (4) over-
whelmed staffs have higher risk to be infected, which fur-
ther changes the status of (2).

As the world heads into something closer to an
endemic regime and active surveillance systems are being
scaled back, there is great promise for the deployment of
techniques that can aid in the early and effective detec-
tion of localized outbreaks and provide decision support
needed for effective enactment of localized public health
measures and (critically) triggering of surge capacity
when health system utilization is likely to exceed certain
thresholds. Of particular demonstrated ability and effec-
tiveness are routinized use on daily basis of techniques
such as particle MCMC (PMCMC) and particle filtering
coupled with COVID-19 dynamic models to provide
‘online’ processing of regularly or episodically sampled
passive and (where available) active localized surveil-
lance data. Such systems inform day-to-day updated
probabilistic estimation and reporting of latent epidemio-
logical and health system quantities of interest. In addi-
tion to supporting estimation, such models can have a
demonstrated effectiveness for use in probabilistically
projecting forward estimated evolution of estimated epi-
demiology and acute-care demand in a way that can
serve as the basis for triggering surge capacity, for exam-
ple, in emergency care. They can also be used to examine
‘what-if’ counterfactuals involving public health mea-
sures. A key need is to inform such systems with

sufficiently rich and current data to inform such projec-
tions. In addition to whatever public health and health
system indicators are available (including data from syn-
dromic surveillance systems in emergency departments
and hospital admissions tests), such systems have a dem-
onstrated capacity to further employ wastewater indica-
tors, time series generated from symptom-like references
on social media and online searches that may be indica-
tive of symptoms of SARS-CoV-2 infection.

A further need involves hybrid models that tie in the
representation of acute COVID-19 with Long COVID out-
comes and with the patient flow for care-seeking. Under-
standing and effectively resourcing such patient flow is
essential given the large volumes likely to be driven not
only by Long COVID sequelae but also by the care needs
of deferred (and often worsened) conditions, conse-
quences of disruptions of preventive and screening pro-
cesses during the pandemic and rehabilitation needs and
to address mental health service delivery for needs
emerging from or worsened by the pandemic.

Whereas some hybrid methods do impose added com-
putational burden, others allow hybrid methods to signif-
icantly reduce the computational burden that would
extend from a traditional DES model or (especially)
ABM. A notable example is hybrid methods that use an
aggregate characterization for part of a model (e.g., low-
risk populations or people at earlier stages of a risk con-
tinuum) and that reserve individual-level representation
for the subpopulations of focal interest (e.g., those who
have been exposed to or infected by SARS-CoV-2). This
approach has been used successfully in some extant but
unpublished COVID-19 models and to a high degree of
success for other conditions, such as dementia (Evenden
et al., 2020), diabetes in pregnancy (Freebairn
et al., 2020) and chronic kidney disease (Gao et al., 2017).
Future research on ABM could reduce the computational
burden by constructing smaller scale models (with fewer
agents) to anticipate what the results would be produced
by a much larger model (Osgood, 2009).

4.4.2 | Other innovations

This systematic review examined applications of GIS-
enhanced geospatial data to ABM, which also offers a
promising direction for tempo-spatial analysis of simula-
tion models. Parameter estimation approaches are neces-
sary for robust systems simulation models and their
hybrids. So far, among the least square, maximum likeli-
hood estimation (MLE), Monte Carlo (MC) and MCMC,
least square is the most commonly used method (Guan
et al., 2020). The PMCMC (Andrieu et al., 2010) and deep
learning (Muhammad et al., 2021), as two promising
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parameter estimation approaches, are attracting growing
attention of many scholars in systems simulation.
PMCMC is a powerful method to explore high-
dimensional parameter space using time-series data.
Combining emerging technologies, such as AI, machine
learning, big data analytics and blockchain (Muhammad
et al., 2021), with traditional models is indispensable
when developing high-leverage policies and interventions
to mitigate the impacts of COVID-19. This is especially
useful for governments, institutions and organizations to
accelerate knowledge accumulation and governance
learning towards future emerging diseases and their
impacts on the complicated socio-economic system.

4.5 | Limitations

Although conventional epidemiology compartmental
models are the basis for building SDM and ABM, they
are limited in capturing the non-linear causalities
between driving factors and system behaviours in the
socio-economic system in which the COVID-19 epidemic
is embedded and, consequently, are too narrowly scoped
to evaluate the broader impacts of multiple interventions.
Nevertheless, the applications of such traditional
research were reviewed (Appendix D).

5 | CONCLUSIONS

This systematic review found that systems simulation
models exemplified by SDM, ABM and DES have been
widely used to model the COVID-19 transmission
dynamics, trend prediction of the pandemic and societal
impact assessment and in evaluating and designing inter-
vention scenarios from the scales of an individual, orga-
nization, region and state. Majority of the papers focused
on simulating the outcomes and impacts of alternative
intervention measures, which are very suitable to inform
public health policy and implementation science. ABM
was the mostly common-used modelling approach and
covered more research areas. Future research areas could
be extended to studies on transmission dynamics of
COVID along with transportation networks, evaluation
of the collateral damages to the healthcare system and
economy, assessment of the post-pandemic policies and
microscopic level simulation for understanding the com-
petition between virus, immune system and associated
inflammatory responses. As for the innovations in simu-
lation methods, the complexities in impact evaluation
and intervention design for containing COVID-19 or
future emerging infectious diseases necessitate the use of
hybrid simulation models that can simultaneously

capture the micro and macro aspects (e.g., understanding
individual behaviours and decision-making, within-host
viral dynamics and population-based interventions and
resource allocation) of the socio-economic system
involved.

STATEMENT ON THE CONTRIBUTION
By systematically reviewing three major system simula-
tion approaches, that is, system dynamics model (SDM),
agent-based model (ABM) and discrete event simulation
(DES), and their hybrids in COVID-19-related research,
our manuscript offers four major contributions. First, we
attempt to summarize how three different simulation
models and their hybrids were used in capturing and
dealing with different issues that arose during outbreak
of COVID-19. Secondly, this study is to gain better under-
standing as to how different simulation approaches can
help conduct holistic situational analysis and counterfac-
tual analysis, make accurate outbreak predictions, opti-
mize medical resource planning, evaluate alternative
interventions and develop high-leverage containment
policies. The third contribution is to demonstrate how
new application trends, theoretic innovation or methodo-
logical integration (e.g., hybrid model of ABM and SDM)
were used in those simulation approaches. And the last
but not the least contribution of this study is to indicate
some future innovative research on the three system sim-
ulation approaches, which include (1) hybrid models
simultaneously capturing micro and macro aspects of the
socio-economic systems involved; (2) within-host micro-
scopic level simulation understanding competition
between the virus, immune system and associated
inflammatory responses; (3) more parameter estimation
methods for SDM, ABM, DES and their hybrids; and
(4) models for capturing the interactions between pan-
demic progression and hospital service capacity planning,
and so forth.

DATA AVAILABILITY STATEMENT
All relevant data have been included in the supporting
information.

ORCID
Shiyong Liu https://orcid.org/0000-0003-4463-9431

REFERENCES
Abdolhamid, M. A., Pishvaee, M. S., Aalikhani, R., &

Parsanejad, M. (2021). A system dynamics approach to
COVID-19 pandemic control: A case study of Iran. Kybernetes,
51, 2481–2507. https://doi.org/10.1108/K-01-2021-0038

Achmad, A. L. H., Chaerani, D., & Perdana, T. (2021). Designing a
food supply chain strategy during COVID-19 pandemic using
an integrated Agent-Based Modelling and Robust Optimization.

218 ZHANG ET AL.

 10991743a, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sres.2897 by T

est, W
iley O

nline L
ibrary on [06/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-4463-9431
https://orcid.org/0000-0003-4463-9431
https://doi.org/10.1108/K-01-2021-0038


Heliyon, 7(11), e08448. https://doi.org/10.1016/j.heliyon.2021.
e08448

Aghaei, F., & Lohrasebi, A. (2021). Modeling the epidemic
dynamics of COVID-19: Agent-based approach including
molecular dynamics simulation and SEIR type methods. Inter-
national Journal of Modeling, Simulation, and Scientific Com-
puting, 12(6), 2150057. https://doi.org/10.1142/S179396
2321500574

Agrawal, S., Bhandari, S., Bhattacharjee, A., Deo, A., Dixit, N. M.,
Harsha, P., Juneja, S., Kesarwani, P., Swamy, A. K., Patil, P.,
Rathod, N., Saptharishi, R., Shriram, S., Srivastava, P.,
Sundaresan, R., Vaidhiyan, N. K., & Yasodharan, S. (2020).
City-scale agent-based simulators for the study of non-
pharmaceutical interventions in the context of the COVID-19
epidemic. Journal of the Indian Institute of Science, 100(4), 809–
847. https://doi.org/10.1007/s41745-020-00211-3

Aguas, R., Bharath, A., White, L. J., Gao, B., Pollard, A. J.,
Voysey, M., & Shretta, R. (2021). Potential global impacts of
alternative dosing regimen and rollout options for the ChA-
dOx1 nCoV-19 vaccine. Nature Communications, 12(1), 6370.
https://doi.org/10.1038/s41467-021-26449-8

Alagoz, O., Sethi, A. K., Patterson, B. W., Churpek, M., & Safdar, N.
(2020). Impact of timing of and adherence to social distancing
measures on COVID‐19 burden in the US: A simulation model-
ing approach. medRxiv. https://doi.org/10.1101/2020.06.07.
20124859

Alagoz, O., Sethi, A. K., Patterson, B. W., Churpek, M., & Safdar, N.
(2021). Effect of timing of and adherence to social distancing
measures on COVID-19 burden in the United States: A simula-
tion modeling approach. Annals of Internal Medicine, 174(1),
50–57. https://doi.org/10.7326/M20-4096

Aleta, A., Martín-Corral, D., Piontti, A. P. Y., Ajelli, M.,
Litvinova, M., Chinazzi, M., Dean, N. E., Halloran, M. E.,
Longini, I. M. Jr., Merler, S., Pentland, A., Vespignani, A.,
Moro, E., & Moreno, Y. (2020). Modeling the impact of social
distancing, testing, contact tracing and household quarantine
on second-wave scenarios of the COVID-19 epidemic. medRxiv.
https://doi.org/10.1101/2020.05.06.20092841

Allen, M., Bhanji, A., Willemsen, J., Dudfield, S., Logan, S., &
Monks, T. (2020). A simulation modelling toolkit for organising
outpatient dialysis services during the COVID-19 pandemic.
PLOS One, 15(8), e0237628. https://doi.org/10.1371/journal.
pone.0237628

Allen, M. B., Mills, M., & Mirsaeidi, M. (2020). The COVID-19
pandemic—Can open access modeling give us better answers
more quickly? Journal of Applied Clinical Medical Physics,
21(6), 4–6. https://doi.org/10.1002/acm2.12941

Almagor, J., & Picascia, S. (2020). Exploring the effectiveness of a
COVID‐19 contact tracing appusing an agent‐based model. Sci-
entific Reports, 10(1), 22235. https://doi.org/10.1038/s41598-
020-79000-y

Alqithami, S. (2021). A generic encapsulation to unravel
social spreading of a pandemic: An underlying
architecture. Computers, 10(1), 12–27. https://doi.org/10.3390/
computers10010012

Alsaeed, N. I., Alqaissi, E. Y., & Siddiqui, M. A. (2020). An agent-
based simulation of the SIRD model of COVID-19 Spread.
International Journal of Biology and Biomedical Engineering, 14,
210-217. https://doi.org/10.46300/91011.2020.14.28

Al-Shaery, A. M., Hejase, B., Tridane, A., Farooqi, N. S., &
Jassmi, H. A. (2021). Agent-based modeling of the Hajj Rituals
with the possible spread of COVID-19. Sustainability, 13(12),
6923. https://doi.org/10.3390/su13126923
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APPENDIX A: CRITICAL APPRAISAL
PREVENTING BIASED ASSESSMENT

Critical appraisal preventing biased assessment using
AMSTAR:

The quality of the reviews will be evaluated using
modified AMSTAR criteria:

• Was an ‘a priori’ design for the review provided?
• Was a comprehensive search undertaken (including

relevant search terms and at least two databases)?
• Were the studies selected for inclusion by at least two

independent researchers?
• Were there clear inclusion and exclusion criteria?
• Was the status of publication ignored in the inclusion/

exclusion criteria?
• Were the data extracted independently by at least two

researchers?
• Was the scientific quality of the included studies

assessed and documented?
• Was the scientific quality of the included studies used

appropriately in formulating conclusions?
• Were the methods used to combine the findings of

studies appropriate?
• Was the likelihood of publication bias assessed

(if possible)?
• Were there important conflicts of interest that may

have impacted on the conclusions?

APPENDIX B: EXAMPLE OF IMPLEMENTING
SEARCH STRATEGY FOR LITERATURE
THROUGH PubMed

1. #1 Search (((coronaviridae[Mesh:noexp] OR coronavi-
rus[Mesh] OR ‘coronavirus Infections’[Mesh] OR
corona[tw] OR corona'[tw] OR ‘coronavirus’[tw] OR
coronavir*[tw] OR Betacoronavirus[Mesh] OR Beta-
coronavirus[tw])))

2. #2 Search ((((pneumonia[Mesh:noexp] OR
pneumonia, viral[Mesh:noexp] OR Viruses[Mesh])
and (‘Disease Outbreaks’[Mesh] OR Epidemiology
[Mesh]))))

3. #3 Search ((((#1 OR #2) AND 2019/11:2020/2 [crdt])))
4. #4 Search (((2019-novel-corona*[tw] OR 2019-new-

corona*[tw] OR ‘2019-nCOV’[tw] OR ‘coronavirus
disease 2019’[tw] OR ‘Corona Virus Disease
2019’[tw] OR ‘2019 coronavirus disease’[tw] OR
COVID-19[tw] OR COVID-2019[tw] OR ‘severe acute
respiratory syndrome coronavirus 2’[Supplementary
Concept] OR ‘severe acute respiratory syndrome

coronavirus 2’[tw] OR SARS2[tw] OR SARS-CoV2
[tw] OR SARS-CoV-2[tw])))

5. #5 Search ((#4 OR #3))
6. #6 Search (((‘discrete event simulation’[tw] OR ‘Dis-

crete event system simulation’ [tw] OR DES[tw] OR
‘agent-based model*’[tw] OR ABM[tw] OR ‘Individ-
ual based model*’[tw] OR ‘multi-agent
system’[tw] OR ‘system dynamics’[tw] OR SD[tw] OR
‘hybrid simulation’[tw] OR ‘compartmental
model*’[tw])))

7. #7 Search ((#5 AND #6))

APPENDIX C: INCLUSION AND EXCLUSION
CRITERIA

APPENDIX D: QUICK REVIEW OF
TRADITIONAL COMPARTMENTAL MODELS IN
COVID-19 RESEARCH

Compartmental models have played a pivotal role in
understanding the outbreak dynamics of epidemic and
pandemic. In our quick review, we found that 298 papers
employed compartmental models to investigate the

TABLE C1 Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Research topic: Focus on
COVID-19. Not only the
paper focuses on the
spread of COVID-19, the
paper related to the
COVID-19 has been taken
into consideration

Modelling: Simulation
modelling, including
agent-based modelling
(ABM) (or individual-
based model), system
dynamics (SD), discrete
event simulations (DES)
and hybrid simulation
(combine two or more of
ABM, SD and DES)

Study type: Paper was the
original study not the any
form of review paper

Study language: Writing in
English

Research topic: Not related to
COVID-19. COVID-19 is
only mentioned in paper, but
the actual research topic has
nothing to do with COVID-
19

Modelling: Simulation
modelling is not the main
model used in paper

Study type: The type of the
paper is preprint or
conference abstracts
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TABLE D1 Categorization for examples from traditional compartmental model studies

Key research areas Publication

Prediction of the COVID-19

COVID-19 outbreak progression Chen et al., 2020; Ianni & Rossi, 2020; Santamaria-Holek & Castano, 2020;
Youssef et al., 2020

Initial epidemic features Romo & Ojeda-Galaviz, 2020; Wang, Ding, et al., 2020

Basic reproduction number (R0) estimation Aggarwal & Rajpu, 2020; Dharmaratne et al., 2020; Eksinchol, 2020; Kumar
et al., 2020; Masud et al., 2020; Serhani & Labbardi, 2020; Sundaresan
et al., 2020; Wang, Tang, et al., 2020

Estimation of transmission parameters Deng, 2020; Kain et al., 2020; Mbuvha & Marwala, 2020; Vattay, 2020

Acute-care service demand dynamics Dagpunar, 2020; Koeppel et al., 2020; Rivera-Rodriguez & Urdinola, 2020;
Semenova et al., 2020; Singh & Bajpai, 2020

Long-term trend prediction Zhan, Tse, Lai, et al., 2020

Investigation of the timing and size of second
waves

Eguíluz et al., 2020; Friston et al., 2020; Glass, 2020

Evaluate impacts of non-pharmaceutical intervention (NPI) measures

Mobility restrictions Liu, He, et al., 2020; Scala et al., 2020; Sun, He, et al., 2020; Wang, Zhu,
et al., 2020

Lockdown Alrashed et al., 2020; Buonomo & Marca, 2020; Lyra et al., 2020; Morozova
et al., 2021

Quarantine Barbarossa et al., 2020; Batista et al., 2020; Khyar & Allali, 2020; Sun, Duan,
et al., 2020; Zu et al., 2020

Contact restrictions Liu, He,et al., 2020; R�adulescu et al., 2020; Yousif & Ali, 2020

Social distancing Childs et al., 2021; Das & Samanta, 2020; Wickramaarachchi et al., 2020; Zhao &
Feng, 2020

Facemask use or face cloth covering Gondim, 2020; Khan et al., 2020

School closure Gathungu et al., 2020; Röst et al., 2020

Exit strategies Ghamizi et al., 2020

Other areas

Vaccination strategies Buckner et al., 2020; Libotte et al., 2020; Etxeberria-Etxaniz et al., 2020

Healthcare burden Miller et al., 2020

Cost estimation of school and workplace closure Suwantika et al., 2020

Impact of relaxing existing control measures Currie et al., 2020

Risk of return to workplaces Zhang, Ge, Liu, et al., 2021

Indirect transmission mechanisms (e.g., surface-
based infection within public spaces)

Meiksin, 2020

Model specifics Publication

Classic model

SIR (Susceptible, Infected, Recovered) Libotte et al., 2020; Moln�ar et al., 2020

SEIR (Susceptible, Exposed, Infected, Recovered) Aggarwal & Rajput, 2020; Ahmad et al., 2020; Etxeberria-Etxaniz
et al., 2020; Morrison & Cunha, 2020; Wang, Fang, et al., 2020

SEIRD (Susceptible, Exposed, Infected, Recovered, Death) Edeki et al., 2020; Kumar et al., 2020; Rivera-Rodriguez &
Urdinola, 2020

Extended or modified models added some new states

Asymptomatic Aràndiga et al., 2020; Batista et al., 2020; Das & Samanta, 2020; Di
Giamberardino et al., 2021; Rajagopal et al., 2020; Wang, Wang,
et al., 2020; Zhao et al., 2020
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outbreak of the COVID-19 in different regions and coun-
tries across the world, namely, Asia (e.g., China, India,
Pakistan, Kazakhstan, Japan, South Korea, Bangladesh
and Saudi Arabia), America (e.g., the United States,
Brazil, Argentina and Mexico), Europe (e.g., Italy, the
United Kingdom, Germany and Spain), Oceania
(e.g., Australia and New Zealand) and Africa
(e.g., South Africa and Kenya), and some papers covered
more than one country or region. We simply, from key
research areas and models, summarize parts of studies,
and the details are shown in Table D1 in Appendix D.

Although compartmental models are simple and easy
to implement and have been widely used to capture
transmission dynamics of infectious diseases at the popu-
lation level, they strictly rely on the assumption of homo-
geneous mixing, or mass action, which fails to consider
individual heterogeneity within the compartmental
groups and simplifies the complexities of interactions
occurred in the social networks. ABM and DES can cap-
ture the heterogeneity of individuals in a system and
events in a process, respectively. Therefore, SDM (com-
partmental model-based systems simulation), ABM and
DES can work in parallel or work in a hybrid mode to
simultaneously capture heterogeneity and homogeneity
in a system if necessary.
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