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Abstract

The aim of this work is to design and analyze a novel stochastic model for an in-
fectious disease transmission dynamics, that captures human responses to information
about the disease, policy, and disease progression in the event of an outbreak. We design
a behaviour-structured stochastic Susceptible-Infected-Quarantine-Recovered model in-
corporating a population logistic growth, non pharmaceutical interventions and a general
functional response in order to capture respectively the long time growth of a population
size, instant measures established by decision makers and human response behaviour. We
carry out a thorough analysis to investigate the existence of the global and positive solu-
tions and to explore the extinction and the persistence of the disease regarding the basic
reproduction number of the model. Moreover, we use suitable Lyapunov functions and
establish sufficient conditions for the existence of ergodic stationary distribution of the
solution to the stochastic SIQR model. In addition, we estimate the parameters of the
model by fitting it to confirmed COVID19 cases in Morocco using least squares method.

Keywords– Stochastic process, Epidemic model, Extinction, Stationary distribution, Data
fitting.

1 Introduction

Over time, a population fluctuates in composition and size due to multiple factors, such as
immigration, diseases, natural birth and death, etc. Therefore, a variety of mathematical mod-
els tend to explore population dynamics as a way to describe the occurring changes in order
to predict its behaviour. However, a sudden rapid increase in the number of cases of a new
emerging infectious disease requires an instant response in order to lighten the burden on health
care institutions. Currently, during the COVID-19 outbreak, the use of compartmental models,
derived from the classical SIR (Susceptible-Infected-Recovered) epidemic model proposed by
Kermack and McKendrick [1], provided an insight on how to react to an emerging infectious
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disease. Many works [2, 3, 4, 5, 6] are developed to reflect the epidemiological and environmen-
tal characteristics of the dynamical behaviour in a population. Several of the epidemic models
illustrated development without regard for the environment, while others works [7, 8, 9, 10] in-
cluded a ceiling imposed by resource constraints, where a population’s size reaches a maximum
dictated by restricted resources in the system, defined as the carrying capacity K, the popula-
tion’s per capita growth rate decreases. Yet, when an emerging infectious disease last for a long
time without a lasting prophylaxis such as a efficient vaccine, we consider a long time behaviour
for the population growth instead of a fixed recruitment rate into the population. Therefore,
the only efficient and instant measures left for a policy maker are the Non-pharmaceutical
interventions.

1.1 Non-pharmaceutical interventions

As a control strategy, non pharmaceutical Interventions (NPIs) [11, 12, 13] are measures that
individuals and groups should be doing in addition to being vaccinated and receiving treatment
that further reduce the transmission of illnesses like COVID-19, Ebola and influenza. Those
measures are also known as community mitigation policies. Mainly, they are used when a
pandemic virus is new, and a worldwide human population has a weak or no immunity against.
In [11], authors analyzed the impact of other factors other than NPI, where they explored
the effect demographic, social and climatic variables on the spread of a COVID-19 disease.
On the other hand, an epidemic results to some psychological effects on the individuals and
their behavior and a saturation level due to the increase of the infected population resulting
to a decrease of the infection force. Therefore, Capasso and Serio [14] proposed a generalized
functional response to describe the impact of those effects.

1.2 The loss of immunity

The existence of antibodies to a disease in a person’s system offers immunity against that in-
fection. Antibodies are proteins that the immune system produces to neutralize or eliminate
pathogens, which have a disease-specific function. If an immune individual comes into touch
with an infectious disease that have been recognized, their immune system will identify it and
generate the antibodies necessary to tackle it right away. In [15], Corona viruses antibodies,
as an example, will protect a person if he or she is exposed to the infection leading to lungs
complications but will probably have no impact after several months of exposure.

The paper is organized as follows. In section methods (2), we present a deterministic and
a stochastic formulation of the epidemic model, we explore the non pharmaceutical interven-
tions established by the Moroccan government and the collected data for the calibration with
our model. In section results (3), we show the existence of the global and positive solutions
and their boundedness. We establish sufficient conditions for the extinction of the disease.
We obtain sufficient conditions for positive recurrence and ergodic properties of system (3) in
order to show that the disease may persist in a population. We fit a dataset of confirmed daily
COVID19 cases in Morocco into the epidemic model (1) using least squares method in order to
estimate the unknown parameters and we provide a discussion on the numerical illustrations.
In section (4), we give some concluding remarks and our future perspectives.
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2 Methods

2.1 Model formulation

These epidemic modelling challenges are a helpful tool for a government to adopt a public health
strategy or measure. For that reason, many mathematical epidemic included a quarantine policy
in order to predict the development trend; since it costs a lot on the economic level. Thus, in
[16, 17] authors studied the impact of random perturbations of an SIQR epidemic model. Also,
Liu et al [18] explored a multi group SIQR model; and authors, in [5, 6], included the impact
of delay to describe an immunity loss. For this matter, we investigate in this work a SIQRS
epidemic with logistic growth, non pharmaceutical interventions and a generalized functional
response:

dS(t) =

[
rS(t)

(
1− S(t)

K

)
− βM(t)S(t)f(I) + δR(t)

]
dt,

dI(t) = [βM(t)S(t)f(I)− (µ+ α1 + λ+ ρ)I(t)] dt, (1)

dQ(t) = [λI(t)− (µ+ α2 + ε)Q(t)]dt

dR(t) = [ρI(t) + εQ(t)− (µ+ δ)R(t)]dt,

where S(t) denotes the susceptible individuals, I(t) for infected compartment, Q(t) for quar-
antined or isolated individuals and R(t) for recovered compartment. In addition to an intrinsic
growth rate r, the susceptible population are maintained by logistic growth including a carrying
capacity K. The parameter µ denotes the natural death rate of S, I,Q and R compartments,
β denotes the transmission coefficient from susceptible to infected individuals, ρ describes the
recovery rate of the infective individuals, α1 and α2 represents the death rate for infected and
quarantined individuals because of infection complications, ρ denotes the rate of infectious indi-
viduals who were isolated, ε represents the recovered people coming from isolation, λ describes
infected people who recovered from the infection, and δ denotes individuals that lost the immu-
nity to the infectious disease. In addition, The general incidence function f(.) [19, 20, 21, 22]

is nonnegative and bounded, twice continuously differentiable and
f(.)

.
is monotonically de-

creasing on [0,∞), with f(0) = 0 and f ′(0) > 0. Hence,
f(x)

x
≤ f ′(0) for any x > 0. The

function M(t) is a predetermined function [12] that captures the effects of non-pharmaceutical
interventions on rates of infection. When fitting, we use a functional form of

M(t) = a+ (1− a)e−mt. (2)

Besides, inspired by environmental facts, a perturbation of a certain parameter in an epidemic
model can describe factors such as secondary diseases resulting to complications, air pollution,
climate change, etc, where in case of unknown parameters affecting the system, it becomes
subject to stochastic disturbances. Hence, the epidemic model (1) is described as follows

dS(t) =

[
rS(t)

(
1− S(t)

K

)
− βM(t)S(t)f(I) + δR(t)

]
dt+ σ1S(t)dW1(t),

dI(t) = [βM(t)S(t)f(I)− (µ+ α1 + λ+ ρ)I(t)] dt+ σ2I(t)dW2(t), (3)

dQ(t) = [λI(t)− (µ+ α2 + ε)Q(t)]dt+ σ3Q(t)dW3(t)

dR(t) = [ρI(t) + εQ(t)− (µ+ δ)R(t)]dt+ σ4R(t)dW4(t),

where Wi(t) is a real-valued standard Brownian motion under the propriety Wi(0) = 0 and σi
represent the intensities of the white noises, with i = {1, 2, 3, 4}. Next, we define the average
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new infections caused by one infected individual. Therefore, applying the next generation
method [23], the basic reproduction number can be formulated as follows

d

dt


I
Q
R
S

 =


βM(t)S(t)f(I)

0
0
0

−


(µ+ α1 + λ+ ρ)I(t)
(µ+ α2 + ε)Q(t)− λI(t)

(µ+ δ)R(t)− ρI(t)− εQ(t)

βM(t)S(t)f(I)− δR(t) + rS(t)

(
1− S(t)

K

)


= F − V

The unifected equilibruim point is denoted by E0(S0, 0, 0, 0) such that S0 = K and M(0) = 1
we define DF and DV as the Jacobian matrices of F and V at the point E0 respectively as

DF(E0) =

(
βKf ′(0) 0 0 0

0 0 0 0

)
and

DV(E0) =


µ+ α1 + λ+ ρ 0 0 0

−λ µ+ α2 + ε 0 0
−ρ −ε µ+ δ 0

βKf ′(0) 0 δ 0


Therefore, we select the infection matrix F and the transition matrix V , where

F =

(
βKf ′(0) 0

0 0

)
, V =

(
µ+ α1 + λ+ ρ 0

−λ µ+ α2 + ε

)
We obtain the basic reproduction number using the largest eigenvalue of FV −1, with

FV −1 =
1

(µ+ α1 + λ+ ρ)(µ+ α2 + ε)

(
βKf ′(0) 0

0 0

)(
µ+ α2 + ε 0

λ µ+ α1 + λ+ ρ

)
.

We obtain that

R0 =
βKf ′(0)

µ+ α1 + λ+ ρ
, (4)

which represents the average number of secondary transmissions of a one infectious individual
in an entire vulnerable population.

2.2 Calibration of the model using Moroccan COVID19 data

After the detection of the first case in March 2, 2020 in Casablanca and the succession of new
cases of COVID19. The Moroccan authorities began their fight against a risky and a new
unknown disease with a declaration,in 13-15 March, of the suspension of all passenger flights
and ferry crossings, in 20 March, of a medical state emergency, where authorities require an
authorisation from the local state officials for every citizen to leave his home and making ex-
ceptions for some workers in essential activities. The media in Morocco played an essential role
to the awareness of the population through national TV, social networks and the participation
of internet influencers to spread the informations about non pharmaceutical safety measures.
However, the easing of the restrictions began in the summer. The country registered a wide
spread of infection with a peak of 5415 of daily new cases in 17 November 2020. We list a
history of some main events and Moroccan authorities decisions in summer 2020:

• 3,4 July 2020 National attendance for the BAC exam
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• 15 July 2020 The beginning of a gradual reopening of mosques with exceptions on
holiday and Friday’s prays and a safety distance between prayers.

• 22,24 July 2020 National attendance for a retake exam session for the BAC exam.

• 31 July 2020: Festival of the sacrifice (Eid Al Adha). People gathering in big markets
to buy a sacrifice. It represents one of two main holidays celebrated within Islam.

• 6 September 2020: Moroccan authorities (Ministry for foreign affairs, African coop-
eration and Moroccan expatriates) open borders with 17 countries and they required a
PCR test and a hotel reservation for the access.

• 7 September 2020: Ministry of national education, professional training, higher edu-
cation and scientific research declared the beginning of school sessions with an optional
choice between distance learning and attendance study. The minister announces that
more 80% choose the option of attendance study.

• 7 September 2020: Closure of schools and the entries of Casablanca as a result of the
increase of new cases, closure of markets at 8:00PM and restaurants at 9:00PM, also a
curfew at 10:00PM.

• 1,2 and 3 October 2020: Attendance for the regional BAC exam.

• 5 October 2020: Attendance study is allowed in Casablanca.

In the literature, many works [26, 27, 28] investigated extensively the COVID19 trending in
Morocco. Therefore, we explore in this part a prediction, an estimation of parameters and a
calibration the model studied theoretically. Hence, in order to build a numerical approximation,
we should define a function f(I) to describe the behavioural changes. Actually, the classical
bilinear incidence rate βSI derives from the law of mass action, where it considers the direct
contact between infected and susceptible individuals resulting to the spread of the infection.
However, it cannot describe a real life transmission for a lot of diseases. In fact, we should take
in account the inhibition impact from the conduct of individuals when the infected size increases
because of the crowding effect. Thus, the behavioural changes are described by the saturated

incidence rate [6, 29] f(I) =
I

1 + rI
, where r is a positive constant and it is determined in

the simulation as r = 10−7. In addition, we include a predetermined function to consider the
impact of non-pharmaceutical interventions M(t), where we consider the positive constants as
a = 0.96 and m = 0.01 to represent the decisions installed by Moroccan authorities. Although,
the positive constants r, a and m were determined to build a scenario to include the decisions
and their impact on the behavior of the dynamical system (3).

2.2.1 Data collection:

The dataset of reported daily confirmed cases is collected from the official Coronavirus Portal
of Morocco (www.covidmaroc.ma). The total number of data included in this study encloses
the cumulative number of reported cases from September 3rd to November 5th 2020. The
data is used to adjust the epidemic model to get closer to reality and to estimate the basic
reproduction number. The Moroccan ministry of health communicates also many rates such as
death rate caused by the infection or the rate of quarantined infected individuals.
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3 Results

3.1 Existence of the global and positive solutions

In this section, we generally use the Lyapunov like function [24] to prove that the solution of
stochastic epidemic model (3) is positive and global, which it is more general than the monotone
or the linear growth conditions to provide the existence of the global and positive solutions.

Theorem 1. For any initial value (S(0), I(0), Q(0), R(0)) ∈ R4
+, the stochastic system (3) has

a unique positive solution (S(t), I(t), Q(t), R(t)) for all t > 0 and the solution will remain in
R4

+ with probability one. Moreover, (S(t), I(t), Q(t), R(t)) ∈ R4
+ for all t ≥ 0 a.s.

Proof. Since the stochastic system (3) has locally Lipschitz coefficients. Then, for any initial
value (S(0), I(0), Q(0), R(0)) ∈ R4

+, there exists a unique local solution ((S(0), I(0), Q(0), R(0))) ∈
R4

+ on t ∈ [0, τe), where τe denotes the explosion time. In order to get the global positivity of
the solution we need to prove that τe =∞ a.s. Define k0 > 0 to be enough large so that S(0),

I(0), Q(0) and R(0) belong to the interval

[
1

k0
, k0

]
. In this matter, for each integer k ≥ k0, we

consider the following stopping time

τk = inf

{
t ∈ [0, τe) : S(t) /∈

(
1

k
, k

)
or I(t) /∈

(
1

k
, k

)
or Q(t) /∈

(
1

k
, k

)
or R(t) /∈

(
1

k
, k

)}
,

where τk is increasing as k ↑ ∞. Set τ∞ = lim
k→∞

τk. Therefore, τ∞ ≤ τe a.s. Proving that

τ∞ = ∞, means that τe = ∞ and (S(t), I(t), Q(t), R(t)) ∈ R4
+ a.s. If this statement is false,

then there exists a pair of constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Thus,
there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε, ∀k ≥ k1. (5)

Consider the C2−function V1 : R4
+ → R+ as follows

V1(S, I,Q,R) = (S − 1− logS) + (I − 1− log I) + (Q− 1− logQ) + (R− 1− logR).

Applying Itô’s formula, we obtain

LV1 =

(
1− 1

S(t)

)(
rS(t)

(
1− S(t)

K

)
− βM(t)S(t)f(I) + δR(t)

)
+
σ2
1 + σ2

2 + σ2
3 + σ2

4

2

+

(
1− 1

I(t)

)
(βM(t)S(t)f(I)− (µ+ α1 + λ+ ρ)I(t)) +

(
1− 1

Q(t)

)
(λI(t)− (µ+ α2 + ε)Q(t))

+

(
1− 1

R

)
(ρI(t) + εQ(t) + (µ+ δ)R(t))

≤ rS(t)
(K + 1)

K
− rS(t)2

K
+ βf(I)− δR(t)

S(t)
− βM(t)S(t)f(I)

I(t)
− (µ+ α1)I(t)− (µ+ α2)Q(t)

−λ I(t)

Q(t)
− εQ(t)

R(t)
− µR(t)− r + µ+ α1 + λ+ ρ+

σ2
1 + σ2

2 + σ2
3 + σ2

4

2
+ µ+ α2 + ε+ µ+ δ

≤ sup
S(t)∈R+

{
−rS(t)2

K
+ rS(t)

K + 1

K

}
+ 3µ+ α1 + α2 + λ+ ρ+ ε+ δ

≤ K, (6)
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with
f(I)

I
≤ f ′(0) and K denotes a constant. Hence, the proprieties of a quadratic function is

resulting to the boundedness of (6), where integrating its both sides from 0 to τ ∧ T leads to∫ τ∧T

0

dV1(S(s), I(s), Q(s), R(s)) ≤
∫ τ∧T

0

Kds+

∫ τ∧T

0

σ1(S(s)− 1)dW1(s)

+

∫ τ∧T

0

σ2(I(s)− 1)dW2(s) +

∫ τ∧T

0

σ3(Q(s)− 1)dW3(s)

+

∫ τ∧T

0

σ4(R(s)− 1)dW4(s). (7)

Taking expectation of both sides of (7), we obtain

EV1(S(τ ∧ T ), I(τ ∧ T ), Q(τ ∧ T ), R(τ ∧ T )) ≤ V1(S(0), I(0), Q(0), R(0)) +KT.

This yields to
V1(S(τ ∧ T ), I(τ ∧ T ), Q(τ ∧ T ), R(τ ∧ T )) +KT ≤ εθk, (8)

where θk = (k − 1 − log k) ∧
(

1

k
− 1 + log k

)
. Letting k → ∞ yields to the contradiction

∞ > V1(S(0), I(0), Q(0), R(0)) +KT =∞. This finishes the proof.

Next, we should recall the lemma [24] to show that the solution of the stochastic epidemic
model (3) is finite.

Lemma 2. Let A(t) and U(t) be two continuous adapted increasing process on t ≥ 0 with
A(0) = U(0) = 0 a.s. Let M(t) be a real-valued continuous local martingale with M(0) = 0
a.s. Let X0 be a nonnegative F-measurable random variable such that EX0 < ∞. Define
X(t) = X0 + A(t) − U(t) + M(t) for all t ≥ 0. If X(t) is nonnegative, then lim

t→∞
A(t) < ∞

implies lim
t→∞

U(t) <∞, lim
t→∞

X(t) <∞ and −∞ < lim
t→∞

M(t) <∞ hold with probability one.

Theorem 3. Assume that (S(t), I(t), Q(t), R(t)) be a solution of the stochastic system (3) along
with initial value (S(0), I(0), Q(0), R(0)) ∈ R4

+, then

lim
t→∞

S(t) + I(t) +Q(t) +R(t) <∞ a.s. (9)

Proof. From (1), we get
V1 ≤ ξ +M(t), (10)

where

ξ = V1(0) +

∫ t

0

Kds

is a positive F0-measurable random variable and

M(t) =

∫ t

0

σ1(S − 1)dW1(s) + σ2(I − 1)dW2(s) + σ3(Q− 1)dW3(s) + σ4(R− 1)dW4(s)

is a real valued local martingale with M(0) = 0 a.s. Therefore, from theorem (1) and lemma
(2), we have

lim
t→∞

supV1(t) <∞, a.s

Notice that X − 1− logX →∞ if and only if X ↑ ∞ or X ↓ 0. By consequent, we get

lim
t→∞

supS(t) <∞, lim
t→∞

sup I(t) <∞, lim
t→∞

supQ(t) <∞, lim
t→∞

supR(t) <∞

In consequent, we obtain (9). This finishes the proof.
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According to this result, unlike the deterministic system, adding a noise to the epidemic
model (1) will lead the total number of the population to exceed the carrying capacity K.

3.2 Extinction of the disease

In this Section, we explore the extinction of the disease for the stochastic model (3) under some
sufficient assumptions. Before, we need to determine the following quantity

Rs = R0 −
σ2

2(µ+ α1 + λ+ ρ)
, (11)

which includes the intensity of the white noise for the infected compartment.

Theorem 4. Let (S(t), I(t), Q(t), R(t)) be the solution of system (3) with any initial value
(S(0), I(0), Q(0), R(0)) ∈ R4

+. If Rs < 1 such that

m :=

(
βf ′(0)

∫ ∞
0

π(x)xdx+ (µ+ α1 + λ+ ρ)(Rs − 1)

)
< 0,

where x ∈ (0,∞) and π = Qx
−2+ r

σ21 e−
2
σ2

(( rxK + δC
x
)), where Q is constant such that

∫∞
0
π(x)dx = 1

then the disease of system (3) will go to extinction almost surely.

lim
t→∞

I(t) = 0, a.s.

and
lim
t→∞
〈Q(t)〉 = lim

t→∞
〈R(t)〉 = 0 a.s. (12)

Moreover, the process S(t) converges in distribution to the invariant measure m in R+ which
has the density π(x).

Proof. For any initial value (S(0), I(0), Q(0), R(0)) ∈ R4
+, we have a positive solution for the

system (3). Therefore, we have

dS(t) ≤
[
rS(t)

(
1− S(t)

K

)
+ δK

]
dt+ σ1S(t)dW1(t). (13)

Next, we consider the following stochastic logistic equation

h(x) = rx
(

1− x

K

)
+ δC, σ(x) = xσ1(x), x ∈ (0,∞), (14)

where, according the theorem (3), we determine a constant C greater than K. Hence, we get
that ∫

h(s)

σ2(s)
ds =

1

σ2

∫
r
(
1− x

K

)
x

+
δC

x2
ds

=
1

σ2

[
r log x− rx

K
− δC

x

]
+Q (15)

In consequent, we get

e
∫ h(s)

σ2(s)
ds

= eQx
r

σ21 e
− 1

σ21
( rx
K

+ δC
x
)

(16)

Hence, we obtain ∫ ∞
0

1

σ2(x)
e
∫ x
1

2h(τ)

σ2(τ)
dτ
dx =

∫ ∞
0

x−2x
r

σ21 e−
2
σ2

(( rxK + δC
x
))dx <∞. (17)
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Considering the ergodic propriety and the invariant density, we have

π(x) = Qx
−2+ r

σ21 e−
2
σ2

(( rxK + δC
x
)), where Q is constant such that

∫ ∞
0

π(x)dx = 1. (18)

Therefore

lim
t→∞

1

t

∫ t

0

x(s)ds =

∫ ∞
0

π(x)xdx a.s. (19)

By the comparison theorem, we get S(t) ≤ x(t) for any t ≤ 0 a.s. In the follow, we apply Itô’s
formula on log I(t). Therefore, we get

d log(I(t)) =

[
βM(t)S(t)

f(I)

I(t)
− (µ+ α1 + λ+ ρ)− σ2

2

2

]
dt+ σ2dW2(t)

≤
[
βX(t)f ′(0)− (µ+ α1 + λ+ ρ)− σ2

2

2

]
dt+ σ2dW2(t)

≤
[
βf ′(0)(X(t)−K) + βf ′(0)K − (µ+ α1 + λ+ ρ)− σ2

2

2

]
dt+ σ2dW2(t)(20)

Integrating both sides of (20) from 0 to t, we get

log I(t)

t
≤
(
βf ′(0)

∫ t

0

|x(t)−K|ds+ (µ+ α1 + λ+ ρ)(Rs − 1)

)
+

log I(0)

t
+
σ2W (t)

t
(21)

It follows from the ergodic proprieties of x(t) and
∫∞
0
xπ(x)dx <∞ that

lim
t→∞

1

t

∫ t

0

|x(s)−K|ds =

∫ ∞
0

|x(s)−K|π(x)dx <∞. (22)

By the law of large number for martingales, and for Rs < 1, we get

lim sup
t→∞

log I(t)

t
≤
(
βf ′(0)

∫ ∞
0

π(x)xdx+ (µ+ α1 + λ+ ρ)(Rs − 1)

)
< 0 a.s, (23)

which leads to
lim
0→∞

I(t) = 0 a.s. (24)

From the quarantine compartment of system (3) we deduce that

Q(t)−Q(0)

t
= λ〈I(t)〉 − (µ+ α2 + ε)〈Q(t)〉+

σ3
t

∫ t

0

Q(t)dW3(s). (25)

Therefore for theorem (3), the strong law of large numbers for martingales and the equations
(24), (25) and by the same step for the fourth equation in the stochastic system (3), we get

lim
t→∞
〈Q(t)〉 = lim

t→∞
〈R(t)〉 = 0 a.s. (26)

This finishes the proof.

3.3 Positive recurrence and ergodic properties of system (3)

In this section, based on the theory of Has’minskii [25], we verify that there is an ergodic
stationary distribution, which reveals that the infection will persist. Here we present some
theory about the stationary distribution (see Has’minskii [25]). Let X(t) be a homogeneous

9
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Markov process in En (En represents n-dimensional Euclidean space), and is described by the
following stochastic differential equation

dX(t) = b(X)dt+
k∑
i=1

gi(X)dWi(t). (27)

The diffusion matrix is defined as follows

A(x) = (Λij(x)), Λij(x) =
k∑
i=1

gik(x)gjk(x). (28)

Lemma 5 ([25]). The Markov process X(t) has a unique ergodic stationary distribution µ(.) if
there exists a bounded domain D ⊂ En with regular boundary Γ and

• (H1): there is a positive number M such that
∑k

i=1(Λij(x))εiεj ≥M |ε|2, x ∈ D, ε ∈ Rn.

• (H2): there exists a nonnegative C−function V such that LV is negative for any En \D.

P
{

lim
T→T

1

T

∫ T

0

f(X(t))dt =

∫
En

f(x)µ(dx)

}
= 1

Then for all x ∈ En , where f(.) is a function integrable with respect to the measure µ.

Theorem 6. Assume that R̃s > 1. Then, the stochastic system (3) has a unique stationary
distribution µ(.) and it has the ergodic property.

Proof. We determine the diffusion matrix of the stochastic epidemic model with logistic growth
(3) as

A(S, I,Q,R) =


σ2
1S

2 0 0 0
0 σ2

2I
2 0 0

0 0 σ2
3Q

2 0
0 0 0 σ2

4R
2

 . (29)

Next, we consider Γ to be any bounded domain in R4
+. Therefore, there exists a positive

constant
L0 = min{σ2

1S
2, σ2

2I
2, σ2

3Q
2, σ2

4R
2, (S, I,Q,R) ∈ Γ̄},

where

Σ3
i,j=1aij(S, I,Q,R)ξiξj = σ2

1S
2ξ21 + σ2

2I
2ξ22 + σ2

3Q
2ξ23 + σ2

4R
2ξ24

≥ L0|ξ|2, (S, I,Q,R) ∈ Γ̄σ, ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R4.

This yields to the first condition to be verified, with the smallest eigenvalue of the diffusion
matrix A(S, I,Q,R) is bounded away from zero.
In the follow, let Ṽ (Xt, t) be a C2− function with X(t) = (S(t), I(t), Q(t), R(t)). Also, a closed
set Uε ∈ R4

+ such as sup
X∈R4

+\Uε
LṼ < −M̃ < 0, where M̃ denotes a positive constant and

µ− m(σ2
1 ∨ σ2

2 ∨ σ2
3 ∨ σ2

4)

2
> 0, (30)

where m is a positive constant.
We construct a Lyapunov functional such that

V̂ (Xt, t) = ϑṼ1 + Ṽ2 + Ṽ3, (31)

10
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with

Ṽ1 = −
(
βKf ′(0)

r
log(S(t)) + log(I(t))

)
,

Ṽ2 = − logS − logQ− logR,

Ṽ3 =
1

m+ 1
(S + I +Q+R)m+1 ,

where ϑ > 0 is considered as a large enough constant verifying

−ϑλ̃+D ≤ −2. (32)

Afterwards, we define the terms λ̃ and D.
Furthermore, Ṽ (Xt, t) is a continuous function with minimum point (S0, I0, Q0, R0) in the
interior of R4

+. Hence, we consider Ṽ : R4
+ → R+ to be a nonnegative function such that

Ṽ = V̂ (S, I,Q,R)− V̂ (S0, I0, Q0, R0).

Applying Itô’s formula on Ṽ1, we get

LṼ1 =
βKf ′(0)

r

{
−r
(

1− S(t)

K

)
+ βM(t)f(I)− δR(t)

S(t)
+
σ2
1

2

}
− βM(t)

f(I)

I
S(t)

+µ+ α1 + λ+ ρ+
σ2
2

2

= −βKf ′(0) + βf ′(0)S(t) +
β2Kf ′(0)

r
f(I)− δβKf ′(0)R(t)

rS(t)
+
βKf ′(0)σ2

1

2r

−βM(t)
f(I)

I
S(t) + µ+ α1 + λ+ ρ+

σ2
2

2

≤ −
(
βKf ′(0)−

(
µ+ α1 + λ+ ρ+

σ2
2

2
+
βKf ′(0)σ2

1

2r

))
+ βS(t)

(
f ′(0)−M(t)

f(I)

I

)
+
β2Kf ′(0)2

r
I. (33)

From theorem (3), and the monotonicity and Lipschitz assumptions of
f(.)

.
. for x < y ∈ R+

and a constant C, we have
f(x)

x
− f(y)

y
≤ C(y − x). (34)

Extending x to zero, we get

f ′(0)− f(I)

I
≤ CI for any I ∈ R+.

Hence, we obtain

LṼ1 ≤ −(µ+ α1 + λ+ ρ)(R̃s − 1) + CβS(t)I(t) + β(1−M(t))
f(I)

I
S(t) +

β2Kf ′(0)2

r
I

≤ −γ̃ +

[
C2 +

βf ′(0)

r

]
βKI(t) + βf ′(0)S(t), (35)

where R̃s = Rs −
βKf ′(0)

2r(µ+ α1 + λ+ ρ)
σ2
1 and γ̃ > 0.

Applying Itô’s formula on Ṽ2, we get

LṼ2 = −r
(

1− S(t)

K

)
+ βM(t)f(I)− δR(t)

S(t)
+
σ2
1

2
− λ I(t)

Q(t)

+µ+ α2 + ε− ρ I(t)

R(t)
− εQ(t)

R(t)
+ µ+ δ. (36)
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After, we use Itô’s formula on Ṽ3, with m is a constant satisfying the following condition (30),
we obtain

LṼ3 = (S(t) + I(t) +Q(t) +R(t))m
(
rS(t)

(
1− S(t)

K

)
− (µ+ α1)I(t)− (µ+ α2)Q(t)− µR(t)

)
+
m

2
(S(t) + I(t) +Q(t) +R(t))m−1(σ2

1S + σ2
2I + σ2

3Q+ σ2
4R)

≤ (S(t) + I(t) +Q(t) +R(t))m
(
rS(t)

(
1− S(t)

K

)
− (µ+ α1)I(t)− (µ+ α2)Q(t)− µR(t)

)
+
m

2
(S(t) + I(t) +Q(t) +R(t))m+1(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4)

≤ rS(S(t) + I(t) +Q(t) +R(t))m − r

K
Sm+2 − µ(Im+1 +Qm+1 +Rm+1)

+
m

2
(S(t) + I(t) +Q(t) +R(t))m+1(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4)

Using the inequality |
k∑
i=1

ai|n ≤ kn−1
k∑
i=1

|ai|n, ∀n ≥ 1, we get

LṼ3 ≤ − r

2K
Sm+2 − µ+ α1

2
Im+1 − µ+ α2

2
Q(t)m+1 − µ

2
R(t)m+1 − r

2K
Sm+2

−µ+ α1

4
Im+1 − µ+ α2

4
Q(t)m+1 − µ

4
R(t)m+1 + rS(t)(S(t) + I(t) +Q(t) +R(t))m

+
4mm

2
S(t)m+1(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4)−

(
µ+ α1

4
− 4mm

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4)

)
I(t)m+1

−
(
µ+ α2

4
− 4mm

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4)

)
Q(t)m+1 −

(
µ

4
− 4mm

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4)

)
R(t)m+1

≤ − r

2K
Sm+2 − µ+ α1

2
Im+1 − µ+ α2

2
Q(t)m+1 − µ

2
R(t)m+1 + A, (37)

where

A = sup
(S,I,Q,R)∈R4

+

{
− r

2K
Sm+2 − µ+ α1

4
Im+1 − µ+ α2

4
Qm+1 − µ

4
Rm+1 + rS(S + I +Q+R)m

+
4mm

2
S(t)m+1(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4)

}
.

From (35), (36) and (37), we obtain

LṼ ≤ −ϑγ̃ +

[
C2 +

βf ′(0)

r

]
βKI(t) + βf ′(0)S(t) + r

S(t)

K
+ βM(t)f ′(0)I +

σ2
1

2

+2µ+ α2 + ε+ δ − r

2K
Sm+2 − µ+ α1

2
Im+1 − µ+ α2

2
Q(t)m+1

−µ
2
R(t)m+1 + A. (38)

In the follow, we consider a compact subset Uε such that (H2) is fulfilled and let the bounded
closed set Uε as follows

Uε =

{
(S, I,Q,R) ∈ R4

+, ε3 ≤ S ≤ 1

ε3
, ε ≤ I ≤ 1

ε
, ε3 ≤ Q ≤ 1

ε3
, ε3 ≤ R ≤ 1

ε3

}
,

with 0 < ε < 1 is a sufficiently small such that

12
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−δ
ε

+B < −1, (39)

−νγ̃ + β

[
C2K +

Kf ′(0)

r
+ f ′(0)

]
ε+ E < −1, (40)

−λ
ε

+ F < −1, (41)

−ρ
ε

+G < −1, (42)

− r

4Kε3m+6
+H < −1, (43)

−µ+ α1

4εm+1
+ I < −1, (44)

−µ+ α2

4εm+1
+ J < −1, (45)

− µ

4εm+1
+N < −1, (46)

with B,E, F,G,H, I, J and n are positive constants, where the expressions are derived from
the presented cases for a sufficiently small ε, where 0 < ε < 1. Hence, we divide R4

+\Uε into
eight domains, such that

U1 = {(S, I,Q,R) ∈ R4
+, 0 < S < ε3, ε2 ≤ R < ε}, U2 = {(S, I,Q,R) ∈ R4

+, 0 < I < ε},
U3 = {(S, I,Q,R) ∈ R4

+, ε
2 ≤ I < ε, 0 < Q < ε3},

U4 = {(S, I,Q,R) ∈ R4
+, ε

2 ≤ I < ε, 0 < R < ε3},

U5 =

{
(S, I,Q,R) ∈ R4

+, S >
1

ε

}
, U6 =

{
(S, I,Q,R) ∈ R4

+, I >
1

ε

}
,

U7 =

{
(S, I,Q,R) ∈ R4

+, Q >
1

ε3

}
, U8 =

{
(S, I,Q,R) ∈ R4

+, R >
1

ε3

}
.

Knowing that U c
ε = U1∪U2∪U3∪U4∪U5∪U6∪U7∪U8. Next, we should show that LṼ ≤ −1

on R3
+\Uε, it means fulfilling it on the above eight domains.

Case 1: 0 < S < ε3, ε2 ≤ R < ε

LṼ ≤ −δ
ε

+
[
βf ′(0) +

r

K

]
S(t) +

[
C2 +

f ′(0)

r

]
βK +M(t)f ′(0)I(t) +

σ2
1

2
+ 2µ+ α2

ε+ δ − r

2K
S(t)m+2 − µ+ α1

2
I(t)m+1 − µ+ α2

2
Q(t)m+1 − µ

2
R(t)m+1 + A

≤ −δ
ε

+B. (47)

B = sup
(S,I,Q,R)∈R4

+

{[
βf ′(0) +

r

K

]
S(t) +

[
C2 +

f ′(0)

r

]
βK +M(t)f ′(0)I(t) +

σ2
1

2
+ 2µ+ α2

ε+ δ − r

2K
S(t)m+2 − µ+ α1

2
I(t)m+1 − µ+ α2

2
Q(t)m+1 − µ

2
R(t)m+1 + A

}
. (48)

According to (39), we get that LṼ ≤ −1 for any (S, I,Q,R) ∈ U1.
Case 2: 0 < I < ε.

LṼ ≤ −νγ̃ + β

[
C2K +

Kf ′(0)

r
+ f ′(0)

]
ε+ E. (49)
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E = sup
(S,I,Q,R)∈R4

+

{[
βf ′(0) +

r

K

]
S(t) +

σ2
1

2
+ 2µ+ α2 + ε− r

2K
Sm+2 − (µ+ α1)

2
Im+1

−µ+ α2

2
Qm+1 − µ

2
Rm+1 + A

}
. (50)

By Virtue of (40), we obtain that LṼ ≤ −1 for any (S, I,Q,R) ∈ U2.
Case 3: 0 < Q < ε3 and ε2 ≤ I < ε.

LṼ ≤ −λ
ε

+ F. (51)

F = sup
(S,I,Q,R)∈R4

+

{[
βf ′(0) +

r

K

]
S(t) +

σ2
1

2
+ 2µ+ α2 + ε− ρ I(t)

R(t)
− εQ(t)

R(t)
− δR(t)

S(t)

− r

2K
Sm+2 − (µ+ α1)

2
Im+1 −µ+ α2

2
Qm+1 − µ

2
Rm+1 + A

}
. (52)

It follows from (41) that LṼ ≤ −1 for any (S, I,Q,R) ∈ U3.
Case 4: 0 < R < ε3 and ε2 ≤ I < ε.

LṼ ≤ −ρ
ε

+G. (53)

G = sup
(S,I,Q,R)∈R4

+

{[
βf ′(0) +

r

K

]
S(t) +

σ2
1

2
+ 2µ+ α2 + ε− εQ(t)

R(t)
− δR(t)

S(t)
− λ I(t)

Q(t)

− r

2K
Sm+2 − (µ+ α1)

2
Im+1 −µ+ α2

2
Qm+1 − µ

2
Rm+1 + A

}
. (54)

By virtue of (41), we conclude that LṼ ≤ −1 for any (S, I,Q,R) ∈ U4.

Case 5: S >
1

ε3
.

LṼ ≤ − r

4Kε3m+6
+H. (55)

H = sup
(S,I,Q,R)∈R4

+

{[
βf ′(0) +

r

K

]
S(t) +

σ2
1

2
+ 2µ+ α2 + ε− ρ I(t)

R(t)
− εQ(t)

R(t)
− δR(t)

S(t)
− λ I(t)

Q(t)

− r

4K
Sm+2 − (µ+ α1)

2
Im+1 −µ+ α2

2
Qm+1 − µ

2
Rm+1 + A

}
. (56)

According to (43), we get that LṼ ≤ −1 for any (S, I,Q,R) ∈ U5.

Case 6: I >
1

ε
.

LṼ ≤ −µ+ α1

4εm+1
+ I. (57)

I = sup
(S,I,Q,R)∈R4

+

{[
βf ′(0) +

r

K

]
S(t) +

σ2
1

2
+ 2µ+ α2 + ε− ρ I(t)

R(t)
− εQ(t)

R(t)
− δR(t)

S(t)
− λ I(t)

Q(t)

− r

2K
Sm+2 − (µ+ α1)

4
Im+1 −µ+ α2

2
Qm+1 − µ

2
Rm+1 + A

}
. (58)
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It follows from (44) that LṼ ≤ −1 for any (S, I,Q,R) ∈ U6.

Case 7: Q >
1

ε3
.

LṼ ≤ −µ+ α2

4εm+1
+ J. (59)

J = sup
(S,I,Q,R)∈R4

+

{[
βf ′(0) +

r

K

]
S(t) +

σ2
1

2
+ 2µ+ α2 + ε− ρ I(t)

R(t)
− εQ(t)

R(t)
− δR(t)

S(t)
− λ I(t)

Q(t)

− r

2K
Sm+2 − (µ+ α1)

2
Im+1 −µ+ α2

4
Qm+1 − µ

2
Rm+1 + A

}
. (60)

In view of (45), we get that LṼ ≤ −1 for any (S, I,Q,R) ∈ U7.

Case 8: R >
1

ε3
.

LṼ ≤ − µ

4εm+1
+N. (61)

N = sup
(S,I,Q,R)∈R4

+

{[
βf ′(0) +

r

K

]
S(t) +

σ2
1

2
+ 2µ+ α2 + ε− ρ I(t)

R(t)
− εQ(t)

R(t)
− δR(t)

S(t)
− λ I(t)

Q(t)

− r

2K
Sm+2 − (µ+ α1)

2
Im+1 −µ+ α2

2
Qm+1 − µ

4
Rm+1 + A

}
. (62)

Therefore, from (46), we obtain that LṼ ≤ −1. (S, I,Q,R) ∈ R4
+.Hence, It follows from (47),

(49), (51), (53), (55), (57), (59) and (61), we get for a sufficiently small ε that

LṼ ≤ −1 for all (S, I,Q,R) ∈ R4
+\Uε (63)

Therefore, the assumption H2 in Lemma (5) is fulfilled. By Lemma (5) , we can claim that
stochastic epidemic model (3) is ergodic and admits a unique stationary distribution. The proof
is completed.

3.3.1 Model calibration:

In this part of investigation, we consider a set of COVID19 cases data in Morocco denoted as
YT , {y0, y1, ..., yT}, where the observation is up to a finite horizon T and yt , [St, It, Qt, Rt]

′

is a column vector in R4×1, which it represents at time t the daily observed values for the
susceptible ”S”, infected ”I”, quarantined ”Q” and recovered ”R” individuals. Therefore,
we estimate the unknown parameters in the epidemic model, described as a column vector
θ , [β, ρ, λ, ε]′. For this matter, we describe the predicted epidemic model ŷt(θ) such as

ŷt(θ) ,


St−1 + rSt−1

(
1− St−1

K

)
+ βMt−1

St−1It−1
1 + rIt−1

+ δRt−1

It−1 + βMt−1
St−1It−1
1 + rIt−1

− (µ+ α1 + λ+ ρ)It−1

Qt−1 + λIt−1 − (µ+ α2 + ε)Qt−1
Rt−1 + ρIt−1 + εQt−1 − (µ+ δ)Rt−1

 , (64)

where ŷ0(θ) = y0 as an initial condition at time 0. Using the Euler method to approximate the
solution, we calculate the quadratic cost

JT (θ) ,
1

2

T∑
t=0

||yt − ŷt(θ)||2. (65)
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The minimum of the quadratic cost J in order to get the least square estimator θe, where

θe , argmin
θ∈R4

JT (θ) (66)

Hence, to implement real dataset, we use a 64 days data of Moroccan COVID19 cases to
calibrate it with the deterministic model using least squares method and Euler approximation
to the model (3). As result we get the following values
Therefore, the basic reproduction number (4) for cases generated by one case is estimated

Parameter Description Estimation Source
r Intrinsic growth rate 3.33× 10−5 world population review
K Carrying capacity 47800000 world population review
β Transmission coefficient 5.21× 10−8 Estimated
µ Natural death rate 1.4167× 10−5 Data World Bank
α1 Death rate for infected individuals 0.018 COVIDMAROC
α2 Death rate for quarantined individuals 0.018 COVIDMAROC
ρ Recovery rate for infected individuals 0.72 Estimated
ε Recovery rate for quarantined individuals 0.57 Estimated
λ Quarantined rate for infected individuals 0.96 Estimated
δ Loss of immunity rate 0.04 Assumed

for recovered individuals

Table 1: Table of parameters used in the numerical simulation and estimated by the data
fitting.

as 1.46. As result, it means the persistence of the infectious disease in Morocco despite the
measures taken as non-pharmaceutical interventions to slow down its spread. Up to date, the
daily COVID19 confirmed cases continues to rise and fluctuate on a regular basis.

3.4 Numerical simulations and discussions

Data fitting and parameter estimation is a critical phase in this part of investigation to support
our theoretical results. In figure (1), we illustrate the optimization of the best fit to the
provided Moroccan dataset since it confirms the observed dynamics of the infection during
the pandemic outbreak. We provide a numerical approximation using estimated parameters
θe = [5.21 × 10−8 0.72 0.96 0.57]′ by the least squares method. Here, we compute using
the initial condition y0 = [36404398 5895 8483 51223]. The total population of Morocco is
provided by World bank, while the infected, quarantined and recovered size is communicated by
Moroccan ministry of health throughout COVIDMAROC. In different circumstances, in order
to get closer to the reality and to data collected in autumn, where the environment is largely
associated to fluctuations in temperature, winds, humidity and drop of immunity, also some
unreported cases. An addition of a noise is desirable to each compartment specially the infected
and quarantined individuals. Therefore, to include the environmental noise, we illustrate the
stochastic epidemic model (3) and its behaviour, where we determine the values the volatilities
as σ1 = 7.86× 10−5, σ2 = 0.17, σ3 = 0.21 and σ4 = 2.2× 10−2. Indeed, as illustrated in figures
(2) and (3), the red range denotes the stochastic scenarios that can be generated respectively
by σ2 and σ3 including the fluctuations of Moroccan daily confirmed cases.

Hence, from the collection of 64 days data, we seek to predict the following 15 days using
the solutions of the stochastic epidemic model (3). As result, the range of predicted possible
solutions expands due to the increase of infected and quarantined cases since the diffusion part
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Figure 1: Trajectories of calibrated model with real data of Moroccan COVID19 cases.
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Figure 2: Trajectories of infected cases of COVID19 in Morocco and the simulated model.
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Figure 3: Trajectories of quarantined individuals of COVID19 in Morocco and the simulated
model.
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Figure 4: Trajectories of infected individuals in the stochastic epdemic model and confirmed
COVID19 cases in Morocco.

is denoted by σ2I(t)dW2(t) and σ3Q(t)dW3(t). Moreover, it follows from historical fluctuations
and data fitting of the epidemic model that the quarantined and slightly the infected size will
remain in the same range of changes in the following 15 days. Besides, for more risk management
and practical reasons, it is suitable to include greater values for the volatilities such as σ2 = 0.316
and σ3 = 0.386 for the bigger range illustrated in the figures (2) and (3). Furthermore, to
avoid uncontrollable situation, decision makers must take in account a worse case scenario
to not exceed the limit capacity of hospital beds by building fields hospitals. This strategy
was adopted by Moroccan authorities by constructing temporary military field hospitals in
Casablanca city, Ben Slimane and Ben Guerir military base and it helped to hospitalize and
isolate the severe cases in a major wave time of infection. In the actual world, a population
would hardly be completely vulnerable to an illness. Some people will be immune, for instance,
as a consequence of a past illness that provided life-long immunity or prior vaccination. As a
result, not all contacts will get affected, resulting in a reduced average number of confirmed
cases per infected individuals than the basic reproduction number R0. Therefore, in figure (4),
we illustrate the effective reproductive number Re [30], which represents the average number of
secondary cases per an existing infectious individual with a population containing vulnerable
and immune individuals to the infectious disease and can be established from the product of a
fraction of susceptible population and the basic reproductive number. Hence, we construct a
random scenario for the infected compartment in the stochastic epidemic model (3) using Euler-
Maruyama approximation [31] and we illustrate the real data of COVID19 cases in Morocco,
where in the first row, we simulate a stochastic scenario with σ2 = 0.17 and in the second
row the volatility is defined as σ2 = 0.316. In the second column, we illustrate the effective
reproduction number for the deterministic and the stochastic cases. The technique provided
in [30] for a compartmental model is centred on a deterministic characterization of the actual
epidemic process. As result, the constructed trajectories of the effective reproductive number
are deterministic. Therefore, we include the established stochastic quantity Rs instead of the
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formal basic reproduction number to show the impact of a volatility on the trajectory of an
effective reproduction number. Hence, a higher volatility is described in the second row (4),
where there are large fluctuations without a clear trend can lead to a lesser effective reproduction
number, which means that the more an environmental noise exists, the more it effects the spread
of disease in time leading to a radical change in the behaviour of the dynamics.

4 Interpretation and discussion

In this work, a SIQRS stochastic epidemic model with logistic growth, general incidence function
and non-pharmaceutical interventions is investigated. The corresponding stochastic epidemic
model is studied according to an established stochastic threshold Rs with an addition of the
impact of the logistic growth of a certain population. This allows to explore the extinction
and the persistence of the infectious disease. In the last part of the investigation, we apply
this model to COVID19 dataset in Morocco, where we fit the existed data to the model using
least square method. Also, we illustrated a forecasting of 15 days according to the previous 64
days data. The presented investigation will contribute to explore stochastic epidemic systems.
However, since the preventive measures can be switched depending of the circumstances. There
are still more challenges for an extensive understanding of perturbed epidemic models such as
including Markovian switching [32] and stochastic optimal control problems [33, 34] for the
preventive measures.
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