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QC, Canada

3Canadian Center for
Computational Genomics,
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Montréal, QC, Canada

7Department of Internal
Medicine, University of
Genoa and IRCCS IST-
Ospedale San Martino,
Genoa, Italy

8PEPperPRINT GmbH,
Heidelberg, Germany
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SUMMARY

Here,we exploit a deep serological profiling strategy coupledwith an integrated,
computational framework for the analysis of SARS-CoV-2 humoral immune re-
sponses. Applying a high-density peptide array (HDPA) spanning the entire pro-
teomes of SARS-CoV-2 and endemic human coronaviruses allowed identification
of B cell epitopes and relate them to their evolutionary and structural properties.
We identify hotspots of pre-existing immunity and identify cross-reactive epi-
topes that contribute to increasing the overall humoral immune response to
SARS-CoV-2. Using a public dataset of over 38,000 viral genomes from the early
phase of the pandemic, capturing both inter- and within-host genetic viral diver-
sity, we determined the evolutionary profile of epitopes and the differences
across proteins, waves, and SARS-CoV-2 variants. Lastly, we show that mutations
in spike and nucleocapsid epitopes are under stronger selection between than
within patients, suggesting that most of the selective pressure for immune
evasion occurs upon transmission between hosts.

INTRODUCTION

Coronaviruses constitute a large family of enveloped, positive-sense single-stranded RNA viruses that

cause frequent diseases in birds and mammals. The Coronaviridae family includes four species that are

endemic in the human population (hCoVs): the alpha-coronaviruses that include hCoV-229E and hCoV-

NL63 and beta-coronavirus species that include hCoV-HKU1 and hCoV-OC43, and are usually associated

with mild, self-limiting upper respiratory tract infections, although they can cause severe illness in immuno-

compromised patients.1 Three other beta-coronavirus species have recently emerged: Middle East respi-

ratory syndrome-CoV (MERS-CoV), SARS-CoV-1, and SARS-CoV-2, all causing severe disease in humans.2,3

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is a novel virus belonging to the Corona-

viridae family that emerged in late 2019 and quickly spread throughout the world, causing a pandemic

with morbidity, mortality, and economic disruption on a global scale with few precedents.3 The clinical

course of COVID-19 is highly variable: some infected individuals are completely asymptomatic,4 while

others experience a spectrum of clinical manifestations including fever, severe respiratory distress, pneu-

monia, diarrhea, blood clotting disorders, increased systemic cytokine release and, in <5% of cases,

prolonged hospitalization and death.5 In addition to factors like viral exposure history, viral inoculum at

infection, and the genetic background of the individual, the severity of COVID-19 and the response to

treatment is also heavily influenced by other factors like sex, advanced age, ethnicity, and comorbidities

such as cardiovascular disease, chronic lung disease, obesity, diabetes, and compromised immune func-

tion.6–8 An in-depth understanding of the immune response to SARS-CoV-2, particularly humoral, could

improve our understanding of the diverse courses of disease and better guide the development of

improved diagnostics and vaccines.

SARS-CoV-2 infection can elicit robust antibody responses in humans, and this response represents the

primary focus of global efforts to develop accurate serology-based diagnostics and vaccination

strategies against infection.9,10 Pre-existing cross-reactive immune responses to SARS-CoV-2 proteins in
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infection-naive subjects have been described by several studies.11 Notably, regions of high homology be-

tween SARS-CoV-2 and endemic hCoVs have been highlighted as a likely source of this cross-reactivity,

although the role of such cross-reactive responses in the outcome of SARS-CoV-2 infection and vaccination

is currently not fully understood (reviewed in11).

Cross-reactive B cells generated to epitopes of low homology may interfere with responses to a secondary

heterologous infection by skewing the response to antibodies with higher avidity for the initial infectious

agent, reducing the generation of de novo antibody responses. Evidence for such cross-reactive mecha-

nisms was reported in common cold coronaviruses as well as SARS-CoV-2.12–14 Beneficial cross-reactive

memory B cells and antibodies can also be generated to epitopes of high similarity between a primary

and a heterologous secondary infection. Cross-reactive B cells specific to highly conserved epitopes

might then go on to produce an enhanced memory-like response to heterologous infection, including

the production of cross-neutralizing antibodies that can prevent viral entry to cells. Evidence for cross-re-

active B cell responses was reported in coronavirus infections, including beta-coronaviruses and SARS-

CoV-2.15,16 Age and disease severity have been suggested to be a contributing factor for these

observations.11 However, none of these studies directly explored effects of pre-existing cross-reactive an-

tibodies on COVID-19 severity. As such, the causal relationship between cross-reactivity of hCoVs and

SARS-CoV-2 and fatal outcomes remains unclear.

Cross-reactivity can also impact the T cell compartment. Cross-reactive T cells generated to epitopes of

relatively low homology may detrimentally impact a secondary infection with heterologous agents by

dominating the response to the secondary infection, disrupting the development of high-avidity de

novo T cell responses, thereby leading to immunopathology and reduced viral clearance. Evidence for

these detrimental cross-reactive mechanisms has been reported in studies of flavivirus infection,17,18 but

to our knowledge not in coronavirus infections. Beneficial cross-reactive T cell responses can be generated

by the stimulation of T cells through high-homology epitopes. These T cells then cross-react with high avid-

ity during a heterologous secondary infection and might block pathogenicity by preventing invasive infec-

tion or expedite the rate of viral clearance by forming a ‘secondary-like’ memory immune response with an

increased magnitude of B and T cell responses. Evidence for such cross-reactive mechanisms was reported

in studies of coronavirus infections, including SARS-CoV-2.19–24

Overall, there is no evidence from longitudinal cohort studies or population-level studies to suggest that

pre-existing SARS-CoV-2 cross-reactive antibodies exacerbate COVID-19.11,25 Rather, current evidence

suggests that alongside the de novo immune response, cross-reactive T cells and antibodies form part

of the protective immune response to SARS-CoV-2 infection. Considering the high propensity for SARS-

CoV-2 to mutate viral proteins, notably in S protein, variants of concern (VOCs) and variants under investi-

gation (VUIs) can acquire properties for increased transmissibility, disease severity, and/or immune

evasion.26 Thus, promoting this cross-reactive, pre-existing memory immune response to common hCoVs

may be an effective strategy against SARS-CoV-2 and future VOCs.27,28

To better understand the molecular determinants underlying protective immunity to pathogens, including

viruses, one must define the epitopes in various viral proteins, the minimal unit of an antigen that can be

recognized by T and B cells and can elicit potent cellular and humoral immune responses, respectively.

A recent study used VirScan technology, a high-throughput, programmable phage-display immunoprecip-

itation and sequencing (PhIP-Seq) method,29 to analyze epitopes of antiviral antibodies in sera of COVID-

19 patients relative to pre–COVID-19 sera controls.30 However, the nature and dynamics of the peptide

pools of VirScan/PHIP-seq may limit the resolution, sensitivity, and breadth of specific epitope detection

in infected individuals, in turn, providing a fragmented view of the complete footprint of epitope recogni-

tion by antibodies.29,31

In the current study, we provide a comprehensive analysis of SARS-CoV-2 humoral immune responses in a

dataset of symptomatic or recovered COVID-19-positive and COVID-19-negative patients. We exploited a

high-density peptide array (HDPA) by spotting overlapping 15-mer peptides derived from the entire SARS-

CoV-2 and hCoVs proteomes to rapidly identify B cell epitopes recognized by distinct antibody isotypes in

patients’ blood sera of individual patient groups. We then subjected our data to an integrated computa-

tional pipeline to evaluate the fine immunological properties of detected SARS-CoV-2 epitopes and relate

them to their evolutionary and structural characteristics. We show that while some epitopes are common
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Figure 1. High-density peptide arrays (HDPA) provide high-resolution antibody epitope maps across the SARS-CoV-2 proteome

(A) Overview of analytical pipeline. The proteome of SARS-CoV-2 was translated into 15-mer overlapping peptides with a peptide-to-peptide overlap of 13

amino acids. The resulting individual peptides were printed in duplicates on the microarray. Sera from confirmed SARS-CoV-2-positive and -negative

individuals were incubated on PEPperCHIP the HDPA. Serum antibody binding was visualized using respective fluorescently labeled secondary antibodies

(anti-human IgG and anti-human IgA). Image acquisition and data quantification resulted in epitope-specific antibody profiles for SARS-CoV-2.

(B) Average relative fluorescent units (RFU) profiles and peptide coverages are plotted across the SARS-CoV-2 proteome (ORF1A, ORF1B, Spike (S) protein,

Envelope (E) protein, Membrane (M) glycoprotein, Nucleocapsid (N) phosphoprotein). Antibody responses to each linear 15-mer peptide were mapped

across the SARS-CoV-2 proteome and average RFU calculated for each amino acid residue. The normalized positional ‘epitope coverage’ at each protein

residue location is defined as the ratio of total peptides mapped to each position by the total expected peptides (see STARmethods section). ‘Hotspots’ can

be seen as spiked in the RFU or coverage distributions.

(C) Comparison of mean RFU (log-scale) between SARS-CoV-2-positive and -negative sample groups for each viral protein. (unpaired t-test, ns: p > 0.05;

*: p % 0.05; **: p % 0.01; ***: p % 0.001; ****: p % 0.0001).
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(public epitopes) across all studied hCoVs (including SARS-CoV-2), others are unique (private epitopes) to a

specific hCoV. Then, to highlight epitopes that have an important role for protecting against SARS-CoV-2

when an individual gets infected, we defined differential epitopes as epitope for which the response is at

least two-times higher in COVID-19-positive than COVID-19-negative individuals. We also highlight hot-

spots of pre-existing immunity and a subset of cross-reactive epitopes that contributes to increasing the

average humoral immune response to SARS-CoV-2. Finally, using a dataset of over 38,000 publicly

available genome sequences, collected during the first two waves of the pandemic, we tracked single

nucleotide variants (SNVs) within and between COVID-19 patients and found evidence for positive

selection on nonsynonymous mutations in epitopes. Selection is stronger between than within patients,

indicating that selection for immune evasion occurs mostly upon transmission between hosts. Overall,

our results have implications for future genomic surveillance and vaccine design.
RESULTS

Antibody fingerprintingwith high-density peptide arrays provides a high-resolution antibody

epitope map across the SARS-CoV-2 proteome

Most previously reported high-resolution SARS-CoV-2 B cell epitopemapping strategies relied on VirScan/

PHIP-seq methodology.30,32 However, the nature and dynamics of the peptide pools of VirScan/PHIP-seq

limit the resolution, sensitivity, and breadth of specific epitope detection in infected individuals, providing

a fragmented view of the complete footprint of epitope recognition by antibodies.29,31 To assess the hu-

moral immune response against SARS-CoV-2 at the epitope level, we used a HDPA technology to define

virus protein-specific B cell epitopes and potential antigenic hotspots for antibody reactivity. A high-reso-

lution linear epitope map across the entire SARS-CoV-2 proteome was achieved using the PEPperCHIP

SARS-CoV-2 proteome microarray technology (Figure 1A).33 We performed this assay on sera obtained

from ten SARS-CoV-2-positive individuals (asymptomatic and recovered) and five SARS-CoV-2-negative,

control subjects (SARS-CoV-2-negative) (Table S1). The degree of immune reactivity to spike protein (S),

envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N) and ORF1AB was

measured in relative fluorescence units (RFUs). Linear overlapping peptides of 15 amino acid length

were used for each protein and a dual isotype analysis, determining IgG- and IgA-specific antibody re-

sponses, was performed (Figure 1A). This was followed by a comprehensive analysis workflow to charac-

terize the differential epitopes, their structural properties and utilize genome sequence analysis of arising

SARS-CoV-2 variants to assess immune evasion potential.

Sera from SARS-CoV-2-positive individuals yielded strong immune reactivity (measured in RFU) in S and N

proteins, as well as in select regions of ORF1AB (Figure 1B). Antibody responses were also identified in

samples from SARS-CoV-2-negative individuals (Figure 1B), suggesting that HDPA technology is well

suited to detect epitopes of pre-existing immune responses conferred through prior infections with hCoVs.

Although sera from SARS-CoV-2-positive and -negative individuals had very similar epitope coverage per

amino acid, some regions in the SARS-CoV-2 proteome were more immuno-dominant than others, exert-

ing higher RFU values (Figure 1B). Except for M protein, all proteins analyzed had stronger antibody re-

sponses to more unique peptides in the SARS-CoV-2-positive patient group (Figure S1, Tables 1, and

S2). In addition, the mean RFU values of SARS-CoV-2-positive sera were higher toward most regions of

the SARS-CoV-2 proteome than in the SARS-CoV-2-negative group, demonstrating the elicitation of robust

antibody responses to immuno-dominant epitopes upon SARS-CoV-2 infection (Figure 1C). For further

analysis of epitopes with greatest immuno-dominance, only peptide RFU values greater than or equal to
4 iScience 26, 107394, August 18, 2023



Table 1. Numbers of SARS-CoV-2-specific epitope-defining peptides identified by HDPA

SARS-CoV2-specific

Peptides Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 119 41 1 47 294 502

SARS-CoV-2 positive 195 69 6 29 549 848

Overlap 90 35 6 17 353 501

Total 404 145 13 93 1196 1851

Number of SARS-CoV-2-specific epitope-defining peptides identified with high density peptide arrays (HDPA) in spike

(S) protein, envelope (E) protein, membrane (M) glycoprotein, nucleocapsid (N) phosphoprotein, and ORF1ab. Number of

unique peptides that showed a significant antibody response (RFU R1000) in SARS-CoV-2-negative and SARS-CoV-2-posi-

tive groups are depicted. Some peptides are present in both groups, referred to as overlap.
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1000 were used in our further analysis. Taken together, our results demonstrate that the applied HDPA

approach allows highly sensitive detection of a large pool of epitopes across the SARS-CoV-2 proteome.
Structural features of identified epitopes and comparison with computationally predicted

epitopes

An epitope is the minimal unit of an antigen that can be recognized by T and B cells and can elicit potent

cellular and humoral immune responses, respectively. B cell epitopes can be divided into two major cate-

gories, namely linear and conformational epitopes. In a linear epitope, a stretch of continuous amino acids

forms the antibody binding site, while amino acid residues that are brought together by protein folding

form conformational epitopes. In our current study, antibody responses are detected using linear peptide

arrays, and thus these epitopes are primarily linear in nature, although some linear epitopes contributing to

conformational components of a protein may also be detected. Though there is a significant interest for

short linear epitopes in vaccine design, most of the current SARS-CoV-2 vaccine immunogens are structural

S proteins.34 Thus, we askedwhether the short peptide-based approach in the applied HDPA approach can

also reveal conformational epitope sites, as has been recently suggested.30 Using 3D structures and

biophysical properties of the SARS-CoV-2 proteome, we applied the DiscoTope algorithm35 to computa-

tionally predict conformational B cell epitopes as well as the BepiPred algorithm36 to obtain linear B cell

epitopes. We then compared these to the epitope sites identified in our HDPA experiment. Apart from

E andMproteins, we observed significant overlap of experimentally identified epitopes with predicted epi-

topes (Figure 2A), with approximately 38% of the total proteome being part of the amino acid residues

contributing to the B cell epitome of SARS-CoV-2 recognized in infected individuals. We observed overlap

of mapped epitope sites with conformational epitopes predicted by DiscoTope, suggesting that the

applied HDPA approach also identifies a considerable number of conformational epitopes.

It is important for epitopes to be solvent exposed to allow their amino acid side chains to interact with the

antibody. In our study, there was no significant difference in the average normalized solvent accessibility

(SASA) of epitopes compared to non-epitope regions (mean SASA = 5.3 Å2). However, residues in highly

conserved epitope sites have lower solvent accessibility (Figures S2A–S2C), suggesting that many identi-

fied epitopes might only get exposed through proteolysis or conformational changes throughout the in-

fectious cycle or stage of anti-viral immune response. This implies that our linear peptide-based HDPA

approach can capture more epitopes compared to those that use full-length antigens or protein domains

to study immune profiling of antibody responses.37,38 Using structural models we mapped the epitopes of

S protein of SARS-CoV-2 identified by the HDPA approach, which revealed that many of the epitope sites

identified in the S protein are in the N terminal domain (NTD) and the receptor binding domain (RBD)

(Figures 2B and 2C). Interestingly, most epitope sites identified in the NTD and RBD have low conservation

scores, while many other epitope sites identified in the S protein had high conservation scores (Figures 3A

and 3B). In addition, HDPA analysis revealed strong antibody immunoreactivity in a few epitope sites of E

(Figure 3C), M (Figure 3D), N proteins (Figure 3E), as well as ORF1A (Figure S3) and ORF1B (Figure S4).

Cryo-EM studies have indicated that the SARS-CoV-2 spike protein is highly flexible and exhibits several

prefusion conformations where three RBDs adopt distinct orientations: ‘‘up’’ (receptor-accessible state)

and ‘‘down’’ (receptor-inaccessible). Protomers with the up-conformation can facilitate the binding be-

tween the spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor, thereby allowing
iScience 26, 107394, August 18, 2023 5



Figure 2. Structural features of identified epitopes and comparison with computationally predicted epitopes

(A) Venn diagrams comparing epitope sites identified by HDPA with computational approaches including BepiPred and

DiscoTope. Overlap hypergeometric test (R package phyper) for significance between epitope sites from HDPA and

computational prediction methods; p value (<0.10) shown in gray.
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Figure 2. Continued

(B) Three-dimensional structural model of the full-length spike protein trimer in an open conformation with domains

labeled; receptor binding domain (RBD); N-terminal domain (NTD).

(C) Three-dimensional model of RBD and NTD highlighting epitope sites (green) identified by HDPA analysis on the

surface of the RBD and NTD domains.

ll
OPEN ACCESS

iScience
Article
and facilitating host cell infection.39 Analysis of structures of distinct SARS-CoV-2 human neutralizing anti-

bodies (NAbs) in complex with the SARS-CoV-2 spike trimer or RBD revealed structural correlates of SARS-

CoV-2 neutralization and allowed classification of antibodies into categories.40 Focusing on RBD-binding a

distinction into four distinct classes has been proposed: Class 1 - NAbs that block ACE2 and bind only to

‘‘up’’ RBDs; Class 2 - ACE2-blocking NAbs that bind both ‘‘up’’ and ‘‘down’’ RBDs; Class 3 - NAbs that bind

outside the ACE2 site and recognize both ‘‘up’’ and ‘‘down’’ RBDs; and Class 4 – NAbs that do not block

ACE2 and bind only to ‘‘up’’ RBDs.40 To analyze the extent with which HDPA epitope sites overlap with

known NAb-binding residues in SARS-CoV-2 RBD we aligned the epitopes sites identified by HDPA with

NAb-binding residue sites mapped by Cryo-EM studies 40. Epitopes found by HDPA generally tend to

agree with cryo-EM, particularly in more conserved regions of the protein sequence (Figure 4A). More

than 60% of RBD residues in NAb-binding sites are identified by HDPA analysis, mapping epitope sites

in all four distinct structural correlate classes of SARS-CoV-2 RBD-binding NAbs identified by cryo-EM (Fig-

ure 4B). Taken together, our results demonstrate that the applied HDPA profiling strategy can identify a set

of linear and conformational B cell epitopes unique in sera of SARS-CoV-2-infected individuals. In addition,

a large portion of the identified epitope sites are residues in previously reported NAb-binding sites,

demonstrating that epitope sites mapped by HDPA analysis are of functional relevance in antibody-medi-

ated immunity to SARS-CoV-2.
Cross-reactivity to endemic seasonal human coronaviruses is a significant driver of antibody

responses to SARS-CoV-2 epitopes

In addition to the zoonotic pathogens SARS-CoV, MERS-CoV, and SARS-CoV-2, four other low-pathoge-

nicity hCoVs are endemic and co-circulating in the human population41: strains OC43 and HKU1 (beta-

CoVs like SARS-CoV-2), and NL63 & 229E (alpha-CoVs), of which OC43 and 229E are the most

common, accounting for 5–30% of common colds.42 Notably, structural proteins of SARS-CoV-2 show

some degree of amino acid sequence identity with hCoVs.43,44 One prevailing view in our understanding

of COVID-19 immunopathogenesis is that an underlying immune response toward endemic hCoVs is a hall-

mark feature of SARS-CoV-2-infected asymptomatic individuals.11 This pre-existing immunity is hypothe-

sized to partially control viral replication and eliminate infected cells resulting in less severe pathology

and inflammation.11,12,45–48

Having established the link between structure accessibility and protein conservation (Figures 3B and S2),

we next asked how conservation is related to the humoral immune response. One way protein conserva-

tion could affect adaptive immunity is through cross-reactivity to related viruses. To this end, we first

analyzed the humoral immune response against the four hCoVs OC43, HKU1, NL63 and 229E at the

epitope level using HDPA on sera from the same ten SARS-CoV-2-positive (asymptomatic or recovered)

patients and five control subjects (SARS-CoV-2-negative; Table S1). HDPA yielded strong antibody reac-

tivities to many distinct sites across the proteomes of all hCoVs (Tables 2, S3, S4, S5, and S6). We then

defined cross-reactive epitopes based on the conservation of peptide residues across hCoVs and the

presence of an immune response to epitopes in SARS-CoV-2 and at least of one of the endemic hCoVs

(HKU1, NL63, OC43 or 229E; Figure 5A). To evaluate the conservation of peptide sequences across

hCoVs, we aligned the protein sequences of these viruses and calculated a conservation score, reflecting

the conservation of physicochemical properties in the alignment where identical residues score the high-

est.49 We also defined cross-reactivity at the level of epitope sites (single amino acids) to account for the

possibility that a particular amino acid site within a 15-mers epitopes is associated with cross-reactive im-

munity. Epitope sites with a conservation score R 6 and for which we obtained antibody reactivity for

both SARS-CoV-2 and at least one of the hCoVs were considered as cross-reactive epitope sites. These

cross-reactive epitope sites represent 27.2% of the pool of detected epitope sites by the applied HDPA

assay (Table S7). We also carried out local alignment of the peptides from the HDPA (with RFU R 1000) of

all five viral strains to the SARS-CoV-2 proteome to evaluate the cross-reactivity profile of SARS-CoV-2

epitopes and identified hotspots of conserved epitopes (example for S protein in Figure 5B).
iScience 26, 107394, August 18, 2023 7
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Figure 3. Identified differential epitope sites in structural proteins of SARS-CoV-2

Relative Fluorescence Unit (RFU) values of HDPA analysis were used to calculate ratio values to define differential epitope sites and are color coded on the

distinct SARS-CoV-2 proteins. Residues that are not part of epitopes are marked in gray (NA, not applicable).

(A) RFU values of differential epitope sites identified in SARS-CoV-2 Spike protein. N-terminal domain (NTD) and receptor-binding domain (RBD) are

highlighted.

(B) Conservation scores of physicochemical properties of the SARS-CoV-2 Spike protein.

(C) RFU values of differential epitope sites identified in SARS-CoV-2 Envelope protein.

(D) RFU values of differential epitope sites identified in SARS-CoV-2 Membrane protein.

(E) RFU values of differential epitope sites identified in SARS-CoV-2 Nucleocapsid protein.
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Next, to highlight cross-reactive epitope sites that are particularly important for the humoral immune

response after exposure to SARS-CoV-2, we focused on differential cross-reactive epitope sites that

give an antibody response signal in sera of SARS-CoV-2-positive over SARS-CoV-2-negative individuals.

Although we analyzed sera from a smaller sized cohort compared to a recent study using PhIP-Seq,30 we

were nonetheless able to sensitively detect more differential cross-reactive epitope sites discriminating

virus exposed from non-exposed individuals (Figure 5C). The increased sensitivity of HDPA over PhIP-Seq

analysis for identifying cross-reactive epitope sites was further highlighted when performing a sensitivity

analysis on the number of cross-reactive epitope sites that define a cross-reactive epitope (Figure S5A).

We next analyzed if the humoral immune response to SARS-CoV-2 epitopes correlated with the number of

cross-reactive epitopes identified. In other words, to what extent is the response to SARS-CoV-2 predict-

able based on cross-reactivity to other endemic hCoVs? We defined cross-reactive epitopes as peptide se-

quences with at least five cross-reactive epitope sites. We found a positive correlation between the average

humoral immune response to SARS-CoV-2 epitopes and the number of cross-reactive epitopes per patient

in a recently published PhIP-Seq dataset30 (Figure 5D) and in our HDPA dataset (Figure S5). We detected a

stronger positive correlation between the average antibody response to SARS-CoV-2 epitopes and the

number of cross-reactive epitopes in SARS-CoV-2-positive compared to negative patients (Figure 5D; cor-

relation coefficients: 4.42e-3 vs. 1.54e-3; ANOVA p for Covid19 status = 7.43e-10). This positive correlation

is robust to the threshold number of cross-reactive epitope sites defining a cross-reactive epitope and is

also replicated in our HDPA dataset (Figure S5).

Leveraging the sample size in this same PhIP-Seq dataset, we aimed to identify the subset of cross-reactive

epitopes with the greatest contribution in humoral immunity in SARS-CoV-2-positive patients using the

IndVal test, which is a non-parametric test to identify significant associations from presence-absence

data.50 This test allowed us to identify 75 epitopes that are significantly associated with SARS-CoV-2-pos-

itive over SARS-CoV-2-negative samples, with 16 out of these 75 epitopes (21.3%) being cross-reactive

(Table S8.). These results again highlight the contribution of a subset of hCoV-cross-reactive epitopes

for the humoral immune response to SARS-CoV-2.
Point mutations and natural selection in epitopes occur at higher rates upon transmission

than within patients

There is mounting evidence that mutations in SARS-CoV-2 enhance viral fitness, replication rate and trans-

missibility, and/or partially evade adaptive immunity that has been induced by prior infection or vaccina-

tion.26 Thus, it is essential to shed light on the interplay between SARS-CoV-2 mutations and the acquired

immune response in infection. To this end, we tracked the evolution of SARS-CoV-2 B cell epitopes using

SNVs identified in 38,685 SARS-CoV-2 genome sequences from the NCBI sequence read archive (Table S9).

We selected SARS-CoV-2 samples from the first pandemic wave (defined as January 1 to July 31, 2020) and

the second wave (defined as August 1 to December 31, 2020) sequenced using Illumina paired-end ampli-

cons with a minimum average depth of coverage of 2003 and fewer than 10,000 sites with a depth of

coverage lower than 1003. Combined with additional filters to remove sequencing errors (see STAR

methods for details), such deep coverage allowed us to identify SNVs that are polymorphic within patients,

reflecting within-patient evolution,51,52 as well as those that are shared between the consensus sequences

of different patients. We refer to these within-patient SNVs as ‘mutations’ and to between-patient SNVs

(those present at >75% frequency within a sample and observed in three or more samples) as ‘substitutions’

that have likely been transmitted across multiple patients. Our definitions of mutations and substitutions

are not mutually exclusive: an SNV can be a mutation in one sample and a substitution in another. We

counted the absolute number of substitutions relative to the Wuhan-1 reference genome, so the count

does not reflect the unique number of substitution events along a phylogeny, but rather the prevalence
iScience 26, 107394, August 18, 2023 9
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Figure 4. Epitope sites identified by high-density peptide arrays (HDPA) are prominently found in structural

correlate classes of SARS-CoV-2 neutralization antibodies

(A) Fluorescence Unit (RFU) values of HDPA analysis were used to calculate ratio values to define differential epitope sites

(color coded) identified in the SARS-CoV-2 receptor binding domain (RBD) of the Spike protein. Residues that are not part

of epitopes are marked in gray (NA, not applicable). Structural correlate classes 1–4 of SARS-CoV-2 neutralization

antibodies (NAbs) identified by cryo-EM are shown as asterisks below the RBD sequence; epitopes identified by HDPA

are also shown with asterisks. Conservation scores of residues ranging from low (1) to highest (9) are indicated as numbers

with colored background.

(B) Pie chart quantifying frequencies of RBD epitope sites recognized by HDPA stratified according to the unique or

shared structural correlate classes 1–4 of SARS-CoV-2 NAbs they fall in.
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Table 2. Numbers of seasonal endemic hCoV-specific epitope-defining peptides identified by HDPA

Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

OC43-specific peptides

SARS-CoV-2 negative 126 37 6 4 293 466

SARS-CoV-2 positive 209 70 10 27 508 824

Overlap 104 35 2 8 280 429

Total 439 142 18 39 1081 1719

HKU1-specific peptides

SARS-CoV-2 negative 104 43 7 17 293 464

SARS-CoV-2 positive 220 105 7 23 503 858

Overlap 90 35 2 10 254 391

Total 414 183 16 50 1050 1713

NL63-specific peptides

SARS-CoV-2 negative 139 54 12 17 296 518

SARS-CoV-2 positive 183 77 8 24 571 863

Overlap 70 56 3 14 269 412

Total 392 187 23 55 1136 1793

229E-specific peptides

SARS-CoV-2 negative 116 43 3 15 306 483

SARS-CoV-2 positive 158 99 7 38 592 894

Overlap 72 46 2 12 325 457

Total 346 188 12 65 1223 1834

Number of seasonal endemic hCoV-specific (229E, HKU1, OC43 and NL63) epitope-defining peptides identified with high

density peptide arrays (HDPA) in spike (S) protein, envelope (E) protein, membrane (M) glycoprotein, nucleocapsid

(N) phosphoprotein, and ORF1ab. Number of unique peptides that showed a significant antibody response (RFU R1000)

in SARS-CoV-2-negative and SARS-CoV-2-positive groups are depicted. Some peptides are present in both groups, referred

to as overlap.
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of the substitutions in the database. As such, substitution counts are weighted to reflect their ’success’ in

transmitting widely.

Using this dataset of mutations and substitutions, we first asked whether cross-reactive (public) epitopes

evolved differently than epitopes private to SARS-CoV-2. We found that cross-reactive epitopes tend to

evolve more slowly than SARS-CoV-2 private epitopes, accumulating fewer substitutions and having lower

ratios of nonsynonymous to synonymous substitutions (Figures S6A–S6D). The same trend of slower evo-

lution in cross-reactive epitopes is also observed at the level of within-patient mutations, but the effect

is much stronger at the level of substitutions between patients (Figures S6A–S6D). This is consistent with

the fact that these epitopes are conserved across multiple distinct hCoV strains and could be evolving un-

der strong and long-standing functional constraints. However, purifying selection has less time to purge

deleterious mutations within hosts, and is thereforemore detectable over longer time scales spanningmul-

tiple transmission events.

Mutations in epitopes have the potential to evade or lessen the effectiveness of adaptive immunity

conferred by infection or vaccination. A recent topic of debate has been the extent to which natural se-

lection for immune evasion acts on SARS-CoV-2 during infection, or upon transmission.26 During influ-

enza virus infection, most of the selective pressure for immune evasion occurs upon transmission, not

within a patient.53 This is because viral loads often peak before the priming of adaptive immune re-

sponses. As such, peak viral transmission occurs before there is time for selection to act within a patient,

and for immune evasion to occur. A similar ‘asynchrony’ transmission model has been proposed for

SARS-CoV-2,54 although data supporting such model has been lacking. To test the asynchrony model

in SARS-CoV-2 we tracked SNVs within as well as between patients, within and outside epitope sites,

and across the first two pandemic waves (Figures 6 and S7). Throughout both waves, we found
iScience 26, 107394, August 18, 2023 11



Figure 5. Cross-reactivity to endemic seasonal human coronaviruses is a significant driver of antibody responses

to SARS-CoV-2 epitopes

(A) Schematic multiple sequence alignment of proteome sequences between hCoVs and SARS-CoV-2. We defined cross-

reactive epitope sites based on peptide sequence conservation between human coronavirus strains (SARS-CoV-2, HKU1,

OC43 and NL63) and the presence of an antibody response to the corresponding peptide in SARS-CoV-2 and at least one

of the endemic human coronaviruses (229E, HKU1, OC43 and NL63).

(B) Mapping of hCoVs epitope-defining peptides within the Spike (S) protein. The colors represent the 15-mer peptides to

which an antibody response to the human coronavirus strains (SARS-CoV-2, 229E, HKU1, OC43 and NL63) has been

detected. Conservation score (Cscore) was calculated based on this alignment.

(C) Numbers of differential cross-reactive epitope sites across distinct viral proteins (ORF1A, ORF1B, Spike (S) protein,

Envelope (E) protein, Membrane (M) glycoprotein, Nucleocapsid (N) phosphoprotein) detected in the current study using

HDPA (blue) compared with a recently published PhIP-Seq study (red, n = 432.30
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Figure 5. Continued

(D) The average immune response to SARS-CoV-2 positively correlates with the number of cross-reactive epitopes. A

linear regression between the average epitope Z score per patient and the number of cross-reactive epitopes for both

SARS-CoV-2-positive (blue; adjusted R2 = 0.033; slope = 0.059; p = 0.003) and both SARS-CoV-2 negative (red; not

significant; p > 0.5) patients was performed.
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consistently lower within-host mutation rates in epitopes sites when compared to non-epitope sites

across most SARS-CoV-2 proteins (Figures 6A and S7A). In contrast, the structural proteins S, M, and

N had significantly higher rates of between-host substitution in epitope sites compared to non-epitope

sites (Figures 6B and S7B), suggesting stronger positive selection for epitope changes upon transmission

than within hosts. To further assess the evidence for selection on epitopes, we used the ratio of nonsy-

nonymous to synonymous SNVs both between patients (dN/dS) and within patients (pN/pS) calculated

separately within and outside epitopes. Higher ratios indicate positive or relaxed purifying selection,

whereas lower ratios indicate stronger purifying selection. We found that the structural proteins S and

N have consistently higher nonsynonymous SNV rates in epitope sites, both within and between patients,

and across both pandemic waves (Figures 6C, 6D, S7C, and S7D). While this result is consistent with pos-

itive selection of altered epitopes (immune evasion) occurring both within and between patients, dN/dS

ratios (between patients) are consistently higher than pN/pS ratios (within patients). These observations

indicate that nonsynonymous substitutions in S and N epitope sites accumulate most rapidly upon trans-

mission, rather than within patients. Taken together these results support the notion that most of the se-

lective pressure for immune evasion of SARS-CoV-2 occurs upon transmission between hosts, consistent

with the asynchrony model.53
Assessing the immune evasion potential of SARS-CoV-2 variants

The observation of similar pattern of mutations and selective pressures in epitopes across pandemic

waves 1 and 2 (Figures 6 and S7) was surprising, given the expectation that increasing levels of immu-

nity in the population would lead to increased selection for immune evasion over time. The second

wave is characterized by the rise of VOCs and VUIs with higher transmissibility and, in some cases,

increased disease severity and acquired immune evasion phenotypes.26 The rise of VOCs has been

suggested to be due to a shift in the SARS-CoV-2 fitness landscape.55 If part of this shift were

due to rising population immunity from the first to second wave, one would expect increasing

selection for immune evasion variants, resulting in higher frequencies of SNVs in epitopes in wave 2.

Although we found a higher total number of nonsynonymous SNVs (including both mutations and sub-

stitutions) in epitope sites unique to wave 1 than unique to wave 2 (Figure 7A), wave 2-specific SNVs

reached higher frequencies across samples compared to wave 1-specific SNVs, consistent with

increased selection for immune evasion over time (Figure 7B). However, mutations common to both

waves achieved the highest frequencies, indicating their early appearance and persistence over time

(Figure 7B).

A likely driver of VOC evolution is selection for increased transmissibility. For example, the Delta VOC is

estimated to be 76–117% more transmissible than non-VOCs and non-VUIs, while Gamma is 29–48%

more transmissible and Alpha is 24–33% more transmissible than the original Wuhan SARS-CoV-2 strain.56

However, selection for immune evasion could also play a significant role for increased spread of VOCs and

VUIs. To test this hypothesis, we defined signature mutations of each variant (see STAR methods;

Table S10) as substitutions that are present inR90% of sequences assigned to that lineage. We calculated

the prevalence of substitutions in thousands of publicly available consensus sequences collected from

NCBI during 2020 and added data from CoV-Spectrum about under-represented lineage in the database

or lineages that emerged during 2021.57 We focused on nonsynonymous signature mutations located in

epitope sites and found that VOCs and VUIs contain significantly more signature mutations in epitopes

compared to non-VOCs and non-VUIs (Figure 7C) suggesting that evasion of the humoral immune

response could be a significant driver of VOC/VUI evolution. We then ranked VOCs and VUIs based on

their number of signature mutations in epitopes (Figure 7D). We observed that Delta has an intermediate

number of mutations in mapped epitopes (Figure 7D). However, the most nonsynonymous epitope

mutations were observed in Omicronand its sublineages and recombiants such as XBB (Figure 7D), which

other studies have shown to be highly immune evasive.58–60 Most epitope mutations in VOC/VUI occur in

the S protein (Figure 7D). Normalizing by gene length revealed a relatively high density of epitope

mutations in the N protein, especially at sites of the N protein that overlap with ORF9c (Figure S8), a
iScience 26, 107394, August 18, 2023 13
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Figure 6. Evolutionary profiles of SARS-CoV-2 epitopes during the first pandemic wave

Mutations (within hosts) and substitutions (between hosts) in epitope sites (orange) vs. non-epitope sites (gray) during the

first pandemic SARS-CoV-2 wave (defined as January 1 to July 31, 2020) is depicted. For each metric, significantly lower

values in epitope sites of a certain gene are represented by a blue arrow pointing down while significantly higher values in

epitope sites of a certain gene are represented by a red arrow pointing up (FDR-adjusted Wilcoxon test p < 0.05).

(A) Distributions of sample mutation rates across proteins.

(B) Distributions of sample substitution rates across proteins.

(C) Distributions of pN/pS across proteins.

(D) Distributions of dN/dS across proteins. Mutation and substitution rates are normalized by gene length and plotted on

a log10 scale.
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membrane-anchored protein of SARS-CoV-2 that can hinder interferon signaling, viral protein degradation

and other stress response pathways when expressed in human lung epithelial cell lines.61 Finally, having

established these general evolutionary patterns of mutation and selection on epitopes, we attempted to

pinpoint specific epitope mutations that could hinder the immune response. For each epitope site, we ex-

tracted both the measured patient immune responses and the prevalence of nonsynonymous (missense)

mutations from the NCBI dataset (Table S11). Among the most prevalent mutations identified are two mu-

tations occurring at consecutive sites in the N protein (N:R203K and N:G204R) that overlap with ORF9c (en-

coded within the N gene). Taken together our observations show that high resolution epitope mapping

combined with genome sequence analysis provides a powerful strategy to rapidly assess the immune

evasion potential of emerging SARS-CoV-2 variants.
14 iScience 26, 107394, August 18, 2023
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Figure 7. Assessing the immune evasion potential of SARS-CoV-2 variants

(A) Venn diagram showing the numbers of non-synonymous epitope mutations specific to SARS-CoV-2 pandemic wave 1 (blue; defined as January 1 to July

31, 2020), specific to wave 2 (red; defined as August 1 to December 31, 2020) and shared between both waves (green).

(B) Distribution of the relative abundance of non-synonymousmutations in epitopes across pandemic waves. For better visualization, we plotted the Y axis on

a log10 scale and represented the distributions with a jitter plot, a violin plot, and a boxplot. The Wilcoxon test p values are indicated above each pair of

distributions. The Kruskal-Wallis test p values are indicated at the top left to indicate the significance of the differences across all distributions.

(C) Distribution of the numbers of signature mutations located at epitope sites across SARS-CoV-2 groups (gray for non-VOCs and non-VUIs, orange for

VOCs and VUIs). The Wilcoxon test p value is indicated at the top of the panel to show the significance of the differences between the two groups.

(D) Distribution of the numbers of nonsynonymous signature mutations in epitopes of selected VOCs and VUIs. For each VOC or VUI we indicate the number

of signature mutations in epitopes identified with HDPA across all analyzed ORFs: envelope (E) protein (orange), membrane (M) glycoprotein (gray), N sites

overlapping ORF9c (black), ORF1b (blue), nucleocapsid (N) phosphoprotein (purple), ORF1A (red), and spike (S) protein (green).
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DISCUSSION

An in-depth map of the breadth of the antigenic determinants of the immune response following infection

with SARS-CoV-2 is key for a better understanding of the diagnostic markers, the identification of the cor-

relates of protection and the monitoring of vaccine efficacy. We therefore set out to define the antigenic

hotspots and epitope signatures of SARS-CoV-2-specific humoral immune responses in patients with

COVID-19 and uninfected healthy controls using high-density peptide microarrays (HDPA) covering the

entire proteomes of SARS-CoV-2 as well as of the four seasonal hCoVs (OC43, NL63, HKU1, and 229E).

Our results demonstrate that the HDPA approach provides a sensitive, high-throughput antibody profiling

strategy to identify linear and conformational B cell epitopes. Using structural models, we found that many

of the epitope sites identified in the S protein are in the NTD and RBD region of the S protein. Interestingly,

most epitope sites identified in the NTD and RBD are poorly conserved across coronaviruses, while epitope

elsewhere in the S protein were more highly conserved. In addition, HDPA analysis revealed strong and

specific antibody immunoreactivity in select epitope sites of structural SARS-CoV-2 proteins (E, M, N pro-

teins), as well as ORF1AB.

Antibody cross-reactivity with similar viral antigens affects the accuracy of serological tests, but also has the

potential to elicit beneficial immunological memory responses that could affect the course of SARS-CoV-2

infections. Our results highlight a significant cross-reactivity between SARS-CoV-2 and hCoV B cell epitope

sites in many viral proteins, demonstrating that HDPA allows to uncover another dimension of cross-reac-

tive immunity relative to PhIP-Seq. The fact that more differential epitope sites in the S and N proteins were

detected by a recent study using PhIP-Seq30 probably reflects the lower sample size of our dataset. How-

ever, HDPA detectedmore cross-reactive epitope sites than PhIP-Seq with fewer patient samples analyzed,

reflecting one of the benefits of our applied methodology. Sensitivity limitations of PhIP-seq to broadly de-

tected polio epitopes have been previously reported29,31 and might contribute to the observed differ-

ences, similarly affecting detectability of CoV antigens. Such limitations are not observed in our HDPA

approach62 which typically yielded strong polio responsiveness in over 90% of sampled individuals.63

While HDPA assays show significant benefits over PhIP-seq analyses, a few limitations still apply in our

study. It needs to be taken into consideration that our analysis only targeted ten patient and five control

sera, and the antibody-binding epitope profile reflects the breadth of anti-viral immunity in these specific

patients. Hence, the non-epitope sites may not necessarily be sites that cannot be recognized by anti-

bodies and increasing the number of analyzed sera could also potentially increase the breadth of the anti-

body response detected in our assay. Moreover, the signal readout of the HDPA microarray combines

several parameters which could potentially affect epitope availability including antibody titer, antibody

affinity and antibody off-rates since assays are stopped at a specific timepoint followed by washing and

addition of a secondary antibody. Folding effects of the immobilized peptides on the chip can also play

a role in masking available epitopes, as peptides tend to form structures (e.g., helical in nature) with

increasing distance from the glass slide coating. Such folding may be beneficial or counterproductive

for antibody binding. Based on our experience running HDPA, in general, RFU of equal to or higher

than 100 reveal a positive antibody response. However, to focus on the most prominent antibody re-

sponses, our analysis was performed with an RFU cut-off of 1000 or higher, representing the most signifi-

cant epitope sites of the cohort analyzed.

Although HDPA is primarily considered to provide linear epitope information, folding effects of the immo-

bilized peptides may provide a large structural interface diversity for conformational antibody-binding

sites. In addition, studies have indicated that the SARS-CoV-2 spike protein is very flexible and exhibits
16 iScience 26, 107394, August 18, 2023
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several prefusion conformations.39 The HDPA approach might therefore provide a larger and more diverse

structural interface for antibody-binding than full-length antigens, in turn, reflecting enhanced diversities of

structural interfaces to viral antigen sites during viral infection. Using RFU values of HDPA analysis to calcu-

late ratio values of the analyzed sera (uninfected vs. infected) allowed for the definition of differential

epitope sites per amino acid residue within the distinct SARS-CoV-2 proteins. Using structural modeling,

we also mapped the epitope sites identified by HDPA within the S protein of SARS-CoV-2 and showed

that many of the epitope sites are in the NTD and the receptor binding domain (RBD) (Figure 3).

To analyze the extent to which HDPA epitope sites overlap with known neutralizing antibody (NAb)-binding

residues in SARS-CoV-2 RBD, we aligned the epitopes sites identified by HDPA with NAb-binding residue

sites mapped by cryo-EM studies 39,40. We demonstrate that more than 60% of RBD residues in NAb-bind-

ing sites are identified by HDPA analysis, mapping epitope sites in all four distinct structural correlate clas-

ses of SARS-CoV-2 RBD-binding NAbs identified by cryo-EM 39,40. Hence, our data clearly shows that our

HDPA profiling strategy can identify sets of linear and conformational B cell epitopes unique in sera of

SARS-CoV-2-infected individuals. Importantly, a large portion of the identified epitope sites are residues

located in previously reported NAb-binding sites, demonstrating that epitope sites mapped by HDPA

analysis are functionally relevant in Ab-mediated immunity to SARS-CoV-2.

Importantly, the cross-reactivity in identified B cell epitope sites positively relates to previous infections

with seasonal common cold hCoVs. This suggests that immune memory conferred by previous seasonal

hCoV infections positively influences SARS-CoV-2-specific antibody responses and may explain the large

portion of SARS-CoV-2-infected individuals with mild and asymptomatic disease symptoms.4 Notably,

there was little to no correlation between cross-reactivity and immune response in COVID-19 negative pa-

tients, suggesting that resistance to infection is not easily explained by cross-reactivity. However, this mo-

lecular cross-reactivity can pose important complications in serological tests, particularly when studying

asymptomatic patients. Cross-reactivity in immunodominant epitopes can be molecular determinants of

strong immunity in individuals and therefore may serve as the basis for future pan-coronavirus vaccine

design strategies. In turn, mutations in these cross-reactive epitopes can potentially breach pre-existing

immune protection conferred by previous viral exposures, contributing to viral evolution, immune selec-

tion, and immune evasion.

By combining our epitope dataset with publicly available SARS-CoV-2 genome sequences, we were able to

study mutations that occur in epitopes and compare their rates of evolution and selective pressures to non-

epitope sites. Ideally, we would have matched epitopes and viral mutations arising from the same patients

to infer selection more directly for immune evasion. Although such matched data is currently rare, we were

still able tomake inferences about evolutionwithin epitopes on a population-wide scale. First, we found that

mutations in SARS-CoV-2 epitopes are under evolutionary constraints. SARS-CoV-2-specific epitopes that

are cross-reactive with other endemic seasonal hCoVs tend to accumulate fewer substitutions and are under

purifying selection against nonsynonymous changes. Second, epitopes in structural proteins S, M, and N

accumulate more substitutions and are under stronger positive selection for nonsynonymous changes

than non-epitopes. Natural selection favoring changes in epitope sites was therefore detectable during

the first two pandemic waves. As population immunity accumulates over time, we would expect increasing

selection for immune evasion. Consistent with this expectation, we observed that mutations in epitopes

increased in frequency from the first to the second pandemic wave, and we expect this trend to continue.

Notably, we found much slower rates of evolution and weaker evidence for positive selection on epitopes

within patients, indicating that most selection for immune evasion occurs upon transmission rather than

within patients. This is consistent with asynchrony between peak viral loads (when selection is most effi-

cient) and the adaptive immune response, as is the case for influenza.53,64 Notable exceptions are chronic

infections, in which significant adaptive evolution occurs within patients, likely including antibody

evasion.65,66 However, such infections likely represent a small minority of the sequences included in our da-

taset. While they may be important – particularly if a chronic infection is transmitted – they do not represent

most COVID-19 cases. Another non-exclusive explanation for the higher between-host mutation rate in

epitope sites is the small transmission bottleneck.67,68

Consistent with a general trend of immune evasion, we observed that VOCs and VUIs contain significantly

more signature mutations in epitopes than non-VOCs and non-VUIs demonstrating that evasion of the
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humoral immune response is a significant driver of VOC/VUI evolution. The most mutations in epitopes

were found in the VOCsDelta, C.36.3, and especially Omicron (B.1.1.529) and its sublineages. Most of these

epitope mutations in VOCs are localized to the S protein, highlighting that polymorphism in the S protein

critically impacts antigenicity in highly transmissible variants.

Much research rightly focuses on the S protein, but we also find mutation in the N protein epitopes that

could be selected for immune evasion. The N protein had the highest dN/dS values during both pandemic

waves analyzed, suggesting the presence of a subset of epitope substitutions under positive selection. Af-

ter normalizing by gene length, we found the highest density of epitope mutations in the N protein, espe-

cially in regions of overlap with ORF9c. Orf9c is one of the four conserved overlapping genes (OLGs) of

SARS-CoV-2,69 wherein a single stretch of nucleotides encodes two distinct proteins in different reading

frames. OLGs are ‘genes within genes’ that compress genomic information, thereby allowing genetic inno-

vation via overprinting.70,71 However, a single mutation in an OLG may alter two proteins at the same time,

constraining evolution of the pre-existing open reading frame (ORF). Although, OLGs are known entities

that contribute to the emergence and pathogenicity of new viruses,72 unfortunately, genome annotation

methods typically miss OLGs, instead favoring oneORF per genomic region.72 Similarly, they remain incon-

sistently reported in viruses of the SARS coronavirus species.73 Importantly, annotations of ORF9b and

ORF9c are conflicting or absent in the SARS-CoV-2 reference genome Wuhan-Hu-1 (NCBI: NC_

045512.2) and genomic studies.74,75 In addition, OLGs are often not displayed in genome browsers76

and therefore such inconsistencies complicate research to decipher their role in infection and immunity.

The small protein encoded by the ORF9c OLG has recently been shown to constitute a membrane-associ-

ated protein to suppresses antiviral interferon and antigen-presentation responses and modify innate im-

mune responses.61,77,78 Here, we found that N protein epitopes in the region overlap with ORF9c constitute

an antigenic target of the humoral immune response and accumulate a high density of mutations in VOCs.

It remains to be investigated if and to what extent ORF9c-specific immune responses contribute to host

protection and if mutations could also affect these responses. Other OLG-derived proteins, including

Orf3d, ORF8 and Orf9b, have been shown to elicit strong antibody responses in sera from COVID-19 pa-

tients,79–81 although their contribution to host protection remains unknown. Concerns have arisen that

S-specific vaccine immunity conferred solely to S protein may fail to neutralize emerging variants of

SARS-CoV-2 and contribute to selection of immune escape variants.82–84 Vaccination studies in rodent

models using N protein as antigenic target have recently shown the establishment of protective immu-

nity.85 Hence, expansion of viral antigenic targets in SARS-CoV-2 vaccines, including OLG proteins, to

broaden epitope coverage and immune effector mechanisms should be a goal in the development of

new COVID-19 vaccines.
Limitation of the study

While HDPA assays show significant benefits over other epitope mapping strategies, a few limitations still

apply in our study. It needs to be taken into consideration that we were only able to analyze 10 patients and

5 control sera. Hence, the non-epitope sites may not necessarily be sites that cannot be recognized by an-

tibodies, and increasing the number of analyzed sera could potentially increase the breadth of the antibody

response detected by the HDPA assay. Moreover, the signal readout of the HDPA microarray comprises

several parameters which could potentially affect epitope availability including antibody titer, antibody af-

finity and antibody off-rates since assays are stopped at a specific timepoint followed by washing and addi-

tion of a secondary antibody. Folding effects of the immobilized peptides on the chip can also play a role in

masking available epitopes, as peptides tend to form structures (e.g., helical in nature) with increasing dis-

tance from the glass slide coating. Such folding may be beneficial or detrimental for antibody binding.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat anti-Human IgG Fc Cross-Adsorbed

Secondary Antibody, DyLight� 680

ThermoFisher Scientific Cat#SA5-10138; RRID: AB_2556718

Goat anti-Human IgA (alpha chain)

Antibody DyLight�800 Conjugated

Rockland Immunochemicals Cat#609-145-006

Chemicals, peptides, and recombinant proteins

Phosphate Buffered Saline with

0.05% TWEEN�20, pH 7.4

Millipore Sigma Cat#PPB005-20PAK

Rockland Blocking Buffer Rockland Immunochemicals Cat#MB-070

TRIS ThermoFisher Scientific Cat#17926

Deposited data

Single nucleotide variants from

whole genome sequences

NCBI sequence read archive https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/4ZXDW0

Proteome of seasonal coronaviruses NCBI Table S12

Software and algorithms

ImageJ Schneider et al. (2012)86 https://imagej.nih.gov/ij/index.html

PepSlide Analyzer SICASYS Software GmbH https://www.sicasys.de/pepslide/

Jalview Waterhouse et al. (2009)87 https://www.jalview.org/

Pymol The PyMOL Molecular Graphics System,

Version 2.0 Schrödinger, LLC.

https://pymol.org/2/

DiscoTope Andersen et al. (2006)88 http://tools.iedb.org/discotope/

BepiPred-2.0 Jespersen et al. (2017)89 https://services.healthtech.dtu.dk/services/

BepiPred-2.0

R Software Version 4.2.1 https://www.r-project.org/

R package indicspecies De Caceres et al. (2010)90 https://cran.r-project.org/web/packages/

indicspecies/index.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jörg Fritz (jorg.fritz@mcgill.ca).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d Code is publicly available at https://github.com/arnaud00013/SARS-CoV-2-HPDA-evolutionary-analysis.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

d Additional Supplemental Items are available from Mendeley Data at https://doi.org/10.17632/

fbs5k97hkz.1.
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EXPERIMENTAL ANALYSIS AND STUDY PARTICIPANTS DETAILS

Human participants

Recruitment of patients at the San Martino University Hospital (Genoa, Italy) was approved by the Institu-

tional Review Board at Genoa University, approved by the Ethics Committee of Liguria Region (Comitato

Etico Regione Liguria; N. CER Liguria 114/2020–ID 10420) and carried out in accordance with the principles

of the Declaration of Helsinki. Positivity of SARS-CoV-2 infection was assessed both by PCR and measure-

ment of specific antibodies (Cobas-Roche using Elecsys Anti-SARS-CoV-2 S). All patients gave their con-

sent for participation in this study. Negative (3 male, 2 female, mean age 47 [27–66]) and asymptomatic

(1 male, 4 female, mean age 41 [28–56]) individuals were health workers who were tested regularly in the

hospital and classified according to serological and molecular tests for COVID-19 (Table S1). Recovered

individuals (convalescent post-infection) (3 male, 2 female, mean age 55 [42–67]) were all patients previ-

ously admitted at the hospital due to lung pneumonia and were found to be positive to COVID-19, having

severe (n = 2) and mild (n = 3) disease. Sera were collected according to standard procedures, by

centrifugation.
METHOD DETAILS

High-density peptide array (HDPA)

To analyze the antibody responses to SARS-CoV-2 at the epitope level we used a recently developed high-

density peptide array (HDPA), the PEPperCHIP Microarray (PEPperPRINT GmbH, Germany), covering the

proteome of the SARS-CoV-2 isolate Wuhan-Hu-1 as well as the four seasonal hCoVs OC43, HKU1, NL63

and 229E (see Table S12 for accession numbers used). The protein sequences of ORF1A/B, Spike

(S) protein, Envelope (E) protein, Membrane (M) glycoprotein, Nucleocapsid (N) phosphoprotein were

translated into 15 amino acid peptides with a peptide overlap of 13 amino acids. This results in 27,540 in-

dividual peptides, which were printed in duplicates (55,080 spots). In addition, to ensure sensitivity controls

of the PEPperCHIP HDPA, positive controls were included to probe for antibody reactivity for influenza

hemagglutinin (HA; YPYDVPDYAG, 360 spots) and polio virus (KEVPALTAVETGAT, 355 spots). These addi-

tional HA and polio peptides framing the microarrays were simultaneously stained as internal quality con-

trol to confirm assay performance and peptide microarray integrity. With this setup per chip, 15 samples

(see Table S1) were analyzed.

At first, the peptidemicroarrays were incubated for 15min in phosphate buffered saline supplementedwith

0.05% Tween 20 (PBS-T, pH 7.4) and blocked for 30 min with Rockland Blocking Buffer (RL) (Rockland Im-

munochemicals) at room temperature. Prior to immunoassay, sera of patients were first heat-inactivated

at 56�C for 30 min, and then the microarrays were incubated at serum dilutions of 1:500, 1:100 and 1:20

in 10% RL/PBS-T overnight at 4�C with orbital shaking. Microarrays were then washed (three times with

PBS-T for 1 min) and peptide binding was detected with isotype-specific secondary goat anti-human

IgG (Fc) DyLight680 (ThermoFisher Scientific) and goat anti-human IgA (alpha chain) DyLight800 (Rockland

Immunochemicals) antibodies at a final concentration of 0.1–1 mg/mL, respectively (in 10% RL/PBS-T for

45 min at room temperature). Subsequent washing (three times with PBS-T for 1 min) was followed by dip-

ping themicroarrays in 1 mM TRIS pH 7.4 followed by drying with pressurized air. Acquisition of images was

done using an LI-COR Odyssey CLx Infrared Imaging System (scanning offset 0.65 mm, resolution 21 mm).

Data quantification and analysis was based on the assays at dilution 1:20. Using ImageJ software the result-

ing 32-bit gray-scale TIFF files were converted into 16-bit gray-scale TIFF files and then further analyzed

using the PepSlide Analyzer (SICASYS Software GmbH). The in house developed PEPperPRINT software

algorithm was used to calculate median foreground intensities (background-corrected intensities) of

each spot and spot-to-spot deviations of spot duplicates. A maximum spot-to-spot deviation of 40%

was tolerated, otherwise, the corresponding intensity values were zeroed. To complement this analysis, ac-

quiredmicroarray scans were reassessed with respect to artifacts by visual inspection, and erroneous values

were corrected manually. Based on averaged median foreground intensities, intensity maps were gener-

ated and interactions in the peptide maps highlighted by an intensity color code with red (IgG) or green

(IgA) for high and white for low spot intensities. To identify the top IgG and IgA antibody responses of

the human serum samples, the averaged intensity values were sorted by decreasing spot intensities. We

further plotted averaged spot intensities of the assay against the peptide microarray content from the

N-terminus of Spike (SARS-CoV-2) to the C-terminus of ORF1AB (HUK1) to visualize overall spot intensities

and signal-to-noise ratios. The intensity plot was correlated with the peptide and intensity map as well as

with visual inspection of the microarray scans to identify the main antibody responses of the human sera. In
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general, relative fluorescent units (RFU) of equal to or higher than 100 was considered a positive antibody

response. However, as mentioned in the results sections, to focus on the most prominent antibody re-

sponses, our analysis was performed with an RFU cut-off of 1000 or higher.
Defining cross-reactivity using protein conservation and immune response to endemic human

coronaviruses

To find epitope sites associated with cross-reactivity, we first calculated the conservation of peptide

sequences across endemic hCoVs (HKU1, NL63, OC43 or 229E). To do so, we aligned the reference

sequences of the hCoVs (proteome) in Jalview and extracted the conservation score (Cscore).91 This con-

servation score reflects the conservation of physico-chemical properties in the alignment, where identical

residues score the highest.49 Epitope sites with a conservation score R6 and for which we detected

antibody responses for both SARS-CoV-2 and at least one of the endemic hCoVs were considered as

cross-reactive epitope sites. To find epitope sites associated with cross-reactivity, we first calculated the

conservation of peptide sequences across endemic hCoVs (HKU1, NL63, OC43 or 229E). To do so, we

aligned the reference sequences of the hCoVs (proteome) in Jalview and extracted the conservation score

(Cscore) (86).91 This conservation score reflects the conservation of physico-chemical properties in the

alignment, where identical residues score the highest (49).49 Epitope sites with a conservation score R6

and for which we detected antibody responses for both SARS-CoV-2 and at least one of the endemic hCoVs

were considered as cross-reactive epitope sites. To find epitope sites associated with cross-reactivity, we

first calculated the conservation of peptide sequences across endemic hCoVs (HKU1, NL63, OC43 or 229E).

To do so, we aligned the reference sequences of the hCoVs (proteome) in Jalview and extracted the con-

servation score (Cscore).91 This conservation score reflects the conservation of physico-chemical properties

in the alignment, where identical residues score the highest.49 Epitope sites with a conservation score R6

and for which we detected antibody responses for both SARS-CoV-2 and at least one of the endemic hCoVs

were considered as cross-reactive epitope sites.
Detecting epitopes that are significantly more prevalent in SARS-CoV-2 positive patients

First, antibody responses to each linear 15-mer peptide were mapped across the SARS-CoV-2 proteome

and average RFU calculated for each amino acid residue.

Second, the normalized positional ‘epitope coverage’ at each amino acid residue within the proteins was

defined as the ratio of total peptides mapped to each position by the total expected peptides, with values

ranging between 0 and 1. A value of 1 in the SARS-CoV-2-positive group means that amino acid residues

within the proteins were covered by peptides that showed immune response in all 10 SARS-CoV-2-positive

patients and 14 peptides that overlap that position. (14 3 10 = 140 is the theoretical expected positional

coverage to be 100%). Similarly, a value of 1 in SARS-CoV-2-negative group is 70 peptides with response (14

peptides x 5 SARS-CoV-2-negative patients = 70. i.e., all 70 unique peptides that cover residue locations).

Third, to identify the epitopes that are particularly prevalent in SARS-CoV-2-positive subjects, we per-

formed an indicator value analysis.50 This type of analysis is frequently used in ecology to determine

whether species have significant associations with certain site groups. We applied this method to epitopes

presence/absence data by replacing species with epitopes and site groups with patient groups defined by

SARS-CoV-2 PCR status (positive or negative). The indicator value analysis measures the IndVal metric,

which is the product of the specificity (e.g., the proportion of individuals within the whole dataset that

exhibit a response to the epitope and belongs to a certain patient group) and the fidelity (e.g., the propor-

tion of individuals within a certain patient group that exhibits a response) to the epitope. To control for the

differences in sample size between patient groups, we used the group-equalized version of IndVal, IndVal-

pag.50 The R function multipatt from the R package indicspecies allowed us to perform this analysis and

evaluate the significance of the associations through permutation tests.50
Structural properties of B cell epitopes and B cell epitope prediction

SARS-CoV-2 protein sequences were obtained from Uniprot.92 Structure models of all 24 proteins in SARS-

CoV-2 were obtained from I-TASSER.93 Solvent accessibility was calculated using freeSASA.94 Pymol was

used for visualization. Using 3D structures and biophysical properties of the SARS-CoV-2 proteome, we

applied the DiscoTope algorithm35 to computationally predict conformational B cell epitopes with a sig-

nificance threshold of �7.7 (75% specificity, 45% sensitivity). In addition, we used the Bepipred algorithm36
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to obtain linear B cell epitopes. Epitopes withminimum length of 7 amino acid residues andminimum score

of 0.55 (80% specificity, 30% sensitivity) were used for the analysis.

Epitope evolution profiling

To understand the evolution of SARS-CoV-2 epitopes in SARS-CoV2-positive patients, we made use of sin-

gle nucleotide variants (SNVs) from 38,685 whole genome sequences from the NCBI sequence read archive

(Table S9, see https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/4ZXDW0). We

selected SARS-CoV-2 samples from the first pandemic wave (defined as January 1 to July 31, 2020) and the

second wave (defined as August 1 to December 31, 2020) sequenced using Illumina paired-end amplicons

with a minimum average depth of coverage of 200 x and fewer than 10,000 sites with a depth of coverage

lower than 100x. We then retained single nucleotide variants present in both minus and plus strands at a

minimum frequency of 2%, occurring at sites with a minimum depth of 100x, having a minimum within-sam-

ple frequency of 5% and located between sites 101 and 29778 of the genome to exclude sites at the

extremities that are prone to sequencing errors and have been frequently masked.95 These additional fil-

ters allowed us to remove sequencing errors and provided deep coverage to identify SNVs that are poly-

morphic within patients, reflecting within-patient evolution,51,52 as well as those that are shared between

the consensus sequences of different patients.

Next, to compare epitope evolution from the evolution of non-epitope sites of the same protein, we

measured the evolution rates at within-host (SNVs with a frequency <75% that are not transmitted for

sure) and between-host/transmission level (SNVs with a frequencyR75% that are observed in at least three

samples). Because the number of SNVs observed will vary depending on sample coverage, which varies

across samples, we estimated the evolution rates in each sample separately using the number of SNVs

observed per site with adequate coverage. Such sites are defined as having a detection power of at least

80%, which is the probability of detecting five reads supporting the presence of a SNVs with a frequency of

at least 5% in a site of coverage C, i.e., theminimum adequate coverage, under a binomial distribution. This

approach has been used previously for similar purposes with the Lassa virus.96

We also inferred selection in the proteins of interest (ORF1A/B, Spike (S) protein, Envelope (E) protein,

Membrane (M) glycoprotein, Nucleocapsid (N) phosphoprotein) using dN/dS, the ratio of non-synony-

mous (dN) and synonymous substitutions rates (dS), which we calculated from the called SNVs in each

sample.97

dN =dS = ðNbnsub =NbnssÞ = ðNbssub =NbssÞ Equation 1

where Nbnsub is the number of non-synonymous substitutions, Nbnss is the number of non-synonymous

sites, Nbssub is the number of synonymous substitutions, and Nbss is the number of synonymous sites.

dN/dS can detect purifying selection (dN/dS < 1), neutral evolution (dN/dS z 1) and positive selection

(dN/dS > 1). In each sample, we calculated dN/dS only if there weremore than three SNVs including at least

one synonymous SNV.

Finally, we inferred selection at the within-host level, using pN/pS, which we calculated from intrahost SNVs

(iSNVs), i.e., SNVs that are not fixed (within-sample frequency <75%):

pN
�
pS = ðNbnmut =NbnssÞ = ðNbsmut =NbssÞ Equation 2

where Nbnmut is the number of non-synonymous iSNVs, Nbnss is the number of non-synonymous sites,

Nbsmut is the number of synonymous iSNVs, and Nbss is the number of synonymous sites. These analyses

have been implemented in R (https://github.com/arnaud00013/SARS-CoV-2-HPDA-evolutionary-analysis).

Selection for immune escape in VOCs and VUIs genomes

To reveal VOCs and VUIs mutations possibly involved in selection for immune escape, we first defined the

signature mutations of each variant (Table S10) as substitutions that are present inR90% of sequences as-

signed to that lineage. We calculated the prevalence of substitutions in thousands of publicly available

consensus sequences collected during 2020 and added data from CoV-Spectrum about under-repre-

sented lineage in the database or lineages that emerged during 2021.57 Then, we only focused on nonsy-

nonymous signature mutations in our database and asked if these signature mutations are located at

epitope sites as these mutations can change the antibodies’ ability to recognize the epitopes. The signa-

ture mutation prevalence data were collected from our database of NCBI samples for the earlier lineages
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(PANGO v.2.1.7) and from GISAID data obtained from CoV-spectrum for more recent lineages like

Omicron. The database of lineage signature mutations is available on Github (https://github.com/

arnaud00013/SARS-CoV-2-HPDA-evolutionary-analysis).
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details of experiments can be found in the figure legends. Findings were considered signif-

icant with a p value of less than 0.05. All analyses were performed with R Software Version 4.2.1.
ADDITIONAL RESOURCES

R scripts used for analysis are publicly available at https://github.com/arnaud00013/SARS-CoV-2-HPDA-

evolutionary-analysis.

Whole genome sequences used for evolution profiling are publicly available. See https://dataverse.

harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/4ZXDW0.
iScience 26, 107394, August 18, 2023 27

https://github.com/arnaud00013/SARS-CoV-2-HPDA-evolutionary-analysis
https://github.com/arnaud00013/SARS-CoV-2-HPDA-evolutionary-analysis
https://github.com/arnaud00013/SARS-CoV-2-HPDA-evolutionary-analysis
https://github.com/arnaud00013/SARS-CoV-2-HPDA-evolutionary-analysis
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/4ZXDW0
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/4ZXDW0

	Selection for immune evasion in SARS-CoV-2 revealed by high-resolution epitope mapping and sequence analysis
	Introduction
	Results
	Antibody fingerprinting with high-density peptide arrays provides a high-resolution antibody epitope map across the SARS-Co ...
	Structural features of identified epitopes and comparison with computationally predicted epitopes
	Cross-reactivity to endemic seasonal human coronaviruses is a significant driver of antibody responses to SARS-CoV-2 epitopes
	Point mutations and natural selection in epitopes occur at higher rates upon transmission than within patients
	Assessing the immune evasion potential of SARS-CoV-2 variants

	Discussion
	Limitation of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Inclusion and diversity
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental analysis and study participants details
	Human participants

	Method details
	High-density peptide array (HDPA)
	Defining cross-reactivity using protein conservation and immune response to endemic human coronaviruses
	Detecting epitopes that are significantly more prevalent in SARS-CoV-2 positive patients
	Structural properties of B cell epitopes and B cell epitope prediction
	Epitope evolution profiling
	Selection for immune escape in VOCs and VUIs genomes

	Quantification and statistical analysis
	Additional resources



