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a b s t r a c t 

Since the emergence of the SARS-CoV-2 Omicron variant, multiple observational studies have reported 

negative vaccine effectiveness (VE) against infection, symptomatic infection, and even severity (hospi- 

talization), potentially leading to an interpretation that vaccines were facilitating infection and disease. 

However, current observations of negative VE likely stem from the presence of various biases (e.g., ex- 

posure differences, testing differences). Although negative VE is more likely to arise when true biological 

efficacy is generally low and biases are large, positive VE measurements can also be subject to the same 

mechanisms of bias. In this perspective, we first outline the different mechanisms of bias that could lead 

to false-negative VE measurements and then discuss their ability to potentially influence other protec- 

tion measurements. We conclude by discussing the use of suspected false-negative VE measurements as 

a signal to interrogate the estimates (quantitative bias analysis) and to discuss potential biases when 

communicating real-world immunity research. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 
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Observational studies are essential for measuring the effects of 

accination in real-world settings [1] . At the end of 2021, observa- 

ional studies measuring vaccine effectiveness found negative vac- 

ine effectiveness (VE) against infection [2 , 3] for the SARS-CoV-2 

micron variant. These negative VE measurements attracted me- 

ia attention and generated widespread concern about the possi- 

le harmful effects of COVID-19 vaccines [4 , 5] . Although these ini- 

ial studies occurred during Omicron’s early emergence (when re- 

orted cases may be nonrepresentative), subsequent studies also 

ave found negative VE measurements against symptomatic in- 
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ection [6–10] and against hospital admission [11] . Negative vac- 

ine efficacy is biologically plausible [12] ; however, before nega- 

ive VE measurements can be interpreted as negative biological 

fficacy, it is important to first consider, examine, and commu- 

icate the plausibility and likelihood that negative measurements 

nstead stem from biases, such as confounding and selection bias. 

uch biases are known to affect VE estimates from retrospective, 

opulation-based observational studies that largely rely on linked 

ealth-administrative data [13 , 14] . The key aims of this perspective 

re to (i) summarize patterns of negative VE and their potential 

eaning for immunity research (paragraphs 2 and 6); (ii) discuss 

ources (or mechanisms) of bias related to negative VE using a pro- 

osed bias classification framework (paragraphs 3-5; Figure 1 ); and 
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Figure 1. Bias classification framework for observed negative VE against infection. Sources (or mechanisms) of bias capable of producing false-negative VE against infection 

either affect (1) true levels of infection by vaccination status or (2) observed levels of infection by vaccination status. An example of a mechanism of bias for (1) is differences 

in exposure (arrows), where higher exposure for vaccinated individuals compared to unvaccinated individuals produces higher infection levels among vaccinated. This bias 

persists when all infected and uninfected vaccinated and unvaccinated are observed (dark blue and red). In contrast, an example of a mechanism of bias for (2) is differences 

in testing by vaccination status (due to testing behavior or testing access) where testing differences only result in the perception of higher infection levels. This bias occurs 

because the unobserved uninfected and infected (light blue and light orange) are excluded from VE measurements. VE, vaccine effectiveness. 
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iii) highlight methods, study designs, and reporting guidelines de- 

igned to help communicate and address biases in observational 

tudies (paragraphs 8-10). 

There are general patterns across current VE studies that sug- 

est biases are likely the cause of negative VE measurements. First, 

bserved negative VE has not been consistently found for Omi- 

ron across VE studies with some studies reporting measurements 

f negative VE [2 , 3 , 6–10] and others reporting only positive mea-

urements [15 , 16] . Second, even within studies that reported nega- 

ive VE, the observed negative VE only occurred in some instances. 

or example, in one study, researchers observed a negative VE for 

hose individuals aged 18-59 years but found positive VE measure- 

ents for those aged 60 years and older [10] . This pattern of co-

xisting negative and positive estimates within a single study has 

lso occurred for different vaccination dosages [2 , 6] and for differ- 

nt times since vaccination [3 , 9] . Finally, observations of negative 

E typically have been found in scenarios where biases could more 

asily cause an estimate to appear falsely negative. For example, 

egative VE was often reported for those groups with fewer doses 

nd with less recent vaccinations [3 , 7 , 8] when true biological effi-

acy is likely lower. Here, the same degree of bias that could cause 

 VE measurement to appear negative may only have resulted in 

 positive but underestimated VE measurement when true bio- 

ogical efficacy was higher (e.g., with three doses or more recent 

accinations). 

Different sources of bias produce negative VE by influencing ei- 

her (1) the true levels of infection or symptomatic infection by 
112 
accination status (e.g., by differences in exposure) or (2) the ob- 

erved levels of infection or symptomatic infection by vaccination 

tatus (e.g., by differences in testing) ( Figure 1 ). Although the bi- 

ses related to (1) cause true underlying (symptomatic) infection 

ifferences that exist even given perfect sampling, biases related 

o (2) cause a perception of differences that do not reflect the real 

symptomatic) infection levels present in the population. Although 

oth categories of bias are important to discuss in the broader con- 

ext of VE studies, their relevance for a specific study will depend 

n the type of VE being measured. The biases related to (1) and 

2) can both influence VE measurements of infection and symp- 

omatic infection; the biases related to (2) are less likely to play 

 role when measuring VE against severe outcomes (e.g., inten- 

ive care unit admission, intubation, and death) because testing for 

hese outcomes is unlikely to differ across vaccinated and unvacci- 

ated individuals [14] . 

The mechanisms of bias that influence the true levels of infec- 

ion can produce false-negative VE when they lead to vaccinated 

ndividuals becoming infected at higher rates than their unvacci- 

ated counterparts. These biases are related to the uncontrolled 

nd often unknown differences in contact, exposure, susceptibil- 

ty, and immunity. For example, higher contact rates among vac- 

inated compared with unvaccinated populations (e.g., due to vac- 

ine mandates) can cause higher infection levels in vaccinated pop- 

lations and therefore can produce observed negative VE when 

he true biological efficacy is low but still positive [17] . Similarly, 

f vaccinated individuals experience higher network-level exposure 
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isk (e.g., essential workers), higher susceptibility (e.g., individuals 

ith compromised immune systems), or lower previous infection 

e.g., high VE for previous variants), the ratio of infected vaccinated 

o infected unvaccinated is increased. A larger ratio means VE can 

e underestimated if the analyses are unable to account for the 

reviously mentioned relationships [14] . Finally, for test-negative 

esigns, the factors that influence infection levels of the control 

ases also have the potential to lead to false-negative VE measure- 

ents. For example, the test-negative controls may include persons 

ith other vaccine preventable infections. If the probabilities of 

accination for COVID-19 and vaccination for other infections are 

ositively correlated, the vaccination of the other infection can act 

s a confounder, potentially causing COVID-19 VE to be underesti- 

ated [1] . 

The mechanisms of bias related to differential observations 

y vaccination (and sometimes infection) status can also cre- 

te the perception of negative VE. The ability to observe infec- 

ions may be influenced by top-down testing policies (e.g., clin- 

cal or employment-based criteria for who can access a test), 

hich can vary across jurisdictions and institutions (e.g., differ- 

nt hospitals may institute different testing policies). They can 

lso be influenced by individual testing-behaviors, which can be 

haped by experiences, such as living in households with individ- 

als at greater risk of severity (e.g., older adults and/or persons 

ith compromised immune systems). VE can be underestimated 

and negative VE observed) when vaccinated individuals have ei- 

her more access to testing or are more likely to seek testing 

18] . Although a test-negative design can help to correct for some 

ources of bias (e.g., selection bias due to differences in health 

are seeking behavior [19 , 20] ), this correction depends on having 

trict criteria for both enrollment and testing [21] . Similarly, al- 

hough measuring VE against symptomatic infection may be per- 

eived as being less prone to bias than VE against infection, test- 

ng biases can still persist, for example, when testing-behaviors 

lso vary with symptoms [14] . Overall, multiple sources of bias 

an converge to influence VE estimates with variations in test- 

ng, further shaping the direction and magnitude of these other 

iases [22] . 

False-negative VE measurements occur when the biases that 

rive measurements downward become large enough to overcome 

 vaccine’s true positive benefit ( i.e ., its true biological efficacy) 

17] . This reason is likely why, as outlined previously, negative 

E estimates have been often observed in scenarios when bio- 

ogical efficacy is expected to be lower [3 , 7 , 8] . Omicron has been

ound to confer an overall lower biological efficacy in reducing 

usceptibility with vaccination [23 , 24] , which means there have 

een more opportunities for the previously mentioned mecha- 

isms of bias to potentially cause false-negative VE measurements. 

lthough observed negative VE has been mostly limited to the 

micron period (with some examples from pre-Omicron [25,32] ), 

he same mechanisms of bias could have been present for any 

ariant and time period but did not lead to an observed negative 

E. 

Observational studies related to COVID-19 immunity include ex- 

mining the roles of previous infection and/or hybrid-immunity 

ith vaccination [26,27] . The measurements of the protective ef- 

ect of previous infection and hybrid-immunity are also susceptible 

o the same and similar mechanisms of bias as VE measurements. 

or example, studies estimating the effectiveness of previous infec- 

ion may be subject to a selection bias related to a previous infec- 

ion (e.g., those without a previous infection being less likely to 

est than those with a history of previous infections [27] ); stud- 

es estimating effectiveness of hybrid-immunity may also addition- 

lly be subject to a selection bias related to vaccination (e.g., those 

ho are unvaccinated being less likely to test than those who are 

accinated). These immunity estimates can also be influenced by 
113 
isclassification bias or by unknown differences in risk-averse be- 

aviors if they are unaccounted for in the analysis [26] . Therefore, 

revious infection and hybrid-immunity studies also require care- 

ul assessments of potential biases that could affect the protection 

easurements. 

We posit that the findings of the negative VE can act like a ca- 

ary in a coal mine, signaling that mechanisms of biases likely re- 

ain at play in the study design or analytic approaches. An ob- 

ervational study design subject to fewer biases is the prospec- 

ive cohort design [29] (e.g., SARS-CoV-2 Immunity and Reinfec- 

ion Evaluation study), which can include systematic and repeated 

easurements of exposure, potential confounders, and outcomes. 

lthough more resource-intensive than a retrospective cohort de- 

ign, systematic SARS-CoV-2 testing, infection, and symptom data 

an reduce the bias related to both differential testing and un- 

nown previous infections [14] . Beyond signaling the potential of 

ias, observing negative VE further signals the importance of quan- 

itative bias analyses as part of retrospective (and prospective) ob- 

ervational VE studies. 

Quantitative bias analysis (QBA) involves a process of system- 

tically examining and testing for the potential impact of system- 

tic errors. The goal is to help estimate the potential direction and 

agnitude of biases and to quantify the uncertainties around these 

iases [28] . QBA generally involves visualizing the causal relation- 

hips between variables using causal directed acyclic graphs [28] , 

hich can be used to conceptualize a priori the various possible 

echanisms of bias that could create false-negative VE measure- 

ents. When feasible, the collection or use of external data could 

nform QBA by helping determine the influence of each mechanism 

f bias on the VE measurements. For example, contact and testing 

urveys [18 , 30] could help elucidate whether contact, exposure, or 

esting vary by vaccination status and if so, provide an estimated 

trength of the relationships. 

The communication surrounding the interpretation of negative 

E measurements is also important. The Strengthening the Report- 

ng of Observational Studies in Epidemiology guidelines provide 

ecommendations about detailing which potential biases were con- 

idered and controlled for, which biases could remain (e.g., as visu- 

lized with directed acyclic graphs), and of those remaining, which 

ould have influenced estimates (assessed via sensitivity analysis) 

31] . A recent VE study also explicitly highlighted the presence of 

 suspected bias in their summary/abstract before outlining its po- 

ential causes in their discussion [32] . Future communication could 

enefit from interpreting the finding of one or more negative VE 

easurements, including what it means when interpreting other 

E estimates in the same study. 

The success of a vaccine campaign is influenced by the qual- 

ty of and trust in real-world evaluations by observational stud- 

es [33] . The arrival of negative VE created a media sensation and 

rought up valid concerns about the potential use of vaccination 

s our primary control measure for COVID-19 epidemics. Although 

iscussing the plausibility of true negative biological efficacy is im- 

ortant, we posit that emphasis should first be placed on the exis- 

ence, causes, and implications of false-negative VE measurements. 

gnoring the existence of false-negative VE measurements and their 

auses could inadvertently undermine strategies of future vaccina- 

ion programs and increase vaccine mistrust. By investing in un- 

erstanding and addressing false-negative VE, we will not only im- 

rove our abilities to interpret existing and future VE studies but 

lso create opportunities to develop new frameworks and methods 

hat can generally advance how we conduct real-world immunity 

esearch. 
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