

Infectious Diseases

Diseases caused by micro-organisms

- Viruses
- Bacteria
- Parasites
- Protozoa
- and/or their biological products (e.g., toxins).

2

Why Are Infectious Diseases "Different"?

- Communicability: "a case is also a risk factor"
 cases may be unrecognized.
- In models, communicability manifests as "positive feedback"
 - the more cases you have the more cases you get!
- Variety, capacity for change, and continuing emergence

Interventions Control depends on "herd", not just individuals.

Classification of ID's Classification according: - Clinical syndrome: • E.g., diarrheal, respiratory, central nervous system.

- E.g., diarmeai, respiratory, central nervi – *Microbiology*:
- E.g., bacterial, viral, fungal, parasitic.
- Mode of transmission:
- E.g., contact, foodborne, airborne, vector-borne, perinatal.
- Reservoir:
- E.g., human, animal (zoonosis), soil, water.

5

4

Characterization of Infectious Diseases (1)

- Infectivity: capacity of organism to infect individuals exposed to disease.
 Shigella species have an ID₅₀ of ~200 organisms
 - Shigella species have an ID₅₀ of ~200 organisms while Salmonella sp. have an ID₅₀-200,000 organisms.
 - Infectivity of Shigella >> Salmonella.
- Pathogenicity: likelihood that infected individuals will become clinically ill.
- Very likely to feel physically unwell if infected with common cold, or with SARS.
- Both have high pathogenicity, but different virulence.

Characterization of Infectious Diseases (2)

- Virulence: likelihood of severe illness among those infected.
- SARS highly virulent, with case fatality rate ~ 17%. Avian flu (H5N1) even more virulent with CFR ~75% in 2004.
- Norovirus infection: high infectivity, high pathogenicity ("no-walk virus") but CFR is low in otherwise healthy adults!

Characterization of Infectious Diseases (3)

- Immunogenicity: infection results in longlasting immunity, so host not infected again.
- High immunogenicity: childhood exanthems like measles, chicken pox→only infected once.
- Low immunogenicity: gonorrhea, chlamydia→infected repeatedly.
- Intermediate immunogenicity: malaria. Can be reinfected, but subsequent infections less severe than first infection.

Epidemiologic Parameters in Infectious Diseases

- Attack rate: quantitative analog of infectivity and pathogenicity: proportion of secondary cases of illness occurring among individuals exposed to an infectious individual or item (e.g., contaminated foodstuff).
 - Clinical attack rate: subset of infected/infectious individuals with recognizable symptoms.

7

Epidemiologic Parameters in Infectious Diseases

- Reproductive number (R): number of secondary infections produced by each primary infectious individual.
- Special case: R₀ or "basic reproductive number" = number of secondary infections when a single infectious case is introduced into a completely susceptible population.
- When $R_0 > 1$ can have an epidemic. - When R = 1 disease stays endemic.
- 10

R₀ plays a critical role in disease dynamics

For perfectly immunizing (sterilizing) infections in a homogenously mixing population these include:

- The threshold for pathogen establishment
 When Rois >1, a pathogen can invade.
 When Rois <1, the chain of transmission will stutter and break resulting in
 pathogen fade-out.
 - For directly transmitted wildlife diseases there is often another measure called the critical host density for disease invasion.

щ

	Derivation of R ₀
• Ur ba	derstanding disease dynamics forms the scientific si for interventions
• Co	ntrol measures operate by reducing transmission
	S I R
	Ro= cp x D
	Ro = number of secondary cases / primary case in a totally susceptible population
β	c = contact rate
	p = probability of transmission given an infected contact
	D = duration of infectiousness

17

Part 2: Estimating R₀ from individual parameters

R₀ = c*p*D where, c = contact rate p = probability of contact given a contact

D = duration of infectiousness

Why can't we just estimate it based on this relationship? 1.For many diseases we can't estimate the contact rate (how do we define a contact?) For STI's and vector borne diseases, where contacts are defined and countable it's a bit easier but highly heterogeneous.

2.Estimates based on R_0 expressions are highly model dependent.

Important notes about rates and probabilities

• The book-keeping is important. Need to keep track of what is a rate and what is a probability and how to move between these 2 "currencies".

19

In modelling terms

- A rate, x/unit time (1/x) is the average time to an event (if the rate remains constant)
- A **probability** is defined on [0,1]. If we observe a probability *p* of something happening in a time interval we can back calculate the constant rate.
- We will discuss probabilities in much greater detail when we talk about stochastic models.

20

Select Estimates of R ₀				
Pathogen	Estimated R ₀	Reference		
SARS	2-4	Lipsitch et al., 2003; Anderson et al., 2003.		
Varicella zoster	10-12	Brisson and Edmunds, 2000.		
Tuberculosis	~10	Blower, 2000.		
Measles	10-20	Edmunds et al., 2000.		
Smallpox	3-5	Gani and Leach, 2001.		

What Does R₀ Tell Us About a Disease?

- Index of epidemic potential.
- Relationship with critical fraction to vaccinate to eliminate a disease.
- Tells us about the initial slope of the epidemic curve (but doesn't tell us how to label the X-axis: dimensionless with respect to time!).
- Relation with "final size" of an epidemic.

22

Epidemiologic Parameters for Infectious Diseases: Time

- Incubation period: time from infection until symptomatic. Forms basis of infection control measures such as quarantine.
- Identify infectious individuals with onset of symptoms; they are already disconnected from susceptibles.
- Latent period: time from infection until actually infectious —> may have an infectious presymptomatic period (e.g., ½ day in flu?). May be difficult to institute control measures in the absence of symptoms.

23

Epidemiologic Parameters for Infectious Diseases: Time (2)

Incubation period:

- May be prolonged (e.g., ~ 10 years in HIV).
 Entire duration of infection may be
- asymptomatic (e.g., hepatitis C virus, 40% of flu cases).
- Carriers: Brief period of symptoms may be followed by prolonged asymptomatic period → "carrier state" (e.g., *S. typhi* and Typhoid Mary!).

Estimating R₀

- To estimate R₀ as an epidemic unfolds, need information on both case numbers (from epidemic curve) and estimate of time between "generations" of cases (a.k.a., serial interval).
- A number of different methods exist for estimating R_0 when this information is available.

26

Serial Intervals

- R₀ is *dimensionless* with respect to time.
- Rate of growth (per unit time) of an epidemic is a function of *both* R₀ and time interval between successive generations of cases→"serial interval".
- Common heuristic = Latency + 1/2 Duration of Infectiousness (assumes transmission at midpoint).
- Example: Recall that both measles and TB have R₀ ~ 12.

Serial Interval: Measles

What Are Mathematical Models?

- Conceptual tools that explain how an object or system of objects will behave
- Models come in a variety of forms
 Highly complex or simple (and anywhere in between)
- Decision of which to use is determined by:
 - Precision / generality required
 - Available dataTime frame for getting results
- Even the most complex models make simplifying assumptions
- · Hope to capture the essential features

Abstraction

35

Trade-offs Between Modeling Elements

Accuracy

- Reproduce observed data but do we need a qualitative fit or quantitative fit? Will depend on question
- Improves with complexity but struggles with data
- Transparency
- Understanding how the model components influence the dynamics
- Usually in direct opposition with accuracy
- Flexibility
 - Ease of adapting to new situations

What Is A Good Model?

- · Suited to its purpose
 - appropriate balance of accuracy, transparency and flexibility
- "Parameterizable" (where necessary) from data
- Highly context dependent

Simple	Complex
Analytic	Simulation
Understanding	Experiment
Baseline	Elaboration
Generality	Realism
+	,

37

What Models Can Not Do

- There is no fully accurate model (e.g. influenza transmission)
- We will never be able to predict the precise course of an epidemic or which people will be infected
- Models can provide confidence intervals on epidemic behaviour and determine the risk of infection for various groups of hosts

40

dS/dt = -**β**SI

S

births μ \downarrow \downarrow Susceptible $\frac{dx}{dt} \equiv \mu N - \mu S - \beta S \frac{J}{N}$ $R0 = \beta D$ $D = \frac{1}{\gamma + \mu + \alpha}$ $L = \frac{1}{\mu + \alpha}$ $\mu + \alpha$ $\mu + \alpha$ Inflocted $\frac{dt}{dt} \equiv \beta S \frac{J}{N} - \mu E - \sigma E$ $R0 = \frac{\sigma}{\sigma + \mu} - \frac{1}{\gamma + \mu + \alpha}$ $R0 = \frac{\sigma}{\sigma + \mu} - \frac{1}{\gamma + \mu + \alpha} + \beta$ $R0 = \frac{\sigma}{\sigma + \mu} - \frac{1}{\gamma + \mu + \alpha} + \beta$ $R0 = \frac{\sigma}{\sigma + \mu} - \frac{1}{\gamma + \mu + \alpha} + \beta$ $R0 = \frac{\sigma}{\sigma + \mu} - \frac{1}{\gamma + \mu + \alpha} + \beta$ $R0 = \frac{\sigma}{\sigma + \mu} - \frac{1}{\gamma + \mu + \alpha} + \beta$ $R0 = \frac{\sigma}{\sigma + \mu} - \frac{1}{\gamma + \mu + \alpha} + \beta$

47

Summary: Infectious Disease Epidemiology

- Infectious diseases differ from non-infectious diseases in transmissibility, and importance of immune "herd" for control.
- Reproductive numbers: tell us about epidemic potential, fractions to vaccinate, epidemic size in the absence of intervention.
- Serial intervals: tell us how fast (for a given R0) an epidemic grows.
 - If we know serial interval, can estimate R0.