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Pathogen Evolution

= When pathogens replicate, they can incur mutation

= Most mutations are deleterious or neutral
= Mutant fithess is decreased or remains the same

= Some rare mutations are advantageous

= Can increase fitness for replication in the body, or transmission between
individuals in the population
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https://www.nature.com/articles/s41598-019-51097-w  Phylogenetic tree of HIN1 influenza A virus from Indian and
global strains reported from 2009 till 2017 with branches colored by year of isolation
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= The flu virus evolves/mutates from year to year.

= Each year, the seasonal flu vaccine is updated based on a
study of the previous year's strains.

= Phylogenetic analysis of virus strains can help determine
evolutionary patterns.

= The influenza type A virus is made up of a viral envelope wrapped around
| a central core
poso "\ Wt

°""W=*Q D . . = The envelope contains two large proteins:
fﬁé"i?r”nzia’;:'"a" = hemagglutinin (HA) mediates binding/entry to target cell
polymerase = neuraminidase (NA) involved in release of progeny from infected cells
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& = = H1/H2/H3 and N1/N2 subtypes are the ones most commonly found in

Swine

| origin humans

Hurnan or
swine origin

~sueon ® 1he influenza A virus genome is 13,588 bases long and contains eight
hige A g qugm— RNA segments that code for 11 proteins: segment 4 encodes HA,;
segment 6 encodes NA
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Data from Influenza Research Database (IRD) www.fludb.org:

«Protein, A, H3NZ2, only complete segments
- HA segment only
- NA segment only

«from September 1998 to July 2012 (implies month of isolation available)

«Human host

«All geographic regions

«Remove duplicate sequences!

«Data translated into amino acids and aligned: 20 amino acids plus gap

«Date of isolation for each sequence was then used to assign each sequence into a flu season (Oct
1 - Sep 30)

This yields 1947 HA sequences of length 566 aa
2037 NA sequences of length 550 aa
Vaccines for the time period (via WHO) were added manually.
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Data Analysis for HA

Dendrogram based on mean Hamming distance for all 566 sites;
on 62 sites the main change is a shift in cluster 21...
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Histogram of cluster size and vaccine location; ordered by
earliest year of isolation.
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Number of sequences within each cluster vs calendar year by
year of isolation.



CDMfCMMVaccmes and clusters by year (2000/2001 to 2011/2012)

Season

Vaccine strain name

Clusters appearing

inant ch er vaccine
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CDMfCMM HA: Vaccines and clusters by year (2000/01 to 2011/12) wsiver: B
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The number of viral particles transmitted from one host to another.

° It is an important factor in determining how the evolutionary dynamics of the population play out,
restricting the extent to which the evolved diversity of the population can be passed from one host to

another
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Estimate SARS-CoV-2 Within-host dynamics

Virus clearance rate, C

S — Infectious
oY virus, v
Infection of :
target cells eB

k = 3 eclipse phases
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— — Infected cells '
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& Cell death, D

3Eyj_1



Mf'“ Stochastic life-history bottleneck model
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timate SARS-CoV-2 Within-host dynamics

Cell populations (cells/mL)
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Probability of transmitting

. Y
hat parameter space governs immune escape? ..~
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* To achieve a selective coefficient increase of 50%, mutations in C are highly
favourable for transmission as compared to mutations in D
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Increases by a factor of 15.1
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pi Model Accounting for Many Strains

= Model with n strains has 2n equations

= where 0 < ¢;; < 1 changes susceptibility, and ¢; = 1
= Note: susceptibility classes are not mutually exclusive
= Gog/Grenfell: strains on 1D line, spontaneous mutation (¢)

cij = exp(—A[i — jI*)
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Numerical results for a linear
strain space. Time is in years
in both examples; d =10, B =
3v.lna,p=1,v=0.5m=
0.02.Inb, y=1/80, v =

52, m=0.1.

(a) For a long infection,
clusters arise sequentially
and persist, so that at a
given time there are several
clusters at high prevalence.

(b) For a short infection, the
clusters are narrow and
appear only for a short time
before vanishing again.
There is at most one cluster
at any given time.
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