

1

Review: Calculating β for a
randomly mixing population
$\beta=$ the probability of an effective contact/unit
time between 2 specific individuals
$\beta=R_{0} /\left(D^{* N}\right)$
or
$\beta 1(t)=\lambda(t)$ (e.g. from seroprevalence data)
\qquad
3

Review: Calculating β for a
randomly mixing population
$\beta S(t) I(t)=\lambda(t) S(t)$
We can cancel out the \# of susceptibles $S(t)$ from
each side:
$\beta I(t)=\lambda(t)$
If we rearrange the equation, we can isolate β :
$\beta=\lambda(t) / I(t)$

\qquad
4

Age-specific differences in FOI
Observation: For some infections, the force of infection appears to be higher for children than for adults

What are some possible reasons for this observation?

Possible explanations

1. Age-dependent mixing patterns
children most likely to mix with other children (rather than adults), who are also most kely to be infectious, at least for measles, rubella etc.
2. Age-dependent difference in susceptibility children are more likely to be susceptible to infection than adults
3. Genetic or other differences in susceptibility or exposure
those most susceptible to infection are infected at young age

6

\qquad
7

Methods for incorporating heterogeneous mixing
\qquad Consider a population in which mixing patterns differ for children and adults.
The overall FOI experienced by children (the "young") at a given time $t\left(\lambda_{y}(t)\right)$ is given by the sum of the FOI attributable to contact with other children $\left(\lambda_{y y}(t)\right)$ and that attributable to contact with adults (the "old") ($\left.\lambda_{y o}(t)\right)$.

Given the information above, write out the equations for

1) the fol in the young $\lambda>x t=$? 2) The Fol in the old $\lambda(0 t(t)=$?

8

Answer

$\lambda_{y}(t)=\lambda_{y y}(t)+\lambda_{y o}(t)$
$\lambda_{0}(t)=\lambda_{o y}(t)+\lambda_{o o}(t)$ \qquad
Each of these components $\lambda_{y y}(t), \lambda_{y o}(t), \lambda_{\text {oy }}(t)$ $\lambda_{\text {oo }}(\mathrm{t})$ can be expressed in terms of the product of the probability of a specific child effectively contacting another specific child per unit time and the \# of infectious children as follows: \qquad

9

\qquad
10

\qquad

11
among children
$\lambda_{y}(t)=\lambda_{y y}(t)+\lambda_{y o}(t) \quad(A)$
$\lambda_{y y}(t)=\beta_{y y} l_{y}(t)$
(B)
$\lambda_{\mathrm{yo}}(\mathrm{t})=\beta_{\mathrm{yo}} \mathrm{I}_{\mathrm{o}}(\mathrm{t})$
(C)

$$
\lambda_{y}(t)=\beta_{y y} I_{y}(t)+\beta_{y o} I_{0}(t)
$$

Use the same logic to derive the expression for the fol among aduts
\qquad
\qquad
12

Substitute to find the total FOI among adults	
$\lambda_{0}(t)=\lambda_{o o}(t)+\lambda_{\text {or }}(t)$	(A)
$\lambda_{00}(t)=\beta_{00} l_{0}(t)$	(B)
$\lambda_{\text {or }}(t)=\beta_{o y} l_{y}(t)$	(C)
$\lambda_{0}(t)=\beta_{0 \nu} l_{y}(t)+\beta_{o o} I_{0}(t)$	

13

Review of Matrices
(it's not that bad!)

Matrices provide a convenient means of
summarizing sets of equations which need to be
satisfied simultaneously. For example:
$5 \mathrm{x}+3 \mathrm{y}=6$
$3 \mathrm{x}+4 \mathrm{y}=3$

$\left(\begin{array}{ll}5 & 3 \\
3 & 4\end{array}\right)\binom{x}{y}=\binom{6}{3}$
\qquad
14

Review of Matrices
(it's not that bad!)
$4 x+8 y+3 z=18$
$2 x+y+5 z=12$
$x+3 y+8 z=4$
$\left(\begin{array}{lll}4 & 8 & 3 \\ 2 & 1 & 5 \\ 1 & 3 & 8\end{array}\right)\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}18 \\ 12 \\ 4\end{array}\right)$

\qquad
15

16

Possible structures for the WAIFW matrices
$\binom{\lambda_{y}(t)}{\lambda_{o}(t)}=\left(\begin{array}{ll}\beta_{y y} & \beta_{y o} \\ \beta_{o y} & \beta_{o o}\end{array}\right)\binom{I_{y}(t)}{I_{o}(t)}$
Values for the "betas" can be calculated if we
know age-specific force of infections (e.g. from age-specific seroprevalence data) and the number of infectious individuals in each age
group. BUT, there is a problem...

17

The most common (and realistic)
constraint

1. Assume that the probability that a child contacts and transmits to an adult is the
same as the probability that an adult
contacts and transmits to a child

$$
\beta_{o y}=\beta_{y o}=\beta_{1}
$$

\qquad
\qquad
$\binom{\lambda_{y}(t)}{\lambda_{o}(t)}=\left(\begin{array}{cc}\beta_{y y} & \beta_{1} \\ \beta_{1} & \beta_{o o}\end{array}\right)\binom{I_{y}(t)}{I_{o}(t)}$
This reduces the matrix equation to 2 equations and 3 unknowns soa further constraint is
18

19

An Example of a WAIFW calculation
\qquad

Suppose that in your population, the equilibrium FOI for rubella is 0.12 and 0.05 per year for individuals under and over 15 years. Also assume that within this population, these age-specific FOI values result in 29 and 6 age-specific FOI values result in 29 and 6
infectious cases among children and adults.
Write out the equations for the equilibrium FO in relation to the equilibrium \# of infectious individuals

20

\qquad
\qquad

21

$\binom{0.12}{0.05}=\left(\begin{array}{ll} \beta_{w} & \beta_{w o} \\ \beta_{0 y} & \beta_{0 o} \end{array}\right)\binom{29}{6}$
Lets assume a more realistic WAIFW matrix. What does this structure imply?
$\binom{0.12}{0.05}=\left(\begin{array}{cc}\beta_{1} & \beta_{2} \\ \beta_{2} & \beta_{2}\end{array}\right)\binom{29}{6}$
Solve for the Beta terms $0.12=29 \beta_{1}+6 \beta_{2}$
$0.05=(29+6) \beta^{2}$
What do we do now? How do we solve this?
$0.05=(29+6) \beta 2$ $\beta_{2}=0.0014$ per year Substitute β_{2} into the other equation and solve for $\beta 1$
$0.12=29 \beta 1+6(0.0014)$ $\beta_{1}=0.0038 \text { per year }$

\qquad
22

Methods for calculating the number of S and I individuals
\qquad

Review: In a randomly mixing population
The expected proportion of susceptibles in different age groups (assuming the FOI is not ge-dependent)
$s(a)=e^{-\lambda a}$
The overall \# of S individuals can be found by summing up the avg. \# of S in each age group

$$
\sum_{a}=s(a) N(a)
$$

23

Methods for calculating the number of S and I individuals

The average \# of infectious individuals in the

 population is given by the expression:Number of individuals newly infected (SS) * Duration of infectiousness (D)
The avg. \# of infectious individuals in the
\qquad population is given by:
$=\lambda S D$ OR $\lambda S / r$ (if $D=1 / r$)
$D=$ average duration of infection and $r=1 / D=$ rate at which individuals recover
\qquad
\qquad
\qquad
\qquad
\qquad
24

```
Methods for calculating the
number of \(S\) and I individuals
In a non-randomly mixing population
Extend the logic from the randomly mixed
example. In this case we need estimates of the
average \# of young and old infectious
individuals.
Avg. \# of young infectious individuals:
\(\lambda_{y} S_{y} D\) or \(\lambda_{y} S_{y} / r\)
Avg. \# of old infectious individuals:
\(\lambda_{0} S_{0} D\) or \(\lambda_{0} S_{0} / r\)
```

25

Estimating the reproductive number for heterogeneously mixing populations

REMINDER of what we know for

homogenously mixed population
$\mathrm{R}_{\mathrm{e}}=\mathrm{R}_{0}$ *S
If the infection is at equilibrium, then $R_{e}=1$
Therefore, $\mathrm{R}_{0}=1 / \mathrm{S}^{*}$
where $S^{*}=$ proportion of population Susceptible at equilibrium)
Herd immunity threshold:
$H=1-S^{*}=1-\left(1 / R_{0}\right) \begin{aligned} & \text { This selationstip is no longer applicable if } \\ & \text { assumption of random mixin }\end{aligned}$

\qquad

26

Estimating the reproductive number for heterogeneously mixing populations

1. Measure prevalence of infection in the population, using a serosurvey
2. Estimate the forces of infection
3. Choose the structure of the WAIFW matrix
4. Calculate the transmission coefficients (betas)
5. Formulate the "next generation matrix" (NGM)
6. Calculate RO from the NGM

27
Calculating the NGM
In a population with heterogeneous mixing, the number of secondary cases resulting from an infected case is going to depend on which sub-
\qquad group the infected individual belongs to.
Each of these "reproduction numbers" can be expressed in terms of the coefficients from the WAIFW matrix.

Reproductive Numbers

Homogeneously mixed population:
$\mathrm{R}_{0}=\beta^{*} \mathrm{~N}^{*} \mathrm{D}$
Heterogeneously mixed population:
$\mathrm{R}_{\mathrm{yy}}=\beta_{\mathrm{yy}} * \mathrm{~N}_{\mathrm{y}} * \mathrm{D}$
$\mathrm{R}_{\mathrm{oy}}=\beta_{\mathrm{oy}} * \mathrm{~N}_{\mathrm{o}} * D$
$\mathrm{R}_{\mathrm{yo}}=\beta_{\mathrm{yo}} * \mathrm{~N}_{\mathrm{y}} * \mathrm{D}$
$\mathrm{R}_{\mathrm{oo}}=\beta_{\mathrm{oo}} * N_{\mathrm{o}} * D$ \qquad
29
The Next Generation Matrix
$\left(\begin{array}{ll}R_{y y} & R_{y o} \\ R_{o y} & R_{o o}\end{array}\right)=\left(\begin{array}{ll}\beta_{y>} N_{y} D & \beta_{y o} N_{y} D \\ \beta_{o y} N_{o} D & \beta_{o o N_{o}} D\end{array}\right)$
The number of secondary cases resulting from the introduction of an infected case into a totally susceptible population will be some average of each of these R_{0} values (Diekmann et al, 1990)

31

32

33

34

\qquad
\qquad
\qquad

35

\qquad

- Longitudinal survey (monthly between July - Nov 2020)
- Changes overtime in avoidance behaviours
36

