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T he coronavirus disease 2019 (COVID-19) pandemic repre-
sents a global public health emergency unparalleled in 
recent time. In the 2 months since the initial World 

Health Organization report describing the COVID-19 outbreak 
concentrated in Wuhan, China,1 the number of confirmed cases 
has risen sharply from 282 to more than 330  000, with 14  510 
reported deaths across all regions of the globe.2 The first 
imported case of COVID-19 in Ontario, Canada, was reported on 
Jan. 25, 2020, and community transmission was first docu-
mented on Mar. 1, 2020, in British Columbia, Canada.3

This pathogen represents a substantial challenge for public 
health, pandemic planning and health care systems. Severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly 
transmissible.4–7 It causes moderate to severe clinical outcomes 
in about 20% of all recognized infected individuals.5,8,9 In the 
absence of a vaccine, public health responses have focused on 
the use of nonpharmaceutical interventions.10 These nonphar-
maceutical interventions include “case-based” measures such as 
testing, contact tracing, isolation (of infected cases) and quaran-
tine (of exposed cases); and “non-case-based” measures such as 
reducing the probability of transmission given an effective con-
tact (e.g., hand hygiene and cough etiquette) and physical-
distancing measures to reduce the contact rate in the popula-
tion. Physical distancing minimizes opportunities for 
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ABSTRACT
BACKGROUND:  Physical-distancing 
interventions are being used in Canada 
to slow the spread of severe acute 
respiratory syndrome coronavirus 2, 
but it is not clear how effective they 
will be. We evaluated how different 
nonpharmaceutical interventions could 
be used to control the coronavirus dis-
ease 2019 (COVID-19) pandemic and 
reduce the burden on the health care 
system.

METHODS: We used an age-structured 
compartmental model of COVID-19 
transmission in the population of 
Ontario, Canada. We compared a base 
case with limited testing, isolation and 
quarantine to scenarios with the fol-
lowing: enhanced case finding, restric-
tive physical-distancing measures, or 
a combination of enhanced case find-

ing and less restrictive physical dis-
tancing. Interventions were either 
implemented for fixed durations or 
dynamically cycled on and off, based 
on projected occupancy of intensive 
care unit (ICU) beds. We present medi-
ans and credible intervals from 100 
replicates per scenario using a 2-year 
time horizon.

RESULTS: We estimated that 56% (95% 
credible interval 42%–63%) of the 
Ontario population would be infected 
over the course of the epidemic in the 
base case. At the epidemic peak, we 
projected 107 000 (95% credible interval 
60 760–149 000) cases in hospital (non-
ICU) and 55 500 (95% credible interval 
32 700–75 200) cases in ICU. For fixed-
duration scenarios, all interventions 
were projected to delay and reduce the 

height of the epidemic peak relative to 
the base case, with restrictive physical 
distancing estimated to have the great-
est effect. Longer duration interventions 
were more effective. Dynamic interven-
tions were projected to reduce the pro-
portion of the population infected at the 
end of the 2-year period and could 
reduce the median number of cases in 
ICU below current estimates of Ontario’s 
ICU capacity. 

INTERPRETATION: Without substantial 
physical distancing or a combination of 
moderate physical distancing with 
enhanced case finding, we project that 
ICU resources would be overwhelmed. 
Dynamic physical distancing could 
maintain health-system capacity and 
also allow periodic psychological and 
economic respite for populations.
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person-to-person transmission of the virus to occur. These 
physical-distancing measures include some combination of 
school closure, teleworking, cancellation of group activities and 
events, and a general overall reduction in community contacts. 
Although these measures are expected to be effective in reducing 
transmission of SARS-CoV-2, they are also associated with sub-
stantial economic costs and societal disruption. 

Epidemiologic models can contribute important insight for 
public health decision-makers by allowing for the examination 
of a variety of “what-if” scenarios. The Canadian Pandemic 
Influenza Plan for the Health Sector (the backbone of which 
informs COVID-19 pandemic preparedness and response) iden-
tifies 2 main objectives for responding to a pandemic: to min
imize serious morbidity and mortality, and to minimize societal 
disruption.11 The overarching goal of pandemic response is to 
find a combination of nonpharmaceutical interventions that 
would minimize the number of cases requiring in-patient med
ical care (e.g., hospital and intensive care unit [ICU] admis-
sions) and deaths, while also minimizing the level of societal 
disruption. Societal disruption could be reduced by limiting the 
overall duration that the intervention needs to be in force to 
achieve the associated reductions in morbidity and mortality. A 
challenge for pandemic response is that, in a fully susceptible 
population, although nonpharmaceutical interventions may 
slow disease transmission while they are in place, once the 
intervention is lifted (or compliance with the intervention 
becomes low), the transmission of the pathogen rebounds 
rapidly.10,12 In the case of COVID-19, it may not be possible to 
minimize morbidity and mortality, and societal and economic 
disruption at the same time.

Given these considerations, we used a transmission dynamic 
model of COVID-19 to explore the potential impact of case-based 
and non-case-based nonpharmaceutical interventions in the 
population of Ontario, Canada. Our analysis focuses on identify-
ing strategies that keep the number of projected severe cases 
(hospital and ICU admissions) within a range that would not 
overwhelm the Ontario health care system, while also consider-
ing the amount of time these interventions would be in place.

Methods

Model overview
We developed an age-structured compartmental model that 
describes COVID-19 transmission in the province of Ontario, Can-
ada. We used a modified “susceptible-exposed-infectious-
recovered” framework that incorporated additional compart-
ments to account for public health interventions, different 
severities of clinical symptoms and risk of hospital admission. An 
overview of the model compartments and movements between 
them is provided in Figure 1, and model equations and addi-
tional details are provided in Appendix 1, available at www.cmaj.
ca/lookup/suppl/doi:10.1503/cmaj.200476/-/DC1. The model was 
run for a period of 2 years, and we assumed that recovered indi-
viduals remained immune from re-infection for the duration of 
the epidemic. Individuals remained infectious until they recov-
ered or were admitted to hospital; we did not model transmis-

sion within health care settings. For simplicity, we assumed that 
all deaths occurred in cases requiring intensive care. We included 
cases in hospital (non-ICU) and requiring intensive care to esti-
mate health care requirements over the course of the epidemic. 
The model was constructed in R.13

Model parameters
The model was stratified by 5-year age groups using 2019 popu-
lation estimates.14 Contacts within and between age groups were 
based on the POLYMOD study,15 using contact data specific for 
the United Kingdom. The model was further stratified by health 
status to account for differential vulnerability to severe infection 
among those with underlying health conditions. We obtained 
comorbidity estimates by age from the Canadian Community 
Health Survey (CCHS)16 for Ontario and included the following 
conditions: hypertension, heart disease, asthma, stroke, diabe-
tes and cancer. For younger age groups (<  12 yr), we used esti-
mates from Moran and colleagues.17 A limitation of the CCHS is 
that it may undersample individuals from socioeconomically dis-
advantaged populations.

Parameters describing the natural history and clinical course 
of infection were derived from published studies (Table 1, full 
details in Appendix 1). The rate of growth of epidemics is gov-
erned by reproduction numbers, or the number of secondary 
infections caused by a primary infectious case. For a pandemic 
disease, in which prior immunity is absent, the operative repro-
duction number is referred to as the basic reproduction number 
(R0).23 To capture variability in transmission, specifically the 
observation that the basic reproduction number for COVID-19 is 
overdispersed, with some cases transmitting to many others 
(superspreader events), while many other cases transmit much 
less, we have added volatility to the transmission term.24–26 This 
causes each model run to have a different outcome owing to sto-
chasticity (i.e., random variation between model runs). The 
model was initiated with 750 prevalent cases (based on 150 
reported cases in Ontario on Mar. 19, 2020, and an assumed 
reporting rate of 20%), that were randomly distributed across the 
infectious compartments.

Interventions
Testing was assumed to move individuals with nonsevere symp-
toms from the infectious to isolated compartments. Isolated 
cases were assumed to have reduced transmission compared 
with nonisolated cases. Physical-distancing measures were 
assumed to reduce the number of contacts per day across the 
entire population. Details of parameters that were varied under 
different interventions are included in Table 2. For the base case, 
we assumed that there was a degree of testing and isolation 
occurring and that a proportion of exposed cases were quaran-
tined. We then added in additional control measures: (i) 
enhanced testing and contact tracing; (ii) restrictive physical-
distancing measures; and (iii) a combination of enhanced testing 
and contract tracing, along with less restrictive physical distanc-
ing than in (ii). We considered 2 approaches to implementing 
interventions: (i) fixed durations and (ii) a dynamic approach 
with interventions turned on and off based on the number of 
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cases requiring ICU care in the population. When interventions 
were not implemented, values for physical distancing and 
enhanced testing and contact tracing returned to base case lev-
els. We focused on ICU capacity, given that this is expected to be 
the most limited resource during the COVID-19 epidemic. Before 
the emergence of COVID-19, Ontario had about 2000 ICU beds 
(0.14 beds per 1000 population), but 90% were occupied by indi-
viduals with non-COVID-19 illness. In mid-March 2020, the 
Ontario government made 300 additional ventilator-associated 
ICU beds available (for a total of 500 unoccupied beds (0.034 per 
1000 population). As such, we used 200 COVID-19 cases in the ICU 
(across all of Ontario [0.014 per 1000]) as a threshold for turning 
the intervention on. This value was based on about 40% satura-
tion of available beds, combined with the recognition that there 
is a lag between cases acquiring infection and requiring intensive 
care, such that one would expect ICU needs to grow rapidly once 
initial COVID-19 cases present for care.

Outputs
Key model outputs included final epidemic attack rates (% of 
population infected at the end of the 2-year period), prevalence 
of hospital admissions and ICU use, and deaths. For comparison, 
we show the maximum and current ICU capacity per 1000 popula-
tion relative to model projections. For the dynamic-intervention 
scenarios, we also calculated the amount of time over the 2-year 
model period during which the intervention was implemented, 
as a measure of intervention intensity. We present model out-
puts as medians and credible intervals from 100 model replicates 
per intervention; 95% credible intervals represent the range of 
outcomes from the 2.5th to 97.5th percentiles, across all model 
replicates.

Ethics approval
Because this study involved the use of publicly available aggre-
gate data, approval by a research ethics board was not required.
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Figure 1: Model structure of COVID-19 transmission. Exposed cases can be either quarantined or not; quarantined cases would represent those who 
were identified via contact tracing. Cases admitted to hospital are assumed to be no longer infectious to others (owing to recognition of infection) and 
are included in the model to estimate health care requirements. The model is stratified by age group and presence or absence of comorbidities. Note: 
ICU = intensive care unit.
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Table 1: Model parameters used in the transmission model*

Parameter
Age group, 

yr Health status Value Details Source

Latent period, d All All 2.5 Time from exposure to onset of infectiousness References 18–20

Presymptomatic infectious 
period, d

All All 1 Duration of infectiousness before symptom 
onset

References 18–20

Infectious period (mild to 
moderate), d

All All 6 Symptomatic infectious period for mild-to-
moderate cases (in absence of isolation)

References 18–20

Infectious period (severe), d All All 6 Symptomatic infectious period for 
infectiousness for severe cases; assumed equal 
to time to hospital admission

References 18–20

Basic reproduction number All All 2.3 Average number of secondary infections 
derived from a primary infection in a 
susceptible population

Reference 6

Time in quarantine, d All All 14 Duration of quarantine for exposed cases Current policy

Relative risk of transmission 
for cases in isolation

All All 0.1 Isolated cases are assumed to have reduced 
transmission relative to unrecognized cases

Assumption

Average length of stay in 
hospital for cases not 
requiring ICU care, d

All All 10 Reference 21

Average length of stay in 
hospital before ICU 
admission, d

All All 3 For severe cases requiring ICU care Reference 21

Average length of stay in ICU, d All All 21 For severe cases requiring ICU care Reference 22

Average length of stay in 
hospital after ICU, d

All All 21 For severe cases requiring ICU care Reference 22

Probability of severe infection Severe infections requiring hospital admission Reference 21

< 15 No comorbidities 0.01

15–49 No comorbidities 0.03

50–69 No comorbidities 0.12

≥ 70 No comorbidities 0.35

< 15 Comorbidities 0.02

15–49 Comorbidities 0.06

50–69 Comorbidities 0.25

≥ 70 Comorbidities 0.76

Probability severe case 
requires admission to ICU

All All 0.26 Reference 21

Probability of death in cases 
admitted to ICU

Reference 22

< 15 No comorbidities 0

15–49 No comorbidities 0.2

50–69 No comorbidities 0.36

≥ 70 No comorbidities 0.58

< 15 Comorbidities 0

15–49 Comorbidities 0.53

50–69 Comorbidities 0.9

≥ 70 Comorbidities 1

Note: ICU = intensive care unit.
*A full model description is provided in Appendix 1 (available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.200476/-/DC1). Age group and health status refer to the population 
groups to which the parameter value was applied.
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Results

Base case
In the model base case, with limited testing, isolation and quaran-
tine, we estimated that 56% (95% credible interval 42%–63%) of 
the Ontario population would be infected over the course of the 
epidemic. This would include cases of all severities. Attack rates 
were projected to be highest in those aged 5–14 years (77%, 95% 
credible interval 63%–83%) and 15–49 years (63%, 95% credible 
interval 48%–71%). Lower attack rates were projected in individ
uals aged younger than 5 years (50%, 95% credible interval 37%–
58%) and adults aged 50–69 years (47%, 95% credible interval 
34%–55%) and 70 years and older (30%, 95% credible interval 
21%–36%). An example of the outbreak trajectory across model 
simulations is presented in Figure 2. At the peak of the epidemic, in 
the absence of any resource constraints to provide care (i.e., 
assuming all cases requiring medical care receive it), we projected 
107 000 (95% credible interval 60 760–149 000) cases in hospital 
(non-ICU) and 55 500 (95% credible interval 32 700–75 200) cases in 
ICU. The high prevalence of cases in ICU reflects the mean length of 
ICU stay associated with COVID-19 infection in other countries.

Fixed-duration interventions
All of the interventions considered were projected to delay the 
epidemic peak and reduce the number of cases requiring ICU care 
at the peak (Figure 3). The effectiveness of the interventions 
scaled with intervention duration. For all interventions, when the 
intervention duration was 6 months or less, there was no appre-
ciable difference on final attack rate. With 12 and 18 months of 
heightened response measures, the proportion of the population 
infected at the end of the 2-year period was reduced, and, in some 
simulations, the prevalence of cases requiring intensive care fell 
below Ontario’s current capacity for all or part of the period. The 
largest effect was observed for the restrictive physical-distancing 
intervention. The combination intervention, with enhanced case 
detection and less aggressive physical distancing, was projected 
to substantially reduce attack rates when implemented for 
18 months, while enhanced case detection in the absence of 

physical-distancing measures had a more modest effect, on aver-
age. There was substantial variability in model projections, 
owing to model stochasticity.

Dynamic interventions
We also explored dynamic interventions that were turned on and 
off in response to the current state of the epidemic. Dynamic 
interventions were projected to be effective for reducing the pro-
portion of the population infected at the end of the 2-year 
period, with potentially shorter durations of physical distancing 
than the fixed-duration approach (Figure 4). For example, when 
implemented dynamically, 13 months of physical distancing, 
cycled on and off, reduced the median overall attack rate to 2%. 
For the physical distancing alone and combination intervention 
scenarios, we observed atypical epidemic curves, with the num-
ber of cases increasing and decreasing repeatedly over time. In 
these scenarios, the median number of cases in ICU was reduced 
below current estimates of Ontario’s ICU capacity.

Table 2: Details of model scenarios*

Parameter Age group, yr

Scenario

Base case
Enhanced case 

detection
Physical 

distancing

Enhanced 
detection with 

limited physical 
distancing 

(combination)

Nonquarantined cases tested and isolated, % < 15 10 40 10 40

15 – 49 40 60 40 60

≥ 50 70 80 70 80

Exposed cases in quarantine before infectious, % All 10 30 10 30

Reduction in contacts with physical distancing, % All 0 0 60 25

*For each scenario, the model parameters that were varied are provided above. All other parameters were as described in Table 1. When the interventions were turned off, parameter 
values returned to base case values.
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Figure 2: Projected COVID-19 epidemic trajectory for the base case model 
with minimal intervention. Daily incident cases per 1000 population are 
presented. The line represents the median value of 100 model simu
lations, and the shaded area indicates the 95% credible interval.
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Interpretation

COVID-19 poses an extraordinary challenge to societies. Whereas 
severe illness, particularly in older individuals, is frequent 
enough to overwhelm a society’s ICU capacity,27 mild unrecog-
nized illness (particularly in younger individuals) contributes to 
spread,28 and outbreaks may be recognized only when super-
spreader events occur,25 often in settings like health care facil
ities.26 In contrast to severe acute respiratory syndrome (SARS),29 
the high frequency of mild cases means that strategies that focus 
on case identification and isolation alone are likely to fail to pre-
vent epidemic spread and overburdening of our health care sys-
tem.26 As such, population-level interventions, with their atten-
dant economic costs, have been used to prevent health systems 
from collapsing.30 Although events in China, Singapore, Hong 
Kong and elsewhere have shown that COVID-19 epidemics can be 

contained,30–33 the seeding of epidemics in countries around the 
globe, many with weak health systems,34 means that reintroduc-
tion of COVID-19 will continue to occur for some time. As success-
ful containment efforts maintain a large number of susceptible 
individuals in populations, vulnerability to repeated epidemics is 
likely to persist until a COVID-19 vaccine is developed and manu-
factured at scale, or until large fractions of the population are 
infected and either die or develop immunity.35

Control strategies for COVID-19 thus need to balance competing 
risks: the risks of mortality and health system collapse, on the one 
hand, against economic risks and attendant hardships (and health 
consequences) on the other. In this work, we evaluated plausible 
strategies for attenuating the COVID-19 epidemic in Ontario, Canada. 
We focused on ICU resources for 2 reasons: first, because this com
ponent of most health systems represents a scarce resource prone to 
being saturated; and second, because such saturation results in 
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abrupt surges in case-fatality, as individuals with acute respiratory 
distress syndrome will die quickly without the capacity for mechan
ical ventilation. In broad terms, we find that prolonged physical dis-
tancing is the preferred strategy for maintaining ICU resources, but 
an extreme fixed duration of physical distancing is required to pre-
vent the epidemic from overwhelming ICU capacity. That said, phys
ical distancing, even without reducing overall outbreak size, has the 

added benefit of delaying the epidemic peak, which gains time that 
can be used to build health system capacity and identify therapies 
and vaccines. However, societies remain vulnerable to resurgences 
as long as a critical fraction of the population remains susceptible to 
disease (that fraction can be approximated as 1/R0). Evaluating how 
that vulnerability changes over time will require seroepidemiologic 
studies, which have not yet been performed in Canada.

Time, d Time, d

No. of months with intervention in e�ect

%
 o

f 
p

o
p

u
la

ti
o

n
 i

n
fe

c
te

d
 

a
�

e
r 

2
 y

r 

P
re

v
a

le
n

t 
c

a
se

s 
re

q
u

ir
in

g
 I

C
U

 c
a

re
 

p
e

r 
1

0
0

0
 p

o
p

u
la

ti
o

n

P
re

v
a

le
n

t 
c

a
se

s 
re

q
u

ir
in

g
 I

C
U

 c
a

re
 

p
e

r 
1

0
0

0
 p

o
p

u
la

ti
o

n

0

1

2

4

3

0.0

0.1

0.2

0.3

0 200 400 600 0 200 400 600

Enhanced detection of cases
Base case

Physical distancing
Combination

ICU capacity
Current capacity

A

C

B

Maximum capacity

Enhanced detection of cases
Base case

Physical distancing
Combination

0

20

40

60

0 5 10 15 20

Figure 4: Projected intensive care unit (ICU) bed requirements and attack rates for dynamic interventions. (A) Prevalent cases requiring intensive care 
are shown for the base case and 3 intervention scenarios. Interventions are turned on and off (returning to base-case parameter values), depending on 
the number of COVID-19 cases in the ICU. Maximum and current ICU capacity in Ontario are indicated by the dashed horizontal lines. Median values are 
presented. (B) Zoomed view of prevalent ICU cases to show the dynamics for the enhanced physical-distancing and combination scenarios. (C) Model-
projected estimates of percent of the population infected over the 2-year period. Attack rates include all incident infections, regardless of severity. The 
amount of time the dynamic interventions are in place is shown on the x-axis. Points indicate the median duration and lines the 95% credible intervals 
for each scenario.



RE
SE

AR
CH

E504	 CMAJ  |  MAY 11, 2020  |  VOLUME 192  |  ISSUE 19	

In contrast to fixed-duration physical distancing, we find that 
dynamic physical distancing, with interventions turned on and off as 
needed, based on ICU capacity crossing a given threshold, 
represents a more effective, and likely more palatable, control 
strategy. Physical distancing can be relaxed, but this inevitably 
results in resurgent disease in the population, requiring 
reinstatement. Nonetheless, dynamic physical distancing is 
projected to maintain ICU capacity, and dramatically reduces 
overall attack rates, while requiring less total physical distancing 
time than would be required by a fixed-duration strategy of 
comparable effectiveness. This may be counterintuitive; however, 
an important insight from our model is that dynamic interventions 
can be reactivated when resurgent outbreaks are still relatively 
small, leading to the high potency of such interventions.

Furthermore, dynamic physical distancing has the potential to 
allow populations, and the economy, to “come up for air” at inter-
vals, which may make this strategy more sustainable. We also 
found that a combination approach, with less restrictive physical 
distancing along with enhanced testing, case isolation and quar-
antine, could have a similar effect in the dynamic scenario as 
more restrictive physical distancing alone. It is plausible that, as 
testing capacity increases, a combination approach that is less 
reliant on physical distancing will strike the right balance 
between disease control and societal disruption.36

Calibration to actual physical-distancing data is possible37 and 
is an area for future research. However, in broad terms, less 
restrictive physical-distancing regimes may be characterized by 
voluntariness and allowance of small gatherings, whereas more 
restrictive regimes include “lockdowns,” with individuals confined 
to home and facing legal sanction for emerging without legitimate 
reasons for doing so.38 Moving forward, any such disease-control 
regimes need to be coupled with improved surveillance systems, 
which permit needed adjustments in response to data.  

Limitations
At the time of writing, well-documented limitations in testing capacity 
in Ontario,39 and a lack of information on ICU occupancy by COVID-19 
patients, made it challenging to know where on the epidemic curve 
we currently find ourselves. The challenges in both scope of testing 
and pace of testing39 make case counts a poor metric of underlying 
disease activity. Acquisition of ICU occupancy data from the province 
has proved challenging, though needed metrics have recently become 
available from investigative reports.40 Importantly, we do not include 
within-hospital transmission cycles in this iteration of our model. 
Transmission in health care settings has the potential to quickly and 
dramatically reduce ICU capacity, by removing trained nurses, phys
icians and respiratory therapists from active duty, and by rapidly filling 
ICUs with new patients (health care workers, and patients admitted 
for other reasons with nosocomial COVID-19 infection).

Any model involves trade-offs between simplicity and realism, 
and in this work we have not attempted to model physical-
distancing measures in a highly realistic way, but rather generically 
as reductions in contact frequency. Our understanding of the 
natural history of SARS-CoV-2 infection continues to evolve, and 
the precise role of presymptomatic and subclinical transmission is 
uncertain. Physical distancing becomes a more important control 

measure in the face of incomplete case ascertainment owing to 
asymptomatic or mildly symptomatic cases. 

We do not offer precise policy prescriptions in terms of how the 
reductions associated with physical distancing that we model here 
are to be achieved, and we do not regard this model as a realistic 
recreation of current events in Ontario. As such our model is best 
interpreted qualitatively, rather than quantitatively.  

The model does not include seasonality; it is possible that 
transmission will attenuate in the summer,41 resulting in a decline 
in cases that would be expected to resurge with the return of 
colder weather. Although our model’s several limitations are a 
source of uncertainty, nonetheless, the qualitative insights around 
the role of physical distancing, the relatively long intervention 
durations required to bend the epidemic curve, and the potential 
use of cyclic interventions can be used by policy-makers and 
decision-makers, along with emerging empirical evidence from 
other countries, to consider the best approaches for epidemic 
control over the coming months. 

Lastly, we have not modelled the fact that abrupt surges in 
death resulting from full ICUs would result in lower demands for 
ICU beds. Our goal here is to inform policy so that such outcomes 
are avoided to the extent possible.

Conclusion
We have modelled plausible contours of the COVID-19 epidemic in 
Ontario, Canada, with a focus on maintenance of ICU resources. In 
the absence of substantial physical distancing or a combination of 
moderate physical distancing with enhanced case detection and iso-
lation, we project that ICU resources would be quickly overwhelmed, 
a conclusion consistent with that in other modelling work,12 as well 
as current events in Italy and Spain. On a more positive note, we 
project that dynamic physical distancing, that reacts to changes in 
ICU occupancy, could maintain health system capacity and also 
allow periodic psychological and economic respite for populations.
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