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The COVID-19 pandemic defied expectations about immun ity 
arising from infection and vaccination. During the first months 
of the pandemic, despite the burden on Canadian society and 
health systems, rates of symptomatic infection remained low, 
with 580 000 confirmed cases by December 2020, representing 
1.6% of the Canadian population.1 Vaccines were widely 
 distributed in Canada beginning in early 2021, with a rapid rise 
in vaccine coverage to 79% by fall of 2021,2 whereas cumula-
tive reported cases of COVID-19 remained low, at 4.7% of the 
population.3 The arrival of Omicron variants and subvariants, 
however, caused an unprecedented increase in the number of 

infections. In short, the high vaccine coverage, combined with 
population immunity from infections in earlier waves of the 
pandemic, were insufficient to slow the spread of the Omicron 
variant.

Although the overall progression of confirmed cases and 
vaccination is clear, the underlying dynamics of population 
seropositivity are less obvious, yet critically important for 
policy and clinical decisions about vaccination and other pre-
ventive measures. A count of confirmed cases of COVID-19 is 
of limited use for understanding the evolution of population 
immunity because case ascertainment is biased by multiple 
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Abstract
Background: During the first year of 
the COVID-19 pandemic, the proportion 
of reported cases of COVID-19 among 
Canadians was under 6%. Although 
high vaccine coverage was achieved in 
Canada by fall 2021, the Omicron vari-
ant caused unprecedented numbers of 
infections, overwhelming testing cap-
acity and making it difficult to quantify 
the trajectory of population immunity.

Methods: Using a time-series approach 
and data from more than 900 000 sam-
ples collected by 7  research studies 
collaborating with the COVID-19 
Im munity Task Force (CITF), we esti-
mated trends in SARS-CoV-2 seropreva-
lence owing to infection and vaccina-

tion for the Canadian population over 
3  intervals: prevaccination (March to 
November  2020), vaccine roll-out 
(December  2020 to November  2021), 
and the arrival of the Omicron variant 
(December  2021 to March  2023). We 
also estimated seroprevalence by geo-
graphical region and age.

Results: By November 2021, 9.0% (95% 
credible interval [CrI] 7.3%–11%) of 
people in Canada had humoral 
im munity to SARS-CoV-2 from an infec-
tion. Seroprevalence increased rapidly 
after the arrival of the Omicron variant — 
by Mar. 15, 2023, 76% (95% CrI 74%–
79%) of the population had detectable 
antibodies from infections. The rapid 

rise in infection-induced antibodies 
occurred across Canada and was most 
pronounced in younger age groups and 
in the Western provinces: Manitoba, Sas-
katchewan, Alberta and British Columbia.

Interpretation: Data up to March 2023 
indicate that most people in Canada 
had acquired antibodies against SARS-
CoV-2 through natural infection and 
vaccination. However, given variations 
in population seropositivity by age 
and geography, the potential for wan-
ing antibody levels, and new variants 
that may escape immunity, public 
health policy and clinical decisions 
should be tailored to local patterns of 
population immunity.
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factors. Most notably, access to laboratory-based polymerase 
chain reaction (PCR) testing varied across the country and, in 
many locations, was overwhelmed by demand after Decem-
ber 2021. In this context, serological surveillance provides an 
informative adjunct to monitoring confirmed cases, as sero-
prevalence offers a more direct measure of population 
humoral immunity.

We sought to describe the trajectory of SARS-CoV-2 sero-
prevalence in the Canadian population, as measured by anti-
nucleocapsid (anti-N) and anti-spike protein (anti-S) antibody 
levels over 3 intervals: prevaccination (March to Novem-
ber 2020), vaccine roll-out (December 2020 to November 2021), 
and the Omicron variant waves (December 2021 to March 2023). 
We draw on seroprevalence estimates from multiple studies 
collaborating with the COVID-19 Immunity Task Force (CITF).4 In 
addition to describing the temporal evolution of population 
seropositivity in Canada, we highlight trends in infection-
acquired and vaccine-induced seroprevalence by Canadian 
region and age.

Methods

Data sources
We used aggregate data reported by research studies collab-
orating with the CITF, which began supporting studies measur-
ing SARS-CoV-2 seroprevalence across Canada in April 2020. For 
this analysis, we used seroprevalence estimates reported by 
7  studies (Table  1), covering 3 time intervals: prevaccination, 
March 2020 to November 2020; vaccine roll-out, December 2020 
to November 2021; and the Omicron variant waves, December 
2021 to March 2023 (see Appendix  1, Supplemental Table  1S, 
available at www.cmaj.ca/lookup/doi/10.1503/cmaj.230249/
tab-related-content, for study summaries by time period). Most 
individual observations and seroprevalence estimates were 
from blood donors, who are adults older than 17  years, but 
some estimates were from provincial laboratory studies, which 
tested residual blood samples from people of all ages. There 
was a slight predominance of males among blood donors, but 
most provincial residual blood samples and other studies were 

Table 1: Sources of data on Canadian population seroprevalence and sample descriptors  

Study source

Canadian 
Blood 

Services
Héma-

Québec

Alberta 
Precision 

Laboratories
Manitoba 

Seroprevalence
Saskatchewan 

Seroprevalence

Canadian 
Partnership 

for 
Tomorrow’s 

Health
Action to Beat 
Coronavirus

Data source 
type

Blood 
donors

Blood 
donors

Provincial 
serosurvey†

Provincial 
serosurvey† 

Provincial 
serosurvey†

Research 
cohort

Research 
cohort

Reporting 
frequency

Monthly/
weekly

Quarterly Bi-monthly Monthly Monthly Monthly Quarterly

No. of estimates 
contributed*

835 35 78 43 84 89 34

Female, % 42 39 55 50 62.5 67 59

Total no. of 
blood samples

640 315 12 754 184 986 17 598 21 886 41 825 31 933

Age range, yr ≥ 17 ≥ 18 ≥ 0 ≥ 1 ≥ 0 22–93 ≥ 18

Population 
standardization

Region, age, 
sex

Region, age, 
sex

Region, age, 
sex

Region, age, 
sex

Region, age, 
sex

None Sampling and 
post-

stratification 
weights (age 

and education)

Provincial 
coverage 

British 
Columbia, 

Alberta, 
Saskatchewan, 

Manitoba, 
Ontario, New 

Brunswick, 
Nova Scotia, 

Prince Edward 
Island, 

Newfoundland 
and Labrador

Quebec Alberta Manitoba Saskatchewan British 
Columbia, 
Manitoba, 
Ontario, 
Quebec, 

Atlantic (New 
Brunswick, 

Nova Scotia, 
Prince Edward 

Island, 
Newfoundland 
and Labrador)

British 
Columbia, 

Yukon,‡ 
Ontario, 
Quebec

*Number of estimates include provincial estimates and age-stratified estimates, if provided.
†Provincial serosurvey: anonymized discarded or residual blood samples from provincial laboratories.
‡Yukon estimates categorized as British Columbia in plotting. 
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more evenly matched for sex. Residual blood samples from Sas-
katchewan and the Canadian Partnership for Tomorrow’s 
Health, a pan-Canadian cohort consortium that recruited 
partici pants from the general population, were predominantly 
from females. The sampling frequency ranged from biannually 
to monthly, and the total number of people sampled at each 
time point across all provinces (if applicable) ranged from 12 to 
77 000 (median 6700). In total, more than 900 000  individual 
samples from 10  provinces contributed to the seroprevalence 
estimates included in the analysis.

Measurement of SARS-CoV-2 immunity, serological 
assays and seroprevalence estimates
Humoral immunity to SARS-CoV-2 was measured in blood sam-
ples obtained through venous blood draws or finger-prick 
samples placed on filter paper (dried blood spots). Assays 
detected immunoglobulin G (IgG) antibodies against SARS-
CoV-2 nucleocapsid (anti-N), spike (anti-S) proteins, or recep-
tor binding domain (anti-RBD) proteins. Because RBD is a com-
ponent of the S-protein complex, anti-S and anti-RBD were 
grouped together to measure anti-S seroprevalence. Before 
vaccination was widely available in January 2021, detection of 
either anti-N or anti-S was taken as evidence of infection-
acquired seropositivity. After December  2020, only anti-N was 
taken as evidence of infection-acquired seropositivity, and 
anti-S was taken as evidence of vaccine-induced or infection-
acquired seropositivity.

Some studies used commercially available assays (e.g., 
Abbott Laboratories, Roche, DiaSorin) and other studies used 
assays developed in academic laboratories (e.g., Mount Sinai 
Hospital, University of Ottawa, Université de Montréal) (Appen-
dix 1, Supplemental Table 2S and Supplemental Table 3S). Com-
mercial assays were performed according to the manufacturer’s 
specifications, and assays developed in academic laboratories 
were performed according to their standardized protocols.5 
Given the variety of assay measurements used, we estimated 
seroprevalence within each study as the proportion of people 
who tested positive for anti-N or anti-S antibodies using thresh-
olds for positivity defined by the manufacturer or published 
proto col. Most seroprevalence estimates were age and sex stan-
dardized to the general population (Table  1). We adjusted esti-
mates by sensitivity and specificity using the Rogan–Gladen esti-
mator6 to account for the accuracy of the assay.

Statistical analysis
Our main objective was to estimate seroprevalence for the general 
population in Canada overall, and the provinces (excluding the 
 territories) during 3  intervals: prevaccination (March– 
November  2020), vaccination roll-out (December  2020– 
 November 2021), and the Omicron variant waves (December 2021–
March  2023). As a secondary objective, we described trends in 
seroprevalence by age groups (< 25 yr; 25–39 yr; 40–59 yr; ≥ 60 yr) 
and geographical regions.

We used a time-series approach to estimate trends in SARS-
CoV-2 infection–induced seroprevalence (anti-N and anti-S pre-
vaccination; anti-N postvaccination) and seroprevalence owing 

to infection or vaccination (anti-S) for the Canadian population. 
We conducted the analysis using a Bayesian framework and 
generalized linear multilevel models for β-binomial distributed 
outcomes (for model specification and a description of how we 
tested for differences among provinces and age groups, see 
Appendix  2, available at www.cmaj.ca/lookup/doi/10.1503/
cmaj.230249/tab-related-content). We conducted the analysis 
using R version 4.3 (Apr. 21, 2023) and JAGS 4.3.1.

Ethics approval
All studies contributing data to this article obtained ethical 
approval from local institutional review boards for use of the 
samples. Data were provided to the CITF in aggregate form, 
such that it was not possible to re-identify individuals. The 
analysis of the data contributed by studies was approved by 
the McGil l  Faculty of  Medicine and Health Sciences 
Institutional Review Board.

Results

After the initial epidemic wave and before the availability of vac-
cines, less than 0.3% (95% credible interval [CrI] 0.02%–0.9%) of 
the Canadian population had either anti-S or anti-N antibodies in 
July 2020, and the average monthly increase in anti-N seropreva-
lence was 0.05% (95% CrI 0.01%–0.11%) in 2020 (Figure 1). Sero-
prevalence owing to infection continued to increase slowly dur-
ing vaccine roll-out, at an average of 0.39% (95% CrI 
0.25%–0.53%) per month from January  2021 to Dec. 15, 2021, 
reaching 9.0% (95% CrI 7.3%–11%) in November  2021. Despite 
high vaccine coverage in Canada, all previous increases in sero-
prevalence were far surpassed by the increase caused by the 
Omicron variant. After 6 months of the Omicron variant circulat-
ing in Canada, seroprevalence had risen to 47% (95% CrI 45%–
49%) by mid-June  2022, with an average monthly increase of 
6.4% per month (95% CrI 6.1%–6.8%) between Dec. 15, 2021, and 
July  2022. After a short interval of slower increases in the sum-
mer, infection-acquired seroprevalence continued to rise rapidly 
in the latter half of 2022 until it started to plateau at about 76% 
(95% CrI 74%–79%) in March  2023. The rate of increase in the 
Omicron era varied from a peak of 9% per month (95% CrI 7.1%–
10%) in February  2022 to lows of around 1% to 2% per month 
since December 2022.

Estimates of seropositivity for anti-S IgG antibodies, reflecting 
previous vaccination or infection, were between 70% and 95% in 
summer 2021, depending on the source of the samples, with a 
mean of 85% (95% CrI 81%–89%; Figure 1) around Aug. 1, 2021. 
The prevalence of anti-S antibodies was largely attributable to 
vaccination as it increased rapidly after March  2021 despite the 
small increases in anti-N antibodies. On average, anti-S 
seropreva lence was consistently high — 98% or higher — from 
November 2021 through the Omicron variant waves.

Anti-N seroprevalence followed a similar trajectory in most 
provinces throughout the pandemic (Figure  2). The Atlantic 
provinces were a notable exception, with infection-acquired 
seroprevalence consistently below 1% pre-Omicron variant 
waves, possibly a result of the policies restricting travel into 
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and out of the Atlantic provinces. Nevertheless, infection-
acquired seropositivity rose subtantially in the Atlantic prov-
inces during the Omicron variant waves and was comparable to 
that in other provinces 1  year later. In November  2022, sero-
prevalence ranged from 64% (95% CrI 61%–67%) in Nova Scotia 
to 74% (95% CrI 70%–75%) in Alberta. Compared with Ontario, 
the relative risk for Nova Scotia was 0.96 (95% CrI 0.90–1.01) in 
November  2022, but it had been 0.14 (95% CrI 0.08–0.23) in 
November  2021; the relative risk for Alberta was 1.10 (95% CrI 
1.03–1.20) in November  2002, but it had been 1.67 (95% CrI 
1.20–2.29) in November 2021. The estimates were not sensitive 
to the choice of previous distributions for the between-province 
variability in model parameters, except for Quebec, where the 
available data were sparse (Appendix 2, Supplementary materi-
als Section 3).

Before the Omicron waves, infection-acquired seropreva-
lence differed little by age (Figure  3), but during the Omicron 
waves, rates of seropositivity increased more quickly in 

younger age groups. By mid-June  2022, infection-acquired 
seroprevalence in people younger than 25  years was highest 
(57%), followed by those aged 25–39 years  (51%), those aged 
40–59  years (40%), and those aged 60  years and older (25%). 
We also observed this trend in data from provincial sero-
surveys, in which children and adolescents had the highest 
seroprevalence. Except in adults older than 65  years, sero-
prevalence was between 70% and 80% by March 2023, age dif-
ferences having decreased. Compared with adults aged 
50–59  years, the relative risk for those aged 18–29  years was 
1.13 (95% CrI 1.11–1.16) in March  2023, but it had been 1.52 
(95% CrI 1.47–1.57) in June 2022.

Interpretation

During the prevaccine and vaccine roll-out intervals, relatively 
few people in Canada had evidence of humoral immunity to 
SARS-CoV-2 from an earlier infection. This changed rapidly 
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Figure 1: SARS-CoV-2 infection–acquired and vaccine–induced seroprevalence in Canada (March 2020 to March 2023). Anti-nucleocapsid (anti-N) and 
anti-spike (anti-S) seropositivity for all age groups combined, by region. Each point represents a seroprevalence estimate from a project at the mid-
point of a sample collection period, including all age groups. Infection-acquired seropositivity was measured as anti-N or anti-S seropositivity before 
January 2021, but only anti-N seropositivity after December 2020. The solid and dashed black lines represent the population-weighted mean of the 
anti-N and anti-S seroprevalence Bayesian model estimates, respectively. The grey bands represent the 95% credible intervals. Atlantic provinces: New 
Brunswick, Nova Scotia, Newfoundland and Labrador, Prince Edward Island; Eastern Canada: Ontario, Quebec; Western Canada: Manitoba, Saskatch-
ewan, British Columbia, Alberta, the Northwest Territories.
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during the Omicron era; by September 2022, most of the popu-
lation had detectable antibodies from infection. The rise in 
infection-induced humoral immunity occurred rapidly across 
all geographical regions and age groups in Canada. This rapid 
rise in seropositivity owing to infection occurred despite the 
roll-out of vaccines in 2021, which led to high rates of vaccine-
induced antibodies detected across the country,7 protecting 
most people in Canada from severe illness and death.7 However, 
this high vaccine coverage did not prevent the unprecedented 

transmission and epidemic growth of the Omicron variant in 
late 2021 and early 2022.8,9 Given the immune evasion and high 
transmissibility of the Omicron variant,10 most people in Can-
ada now have infection-acquired immunity and vaccine-
induced immunity, ushering in an era of hybrid immunity.11,12

The low infection rate in Canada before the arrival of the Omi-
cron variant was observed in other high-income countries in 
North America and Europe.13 A rapid rise in anti-N seroprevalence 
during the Omicron era was also observed in these countries. In 
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Figure 2: SARS-CoV-2 infection–acquired and vaccine–induced seroprevalence (March 2020 to March 2023). Anti-nucleocapsid (anti-N) and anti-spike 
(anti-S) seropositivity estimates by province and sample type. Each point represents a seroprevalence estimate from a project at the midpoint of a sam-
ple collection period. The solid and dashed black lines represent the average anti-N and anti-S seroprevalence, respectively, estimated from a Bayesian 
hierarchical model that accounts for sample size. The grey bands represent the 95% credible intervals. See the Methods section for details of the statis-
tical model. Note: PT = provincial and territorial. 



Research

  CMAJ  | August 14, 2023  |  Volume 195  |  Issue 31 E1035

Finland, for example, similar age-specific trends were observed 
in a study of residual blood samples, where peak sero-
prevalence rose from less than 10% to about 30% in Febru-
ary  2022.14 In a study of residual blood samples in the United 
States, similar age-specific trends were seen, including a slower 
rise in anti-N among older adults during the Omicron era, with 
infection-induced seroprevalence over 60% for the 18- to 
49-year age group by February 2022.15

The rapid rise in infection seen in many countries with high 
vaccine coverage is explainable, in part, by the limited effective-
ness of the ancestral SARS-CoV-2 strain–based vaccines in pre-
venting infection with the Omicron variant.16 This immune eva-
sion, combined with the high transmissibility of the Omicron 
variant, allowed the epidemic to spread rapidly.

Although the Omicron wave caused similar increases in 
infection-induced humoral immunity in multiple countries, the 
implications for population immunity may vary, owing to differ-
ences in the sequence and timing of vaccination and infection 
in each jurisdiction. In Canada, before the Omicron era, most 
people had been vaccinated, but not infected. During the Omi-
cron wave, most of the population were then infected, likely 

producing hybrid immunity that potentially could protect 
against infection for months.17,18 However, antibody levels also 
differ within Canada across geographical regions and age 
groups, likely a result of factors that we did not measure (e.g., 
occupation, booster vaccination status, comorbid conditions). 
Periodic serosurveillance in the general population in Canada, 
as well as vulnerable populations, will be important to track 
waning of serological markers.

By building on the collaboration of many researchers with 
the CITF, we were able to use the most comprehensive collec-
tion of SARS-CoV-2 seroprevalence estimates assembled for 
Canada. We also harnessed the ability of serology to distinguish 
between antibodies induced through infection and vaccination 
to clearly characterize the independent effects of vaccination 
and infection on population seroprevalence. Our results are 
consistent with those from a study in British Columbia19 but they 
further characterize interprovincial variations in Canada. This 
study is not only a comprehensive assessment of infection-
induced immunity to SARS-CoV-2 in Canada, but also shows that 
serosurveys detect a much higher infection rate than studies 
using PCR-confirmed infections.
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Figure 3: SARS-CoV-2 infection–acquired seroprevalence. Anti-nucleocapsid (anti-N) seropositivity estimates by age group (March 2020 to March 2023). 
Each age-stratified seroprevalence estimate reported is plotted both at the centre of the age stratum and the midpoint of the temporal sampling inter-
val. Each estimate is plotted at the midpoint of the sample collection period and coloured for the corresponding age group. The coloured trend lines 
represent the average anti-N seroprevalence estimated from a Bayesian hierarchical model that accounts for sample size. The coloured bands repre-
sent the 95% credible intervals. See the Methods section for details of the statistical model.
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We believe that the lessons learned from our results include 
a need for Canada to approach pandemic-related problems in a 
multidisciplinary manner, aligning expertise in public health 
and pandemic responses with input from the broader scientific 
community. Although there is a need in a pandemic to rapidly 
develop vaccines that target a pathogen broadly, control 
spread and mitigate impacts, it is difficult to fully control 
pathogens that mutate rapidly through vaccination alone 
(although vaccination markedly decreased the severity of ill-
ness from those infected with SARS-CoV-2). Measurement and 
analysis of antibodies to vaccination and infection provide cru-
cial information for clinicians and policy-makers, particularly 
when rapid emergence of mutations drastically changes inter-
pretation of other sources of surveillance data, such as con-
firmed infections, hospital admissions and deaths. Although 
currently challenging to conduct at scale, assays that can give a 
broader overall picture of immunity, such as measures of cell-
mediated immunity and neutralizing antibodies, could further 
extend our ability to monitor and understand the effects of vac-
cination and infection.

Limitations
Although these data were not sampled from a single cohort, 
many of the samples included were systematically repeated in 
the same populations. For most of the estimates used in this 
study, the population sampled was blood donors. This popu-
lation does not include children or people from remote areas, 
but SARS-CoV-2 seroprevalence estimates from blood donors 
have been shown to be comparable to estimates from the 
general population20 and, as in our study, estimates from 
blood donors can be corrected for measured sampling biases. 
Few or no results were available from some geographical 
regions in Canada, notably the 3  territories. The variety of 
assays used across the included studies is another potential 
limitation, but the sensitivity and specificity of these assays 
was comparable.

Many of the challenges encountered in this study were a 
result of the lack of coordinated, ongoing serosurveillance 
capacity in Canada. We were able to bring together many esti-
mates of seroprevalence to describe broad trajectories of popu-
lation seroprevalence. However, routine serosurveillance — 
ideal ly with individual-level linkage to other data, such as testing 
and vaccination — would allow for a deeper understanding of the 
causal relationships between the timing and nature of immune 
system challenges and antibody levels in the population.21,22

Conclusion
Most people in Canada were infected with SARS-CoV-2 for the 
first time during the Omicron era, after previously being vaccin-
ated. The highest rates of seropositivity from infection were 
seen in younger age groups and provinces in Western Canada. 
As a result, many people in Canada have hybrid immunity 
against SARS-CoV-2, but variations by age and geography and 
the potential for waning antibody levels suggest that public 
health policy and clinical decisions will need to be tailored to 
local patterns of population immunity.
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