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Abstract
We develop a proportional incidence model that estimates vaccine effectiveness
(VE) at the population level using conditional likelihood for aggregated data. Our
model assumes that the population counts of clinical outcomes for an infectious
disease arise from a superposition of Poisson processes with different vaccina-
tion statuses. The intensity function in the model is calculated as the product
of per capita incidence rate and the at-risk population size, both of which are
time-dependent. We formulate a log-linear regression model with respect to the
relative risk, defined as the ratio between the per capita incidence rates of vac-
cinated and unvaccinated individuals. In the regression analysis, we treat the
baseline incidence rate as a nuisance parameter, similar to the Cox proportional
hazard model in survival analysis. We then apply the proposed models and
methods to age-stratified weekly counts of COVID-19–related hospital and ICU
admissions among adults in Ontario, Canada. The data spanned from 2021 to
February 2022, encompassing the Omicron era and the rollout of booster vaccine
doses. We also discuss the limitations and confounding effects while advocating
for the necessity ofmore comprehensive andup-to-date individual-level data that
document the clinical outcomes and measure potential confounders.
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1 INTRODUCTION

During a public health emergency such as the COVID-
19 pandemic, when vaccination programs are dynamic
(e.g., expanding coverage and administering additional
doses), public health policy makers require timely infor-
mation on vaccine effectiveness (VE) in light of the current
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vaccine coverage. They may also want to assess coun-
terfactual scenarios, such as what may have happened
in terms of hospitalizations and other health outcomes
in the absence of vaccination programs (Ogden et al.,
2022). These assessments must be ongoing and conducted
quickly based on available surveillance data. To meet
these needs, we propose statistical methods that leverage
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aggregated count data from various public sources, such
as routine case monitoring systems, vaccination registries,
and demographic statistics.
Typically, VE studies are based on observational cohorts.

Both prospective and retrospective longitudinal cohorts
utilize detailed individual-level event history data. These
data enable the estimation of risk functions by vaccina-
tion status, which define the relative risk (RR), and thus
VE as one minus the RR, either as discrete probabilities
or person-time incidence rates. However, since such data
are often costly to collect, many studies rely on exten-
sive linkage of multiple large administrative databases to
create pseudo-cohorts.
A systematic review of COVID-19 VE (Teerawattananon

et al., 2022) analyzed 42 peer-reviewed studies covering
the period up to late 2021. All of these studies involved
extensive data linkages using administrative data sets.
For example, Lin et al. (2022) studied VE for three vac-
cine products (Pfizer, Moderna, and Johnson & Johnson)
in an observational cohort assembled from the linkage
of multiple large administrative databases in North Car-
olina that captured important information on vaccination
events and measured waning of VE. Andrews et al. (2022)
compared the effectiveness of two vaccines (Pfizer and
AstraZeneca) in England against symptomatic COVID-19,
hospitalization, and death. InCanada,Nasreen et al. (2022)
estimated the effectiveness of mRNA vaccines (Pfizer,
Moderna) and AstraZeneca against COVID-19 hospitaliza-
tion and deaths using multiprovincial linked databases.
Meanwhile, Buchan et al. (2021) studied the effective-
ness of mixed vaccine schedules (Pfizer, Moderna, and
AstraZeneca) against severe outcomes (hospitalization or
death), stratified by circulating variant (Delta or Omi-
cron) and time since last dose in Ontario, Canada, up to
December 26, 2021. These linked databases allowed for
the creation of observational cohorts with sufficient detail,
enabling the use of test-negative case-control designs and
logistic regression models, as in Andrews et al. (2022),
Nasreen et al. (2022), and Buchan et al. (2021), or Cox
regression models, as in Lin et al. (2022).
Individual-level data linkages can be time-consuming

and raise privacy concerns. In our study, we use aggregated
counts from publicly available administrative registries
without the need for data linkage. These counts include
COVID-19 hospital and intensive care unit (ICU) admis-
sions, aggregated into small time intervals and stratified
by vaccination status, age, and other covariates. They are
as timely as the reporting of ongoing disease surveillance
andmonitoring. To our knowledge, no study has been con-
ducted or published on themethods for assessing VE based
on such aggregated registry data. Therefore, we have devel-
oped methods and models that differ from the logistic and
Cox regressions used in the studies mentioned above.

Assuming that the occurrence of events arise from
a Poisson process, we formulated a proportional inci-
dence rate model for aggregated marginal counts. We
then applied these methods to analyze weekly inci-
dence counts of hospital and ICU admissions in Ontario
between January 4, 2021, and February 20, 2022, in con-
junction with information on at-risk populations cate-
gorized by age and vaccination status. A thorough dis-
cussion of confounding factors and limitations is also
provided. Although the aggregate data do not contain the
detailed information available in individual-level longi-
tudinal data, such as individual vaccination status, our
findings are consistent with those of the cited studies
and corroborate evidence from related immunological
research.
The organization of this paper is as follows: Section 2

outlines the development of our models and methods.
In Section 3, we apply our statistical methods to study
the efficacy of COVID-19 vaccines. Finally, we conclude
with a discussion of our statistical methods and results in
Section 4.

2 METHODS

2.1 Specifying the RR based on
aggregate data

Suppose that severe outcomes resulting from SARS-CoV-
2 infections arise from a counting process {𝑌(𝑡)} with an
instantaneous intensity 𝜆(𝑡) = 𝜌(𝑡)𝑁(𝑡), where 𝜌(𝑡) is the
incidence rate per person, and𝑁(𝑡) is the size of the at-risk
population consisting of individuals who are susceptible to
infection at time 𝑡 and may progress to being admitted to
the hospital or ICU. The at-risk population is stratified by
vaccination status.
In simple settings with only two vaccination groups, the

unvaccinated (𝑗 = 0) and the vaccinated (𝑗 = 1), we denote
the size of at-risk population in each group by𝑁𝑗(𝑡) for 𝑗 =
0, 1. We consider {𝑌(𝑡)} as a superposition of two counting
processes, each with intensity functions 𝜆0(𝑡) = 𝜌0(𝑡)𝑁0(𝑡)

and 𝜆1(𝑡) = 𝜌1(𝑡)𝑁1(𝑡), respectively. The instantaneous RR
is the ratio 𝑟(𝑡) = 𝜌1(𝑡)∕𝜌0(𝑡), and the VE is defined as
𝑉𝐸(𝑡) = 1 − 𝑟(𝑡).
We consider data that are only available at the aggregate

level, with time divided into intervals 𝐼𝑘 = [𝑡𝑘−1, 𝑡𝑘), where
𝑘 ranges from 1 to 𝑚. When the length of the intervals is
short, it is reasonable to assume that the at-risk popula-
tion sizes 𝑁𝑘0 and 𝑁𝑘1 remain constant during 𝐼𝑘 so that
𝑁𝑘𝑗 = 𝑁𝑗(𝑡𝑘−1), for 𝑗 = 0, 1. The number of events during
𝐼𝑘 is represented by 𝑌𝑘𝑗 with mean values 𝜇𝑘𝑗 = 𝐸[𝑌𝑘𝑗].
These mean values are given by 𝜇𝑘0 = ∫

𝑡𝑘

𝑡𝑘−1
𝜆0(𝑡)𝑑𝑡 =
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𝑁𝑘0𝑖0(𝑘) and 𝜇𝑘1 = ∫
𝑡𝑘

𝑡𝑘−1
𝜆1(𝑡)𝑑𝑡 = 𝑁𝑘1𝑖1(𝑘), respectively,

where 𝑖0(𝑘) = ∫
𝑡𝑘

𝑡𝑘−1
𝜌0(𝑡)𝑑𝑡 and 𝑖1(𝑘) = ∫

𝑡𝑘

𝑡𝑘−1
𝜌1(𝑡)𝑑𝑡.

In the application of this paper, we use weekly data.
Without loss of generality, we designate interval 𝐼𝑘 as week
𝑘 and refer to 𝑖0(𝑘) as the baseline per person weekly inci-
dence rate. The key parameter of interest is the weekly
aggregated RR

𝑟𝑘 =
𝑖1(𝑘)

𝑖0(𝑘)
, 𝑘 = 1,… ,𝑚. (1)

A crude estimate of 𝑟𝑘 is given by the ratio

𝑟∗
𝑘
=
𝑦𝑘1∕𝑁𝑘1

𝑦𝑘0∕𝑁𝑘0
, 𝑘 = 1,… ,𝑚, (2)

where 𝑦𝑘𝑗 is the observed realization of the random vari-
able 𝑌𝑘𝑗 . This corresponds to the crude estimates 𝑖∗1 (𝑘) =
𝑦𝑘1∕𝑁𝑘1 and 𝑖∗0 (𝑘) = 𝑦𝑘0∕𝑁𝑘0, with 𝜇∗

𝑘0
= 𝑦𝑘0 and 𝜇∗

𝑘1
=

𝑦𝑘1. However, in some instances, the crude estimates
may be undefined due to the lack of baseline count for
a week (i.e., when 𝑦𝑘0 = 0). Additionally, when vaccine
coverage or incidence is low, both 𝑟∗

𝑘
and the crude esti-

mates 𝑖∗1 (𝑘) and 𝑖
∗
0 (𝑘) tend to fluctuate considerably from

week to week. Given that the infectious disease incidence
rates are driven by smooth functions reflecting a complex
dynamic system, it is desirable to ensure some smooth-
ness in the estimates for 𝑖1(𝑘) and 𝑖0(𝑘). Bearing this in
mind, we propose the following likelihood-based methods
for estimating the RR.

2.2 A direct likelihood-based approach
to RR estimation

We assume that the counting process arises from a Poisson
process so that the weekly data {𝑌𝑘𝑗, 𝑗 = 0, 1; 𝑘 = 1,… ,𝑚}

are Poisson random variables with 𝜇𝑘0 > 0 and 𝜇𝑘1 > 0.
The RRs 𝑟𝑘 are specified by a vector of parameters 𝜷 and
denoted by 𝑟𝑘(𝜷) for 𝑘 = 1,… ,𝑚. The expected values are
given by 𝜇𝑘0 = 𝑁𝑘0𝑖0(𝑘) and 𝜇𝑘1(𝜷) = 𝑁𝑘1𝑖0(𝑘)𝑟𝑘(𝜷). The
log-likelihood function can be arranged as

𝑙(𝜷) =

𝑚∑
𝑘=1

[𝑦𝑘1 log 𝑟𝑘(𝜷) − 𝑦𝑘 log (𝑁𝑘0 + 𝑁𝑘1𝑟𝑘(𝜷))]

+

𝑚∑
𝑘=1

[𝑦𝑘 log [𝑖0(𝑘)(𝑁𝑘0 + 𝑁𝑘1𝑟𝑘(𝜷))] (3)

− 𝑖0(𝑘)(𝑁𝑘0 + 𝑁𝑘1𝑟𝑘(𝜷))] ,

through data partitioning as {𝑦𝑘1, 𝑦𝑘 = (𝑦𝑘0 + 𝑦𝑘1)}.

The direct method for estimating RR does not require
modeling the baseline incidence 𝑖0(𝑘), because RRs do not
depend on it. In (3), the likelihood function is partitioned
in such as way that

(i) the first term is a conditional likelihood
based on the conditional distribution of
{𝑌𝑘1|𝑌𝑘 = 𝑦𝑘}, which follows a binomial distri-
bution: 𝐵𝑖𝑛(𝑦𝑘;𝑁𝑘1𝑟𝑘(𝜷)∕{𝑁𝑘0 + 𝑁𝑘1𝑟𝑘(𝜷)}). The
corresponding likelihood function is

𝑙∗(𝜷) =

𝑚∑
𝑘=1

[𝑦𝑘1 log 𝑟𝑘(𝜷) − (𝑦𝑘0 + 𝑦𝑘1)

log (𝑁𝑘0 + 𝑁𝑘1𝑟𝑘(𝜷))] . (4)

(ii) The second term is the log-likelihood based on the
Poisson distribution of 𝑌𝑘 = 𝑌𝑘0 + 𝑌𝑘1, with a mean
value of 𝑖0(𝑘)(𝑁𝑘0 + 𝑁𝑘1𝑟𝑘(𝜷)), which cannot differen-
tiate 𝑖0(𝑘) from 𝜷.

Following the principles outlined in Kalbfleisch and
Sprott (1970) and Sprott (1975), the first term is condition-
ally sufficient for 𝜷 when knowledge of 𝑖0(𝑘) is absent.
Thus, this approach eliminates the baseline incidence 𝑖0(𝑘)
as a nuisance parameter. The direct estimation of 𝜷 =
(𝛽1, … , 𝛽𝑞) can be achieved by maximizing the likelihood
(4), which is equivalent to solving the unbiased estimating
equations based on the score functions

𝑚∑
𝑘=1

𝜕𝜇𝑘1(𝜷)

𝜕𝛽𝑙

𝑦𝑘1 − 𝜇𝑘1(𝜷)

𝑉𝑘1(𝜷)
= 0, 𝑙 = 1, … , 𝑞, (5)

where 𝜇𝑘1(𝜷) = (𝑦𝑘0 + 𝑦𝑘1)𝑁𝑘1𝑟𝑘(𝜷)∕{𝑁𝑘0 + 𝑁𝑘1𝑟𝑘(𝜷)}
and 𝑉𝑘1(𝜷) = (𝑦𝑘0 + 𝑦𝑘1)𝑁𝑘0𝑁𝑘1𝑟𝑘(𝜷)∕{𝑁𝑘0 + 𝑁𝑘1𝑟𝑘(𝜷)}

2

are the mean and variance of the conditional distribu-
tion of 𝑌𝑘1|𝑌𝑘 = 𝑦𝑘0 + 𝑦𝑘1, respectively. Solving (5) for
𝛽𝑙, 𝑙 = 1, … , 𝑞, yields asymptotically unbiased estimates for
𝜷 (Godambe, 1980; Godambe & Thompson, 1974). These
estimates are also optimal as they possess the smallest
asymptotic variances (Godambe, 1980).
Upon estimating 𝜷, denoted by 𝜷, the baseline incidence

rate can be estimated by

𝑖0(𝑘|𝜷) = 𝑦𝑘0 + 𝑦𝑘1

𝑁𝑘0 + 𝑁𝑘1𝑟𝑘(𝜷)
, 𝑘 = 1,… ,𝑚 (6)

so that

𝐸[𝑌𝑘0] = 𝑁𝑘0𝑖0(𝑘|𝜷), 𝐸[𝑌𝑘1] = 𝑁𝑘1𝑖0(𝑘|𝜷)𝑟𝑘(𝜷). (7)
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The incidence rates for the vaccinated group are esti-
mated by 𝑖1(𝑘|𝜷) = 𝑖0(𝑘|𝜷)𝑟𝑘(𝜷). The estimate 𝑖0(𝑘|𝜷) in
(6) is referred to as a semiparametric estimate because,
although it does not rely on the parameterization of the
incidence rate function, it depends on the parametric RR
estimate 𝑟𝑘(𝜷). In contrast to the crude estimate 𝑟∗

𝑘
that

could be undefined if 𝑖∗
0
(𝑘) = 𝑦𝑘0∕𝑁𝑘0 = 0 for some 𝑘, the

𝑟𝑘(𝜷) are defined for all 𝑘 = 1,… ,𝑚. Although data 𝑦𝑘1
from the vaccinated group do not provide information
about 𝑖0(𝑘)without knowledge of the RR, 𝑖0(𝑘|𝜷) in (6) uti-
lizes (𝑦𝑘1, 𝑁𝑘1) by assuming that the true RRs 𝑟𝑘 are equal
to their estimated values 𝑟𝑘(𝜷).
The population incidence in the absence of vaccina-

tion is estimated by (𝑁𝑘0 + 𝑁𝑘1)𝑖0(𝑘|𝜷). The expressions
in (7) enable the validation of model predictions for inci-
dence data. Regression residuals for both the vaccinated
and unvaccinated groups can be easily obtained (see Web
Appendix A) and used to check model adequacy.

2.3 A joint likelihood approach for
estimating the RR and baseline incidence

Although the primary objective is to estimate the RR 𝑟𝑘,
joint estimation of 𝑟𝑘 and the baseline incidence rate 𝑖0(𝑘)
is useful, as when multiplied by the total population size,
𝑖0(𝑘) provides important counterfactual information, such
as what would have happened in a population without
vaccination. We specify the baseline incidence rate for
the unvaccinated population using a vector of parame-
ters 𝜽, represented as 𝑖0(𝑘; 𝜽). By partitioning the data
into {𝑦𝑘0, 𝑦𝑘1}, the full log-likelihood function (3) can be
rearranged as

𝑙(𝜽, 𝜷) =

𝑚∑
𝑘=1

[𝑦𝑘0 log 𝑖0(𝑘; 𝜽) − 𝑁𝑘0𝑖0(𝑘; 𝜽)]

+

𝑚∑
𝑘=1

[𝑦𝑘1 log 𝑖0(𝑘; 𝜽) − 𝑁𝑘1𝑖0(𝑘; 𝜽)𝑟𝑘(𝜷)]

+

𝑚∑
𝑘=1

𝑦𝑘1 log 𝑟𝑘(𝜷). (8)

The joint estimation of (𝜽, 𝜷) can be achieved by maximiz-
ing the full likelihood, as expressed in (8). It is important to
note that the direct estimate 𝑟𝑘(𝜷) from (4) and the semi-
parametric estimate 𝑖0(𝑘|𝜷) found in (6) can be viewed
as maximum likelihood estimates (MLEs) in relation to
(8) if a saturated model 𝑖0(𝑘; 𝜽) = 𝜃𝑘 (𝑘 = 1,… ,𝑚) is used.
However, 𝑖0(𝑘|𝜷) fluctuates from week to week, similar to

the crude incidence estimates 𝑖∗0 (𝑘), and is only defined
up to week 𝑚 without the capability to extrapolate into
short-term forecasts.
Public health researchers often prefer smooth base-

line incidence rate estimates that can be extrapolated
into short-term forecasts. This requires model specifica-
tion and parameterization of 𝑖0(𝑘; 𝜽). If 𝑖0(𝑘; 𝜽) is correctly
specified, maximizing 𝑙(𝜽, 𝜷) will yield efficient estimates.
However, 𝑖0(𝑘; 𝜽) is governed by a complex dynamic sys-
tem, making it challenging to capture all aspects of the
data-generating process. Furthermore, the computational
demands are prohibitive.
We propose a two-step approach. In this approach, we

model log 𝑖0(𝑘; 𝜽) as a smooth function of 𝑘 by using thin
plate regression splines as described by Wood (2003). Our
two-step approach is based on the likelihood arrangement
in Equation (8), and we argue that data from the unvacci-
nated group {𝑦𝑘0, 𝑘 = 1,… ,𝑚} is marginally sufficient for
𝑖0(𝑘; 𝜽), because in (8):

(i) the distributions of {𝑦𝑘0, 𝑘 = 1,… ,𝑚}, for any specified
𝜽, are jointly ancillary for 𝜷;

(ii) in the absence of knowledge regarding 𝜷, utilizing data
solely from the unvaccinated group does not result in
the loss of any available information about 𝜽.

These arguments are also following the principles out-
lined in Kalbfleisch and Sprott (1970) and Sprott (1975).

The first step: Assuming Poisson counts {𝑦𝑘0, 𝑘 =

1,… ,𝑚}, the first term in (8) represents the marginal
likelihood

𝑙0(𝜽) =

𝑚∑
𝑘=1

[𝑦𝑘0 log 𝑖0(𝑘; 𝜽) − 𝑁𝑘0𝑖0(𝑘; 𝜽)]. (9)

Data from the unvaccinated population {𝑦𝑘0} are used to
estimate the baseline incidence rate 𝑖0(𝑘; 𝜽). We denote
the estimated baseline incidence rate as 𝑖(𝑠𝑝)0 (𝑘) and refer
to it as the penalized spline function in accordance with
our model specification.
The second step: We insert 𝑖(𝑠𝑝)0 (𝑘) into the full log-
likelihood function 𝑙(𝜽, 𝜷) (8) as fully specified. The
likelihood function is then reduced to that for 𝜷 only
and is based on data from the vaccinated group {𝑦𝑘1, 𝑘 =
1,… ,𝑚}. The log-likelihood takes the following form:

𝑙(𝜷|𝑖(𝑠𝑝)
0

(𝑘)) =

𝑚∑
𝑘=1

[
𝑦𝑘1 log (𝑟𝑘(𝜷)) − 𝑁𝑘1 𝑖

(𝑠𝑝)
0

(𝑘) 𝑟𝑘(𝜷)
]
,

(10)
which leads to the estimation of 𝑟𝑘(𝜷) by maximization.
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YAN et al. 5

The distributions of 𝑌𝑘0 and 𝑌𝑘1 may exhibit
extra-Poisson variation. In such cases, the Poisson
log-likelihoods 𝑙0(𝜽) (9) and 𝑙(𝜷) (10) can be substituted
with those derived from negative-binomial distributions
Lawless, J.F. (1987). A detailed explanation of fitting thin
plate regression spline models to estimate the baseline
incidence rate in the first step is provided in Mullah
and Yan (2022) and Wood (2004). The key points are
summarized in Web Appendix B.
Concerning bias, the estimation of 𝑟𝑘(𝜷) in the second

step crucially depends on themodel specification of 𝑖0(𝑘; 𝜽)
in the first step. Misspecification of 𝑖0(𝑘; 𝜽) leads to biased
estimates and the amount of bias depends on the goodness-
of-fit of the model 𝑖0(𝑘; 𝜽) to data.
Regarding variance estimation, we recommend against

deriving it naively from (10), because simply applying
score functions and second-order derivatives to (10) would
result in an underestimation of the standard errors (SEs).
Meanwhile, the estimate 𝑖(𝑠𝑝)0 (𝑘), ascertained through the
penalized spline method, brings its own uncertainties,
necessitating estimation through bootstrapping. There-
fore, the bootstrapping method becomes essential for the
SE estimation of the RR.

2.4 Some further comments about the
two approaches

Both approaches include the crude estimate (2) as a special
case. In the direct approach, if a saturatedmodel 𝑟𝑘(𝜷) = 𝑟𝑘
is employed as a piecewise constant function defined for
each week 𝑘, the conditional likelihood (4) is maximized
when 𝑟𝑘 = 𝑟∗

𝑘
given by (2). In the joint likelihood approach,

the saturated model 𝑖0(𝑘; 𝜽) = 𝜃𝑘 (𝑘 = 1,… ,𝑚) concur-
rently with 𝑟𝑘(𝜷) = 𝑟𝑘 also returns the crude estimation of
𝑟𝑘.
If the primary objective is to estimate the RR, we rec-

ommend using the direct approach. This method proves
effective by utilizing both data sets, namely {𝑦𝑘0} and {𝑦𝑘1},
while also accounting for the inherent randomness present
in {𝑌𝑘0}. Moreover, it provides an appropriate estimation of
the SE.
The thin plate regression splines, as implementedwithin

the two-step approach, offer sufficient flexibility and
potential for calibration. Our simulations (detailed in
Web Appendix C) demonstrate that well-calibrated penal-
ized splines yield estimated values of 𝜷 that are very
close to those obtained through the direct approach. Both
estimates approximate the true parameter 𝜷 very well. Fur-
thermore, the confidence intervals (CIs) estimated for 𝜷
in the two-step approach, usingWald-based bootstrapping,
align well with those derived from the direct approach.

In contrast, when the two-step approach employs naively
estimated model-based SEs to obtain CIs for 𝜷, the result-
ing intervals are relatively narrower, leading to lower
coverage probabilities.
Therefore, if the goal is to simultaneously estimate both

the baseline incidence and the RR, we suggest calibrating
the spline functions in a way that ensures the estimated 𝜷
from the two-step approach aligns well with that obtained
from the direct approach. To account for uncertainties
associated with the estimated baseline incidence, boot-
strapping should be used. Similarly, the uncertainties
around the estimated RR can be addressed based on the
direct method, with support from bootstrapping.

2.5 Regression analysis

To assess VE among various groups based on factors like
age, preexisting health conditions, or distinct time frames,
we consider a covariate vector 𝒛′

𝑘
= (𝑧1𝑘, … , 𝑧𝑞𝑘) that could

be time-dependent. TheRR 𝑟𝑘(𝜷) is formulated using a log-
linear model

log 𝑟𝑘(𝜷) = 𝜷′𝒛𝑘 = 𝛽0 + 𝛽1𝑧1𝑘 +⋯+ 𝛽𝑞𝑧𝑞𝑘. (11)

Under the generalized linear model (11), the conditional
likelihood (4) in the direct approach takes the form

𝑙∗(𝜷) =

𝑚∑
𝑘=1

[
𝑦𝑘1(𝜷

′𝒛𝑘) − (𝑦𝑘0 + 𝑦𝑘1) log
(
𝑁𝑘0 + 𝑁𝑘1𝑒

𝜷′𝒛𝑘
)]
,

(12)
whereas the likelihood (10) in the second step of the two-
step approach becomes

𝑙(𝜷) =

𝑚∑
𝑘=1

[
𝑦𝑘1(𝜷

′𝒛) − 𝑁𝑘1 𝑖
(𝑠𝑝)
0 (𝑘) 𝑒𝜷

′𝒛
]
. (13)

The MLEs of 𝜷 corresponding to the direct method and
two-step approach can be obtained by directly maximizing
the likelihood functions (12) and (13), respectively, using
a nonlinear optimization tool (e.g., optim or nlm in R
Venebles, W.N. & Ripley, B.D. (2002)). Alternatively, MLEs
can be obtained by iteratively solving the estimating equa-
tions provided in Web Appendix A. The variances of these
estimates are derived using the Fisher information matrix.
Upon estimating the parameters, we can compute the

predicted values for the direct estimation approach based
on (7) as

𝐸[𝑌𝑘0] = 𝑁𝑘0

(
𝑦𝑘0 + 𝑦𝑘1

𝑁𝑘0 + 𝑁𝑘1𝑒𝜷
′𝒛𝑘

)
, 𝐸[𝑌𝑘1]
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6 YAN et al.

= 𝑁𝑘1

(
𝑦𝑘0 + 𝑦𝑘1

𝑁𝑘0 + 𝑁𝑘1𝑒𝜷
′𝒛𝑘

)
𝑒𝜷

′𝒛𝑘 .

Regression residuals for the direct estimation method are
summarized in Web Appendix A.

2.6 Extension to multiple vaccination
statuses

Our main objective here is to assess the compara-
tive risks associated with different vaccination statuses.
We will focus solely on the direct method. We con-
sider two distinct vaccination statuses labelled as 𝑗 =

1 and 𝑗 = 2. Each status is associated with a respec-
tive response, 𝑌𝑘1 and 𝑌𝑘2, compared against a baseline
represented by 𝑗 = 0. The baseline signifies the unvacci-
nated group, and their corresponding response is denoted
as 𝑌𝑘0.
In the following Section 3.2, we incorporate the booster

vaccine into this framework. We classify recipients of a
third vaccine dose as a separate vaccination status, in con-
trast to those who have been fully vaccinated with two
doses. This adjustment impacts the associated at-risk pop-
ulation sizes, leading to revised values of 𝑁𝑘1,𝑁𝑘2, and
𝑁𝑘0, respectively.
Let 𝑦𝑘1 be the count of event occurrences within time

interval 𝐼𝑘 for individuals who received two vaccine doses
(from a population of size𝑁𝑘1). The RR against the unvac-
cinated is denoted as 𝑟𝑘. Similarly, let 𝑦𝑘2 be the count
of event occurrences within the same time interval 𝐼𝑘
for those who received a third (booster) dose (from a
population of size 𝑁𝑘2).
The addition of a third dose to those who have already

received two doses has amultiplicative effect 𝜙𝑘, rendering
the RR against the unvaccinated as 𝑟𝑘𝜙𝑘. If 𝜙𝑘 is statisti-
cally significantly less than 1, it implies that the third dose
further reduces the RR among those vaccinated with two
doses compared to the unvaccinated.
In the regression analysis, covariates 𝒛may have distinct

impacts on 𝑟𝑘 and 𝜙𝑘. We can consider a pair of log-linear
models {

log 𝑟𝑘(𝜷) = 𝛽0 +
∑𝑞1

𝑗=1
𝛽𝑗𝑧𝑗𝑘 = 𝜷′𝒛,

log 𝜙𝑘(𝜸) = 𝛾0 +
∑𝑞2

𝑗=1
𝛾𝑗𝑧𝑗𝑘 = 𝜸′𝒛.

(14)

Given the marginal incidence numbers 𝑌𝑘 = 𝑌𝑘0 + 𝑌𝑘1 +

𝑌𝑘2, the conditional distributions are multinomial with
expectations

𝐸[𝑌𝑘0|𝑦𝑘] = 𝑁𝑘0

(
𝑦𝑘0 + 𝑦𝑘1 + 𝑦𝑘2

𝑁𝑘0 + 𝑁𝑘1𝑒𝜷
′𝒛 + 𝑁𝑘2𝑒𝜷

′𝒛+𝜸′𝒛

)
,

𝐸[𝑌𝑘1|𝑦𝑘] = 𝑁𝑘1

(
𝑦𝑘0 + 𝑦𝑘1 + 𝑦𝑘2

𝑁𝑘0 + 𝑁𝑘1𝑒𝜷
′𝒛 + 𝑁𝑘2𝑒𝜷

′𝒛+𝜸′𝒛

)
𝑒𝜷

′𝒛,

𝐸[𝑌𝑘2|𝑦𝑘] = 𝑁𝑘2

(
𝑦𝑘0 + 𝑦𝑘1 + 𝑦𝑘2

𝑁𝑘0 + 𝑁𝑘1𝑒𝜷
′𝒛 + 𝑁𝑘2𝑒𝜷

′𝒛+𝜸′𝒛

)
𝑒𝜷

′𝒛+𝜸′𝒛.

The conditional likelihood (12) is extended to a function of
(𝜷, 𝜸) as

𝑙∗(𝜷, 𝜸) =

𝑚∑
𝑘=1

[
𝑦𝑘1

(
𝜷′𝒛

)
+ 𝑦𝑘2

(
𝜷′𝒛 + 𝜸′𝒛

)]
(15)

−

𝑚∑
𝑘=1

𝑦𝑘 log
(
𝑁𝑘0 +

(
𝑁𝑘1 + 𝑁𝑘2𝑒

𝜸′𝒛
)
𝑒𝜷

′𝒛
)
.

WithMLE (𝜷, 𝜸), the fitted baseline incidence rate is given
by

𝑖0(𝑘|𝜷, 𝜸) = 𝑦𝑘0 + 𝑦𝑘1 + 𝑦𝑘2

𝑁𝑘0 + 𝑁𝑘1𝑒𝜷
′𝒛 + 𝑁𝑘2𝑒𝜷

′𝒛+𝜸′𝒛
.

Residual estimates are given in Web Appendix A.

3 APPLICATIONS

We obtained daily counts of vaccinated and unvaccinated
individuals, as well as daily data on new hospital and ICU
admissions stratified by age and vaccine status from the
Ontario Case and Contact Management System (Govern-
ment of Ontario, 2021; Public Health of Ontario, 2022)
between January 2021 and February 2022. To determine
the at-risk populations, we used age-stratified population
statistics for Ontario from Q2 2021, sourced from Statistics
Canada (Statistics Canada, 2021).
We aggregated daily counts into weekly totals, starting

with Week 1 on January 4, 2021, and ending with Week
52 on January 2, 2022. To make the time-series easier to
present, we continued the labelling of weeks in 2022 from
the previous year, meaning thatWeek 53 was the first week
of 2022. Our analysis was truncated by the end of Week 59,
which was on Sunday, February 20, 2022.
The first part of this section demonstrates the perfor-

mance of the statistical methods by analyzing a subset
of COVID-19 hospital admission data for two 10-year
age cohorts: 30–39 and 70–79 years, assuming that 𝑟𝑘 is
piecewise constant. The second part focuses on apply-
ing the statistical analysis to the entire adult population
in Ontario, considering both hospital and ICU admis-
sions as endpoint events. These analyses are stratified
by age cohorts, with log 𝑟𝑘 modeled as a linear func-
tion of time and other covariates, including the additional
time effect during the Omicron era and the effect of the
booster vaccine.
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YAN et al. 7

We do not differentiate among vaccine types or brands.
We use the term “at-risk populations” to convey that
individuals with varying vaccination statuses are truly sus-
ceptible each week. Unfortunately, we cannot account for
thosewith immunity due to recent infections. Amore com-
prehensive discussion on potential bias will be presented
in Section 3.3.

3.1 Performance of the statistical
methods based on analysis of data in two
age cohorts

We study two age cohorts, 30–39 years and 70–79 years,
as well as two vaccination groups: vaccinated and unvac-
cinated. Vaccinated individuals are defined as those who
have received at least two doses of COVID-19 vaccine.
Data for individuals with only one dose are not analyzed,
because this group was very small during the latter half of
2021, accounting for less than 5% of the whole population
by Week 30 and 1% by Week 59. Of the 92% who received a
minimum of one dose, 98.7% received their second or third
dose by the end of the study period.
The RR 𝑟𝑘(𝜷) is modeled as a piecewise constant

function across three distinct periods:

𝑟𝑘(𝜷) = 𝛽0, if 𝑘 ∈ Θ0; 𝑟𝑘(𝜷)

= 𝛽1, if 𝑘 ∈ Θ1; 𝑟𝑘(𝜷) = 𝛽2, if 𝑘 ∈ Θ2,

whereΘ0 is the period from the beginning of 2021 until the
last week when the two-dose coverage is less than 50% in a
given age cohort; Θ1 spans from the first week when two-
dose coverage reaches 50% or more until Week 49; and Θ2

covers the period fromWeek 50 of 2021 to February 20, 2022
(Week 59), which is the end of the time series for this analy-
sis. For the 30–39 age group,Θ1 starts atWeek 29, while for
the 70–79 age group,Θ1 starts at Week 25 due to age-based
vaccination prioritization in Ontario. We compare results
using the two estimation approaches.

The direct estimation:
The RRs 𝛽0, 𝛽1, and 𝛽2 are estimated by maximizing the
conditional likelihood (4), which is separately defined for
each of 𝑘 ∈ Θ0, 𝑘 ∈ Θ1 and 𝑘 ∈ Θ2 as

𝑙∗(𝛽𝑗) =
∑
𝑘∈Θ𝑗

[
𝑦𝑘1 log 𝛽𝑗 − (𝑦𝑘0 + 𝑦𝑘1) log

(
𝑁𝑘0 + 𝑁𝑘1𝛽𝑗

)]
.

The 95% CIs for 𝛽𝑗 can be directly obtained from the
conditional likelihood using the likelihood ratio statis-
tics (Kalbfleisch, 1985; Sprott, 2000). Based on the MLEs
𝛽𝑗 , the incidence rates for unvaccinated and vaccinated

populations are fitted by

𝑖0(𝑘|𝛽𝑗) = 𝑦𝑘0 + 𝑦𝑘1

𝑁𝑘0 + 𝑁𝑘1𝛽𝑗
, 𝑖1(𝑘|𝛽𝑗) (16)

= 𝑖0(𝑘|𝛽𝑗)𝛽𝑗; 𝑘 ∈ Θ𝑗 , 𝑗 = 0, 1, 2. (16)

The two-step approach:
Assuming the count data for all 59 weeks among unvacci-
nated individuals follow negative binomial distributions,
a penalized spline estimate 𝑖(𝑠𝑝)0 (𝑘) is obtained in the first
step. In the second step, the RRs 𝛽𝑗 , 𝑗 = 0, 1, 2, are esti-
mated for three distinct periods bymaximizing (10), which
has an explicit solution given by

𝛽𝑗 =

∑
𝑘∈Θ𝑗

𝑦𝑘1∑
𝑘∈Θ𝑗

𝑁𝑘1𝑖
(𝑠𝑝)
0 (𝑘)

.

We use the Wald-based bootstrapping procedure to obtain
CIs. The incidence rate in the vaccinated group is calcu-
lated as 𝑖(𝑠𝑝)1 (𝑘|𝛽𝑗) = 𝑖

(𝑠𝑝)
0 (𝑘)𝛽𝑗; 𝑘 ∈ Θ𝑗 , 𝑗 = 0, 1, 2.

Comparison:
The results from both methods are presented in Table 1.
The point estimates by the two methods are nearly identi-
cal for both age groups and across the three periods. The
CIs from the two approaches are in agreement in most
cases. However, some discrepancies are expected because
the direct approach captures the randomness in the data
{𝑌𝑘0} from the unvaccinated group in the conditional like-
lihood (4), whereas the two step approach does not involve
data {𝑌𝑘0} in its “likelihood” (10), and the randomness of
these data is reflected in the uncertainty of the estimate
𝑖
(𝑠𝑝)
0 (𝑘) via bootstrapping.
Figure 1 displays the predicted incidence rates for both

unvaccinated and vaccinated populations. The “raw data”
are presented as circles in the form of the crude incidence
rates 𝑦𝑘0∕𝑁𝑘0 and 𝑦𝑘1∕𝑁𝑘1. The dotted lines correspond
to estimates based on the direct method as calculated
by (16), and closely track the crude incidence rates. The
smoother solid trend lines represent 𝑖(𝑠𝑝)0 (𝑘) and 𝑖(𝑠𝑝)1 (𝑘|𝛽𝑗)
from the two-step approach, and they agree well with the
direct estimates.

3.2 Full analysis of hospital and ICU
admission data for the adult population

In the full analysis, we consider four different age groups:
20–49 years, 50–69 years, 70–79 years, and 80+ years,
with two vaccination statuses: those who received only
two doses of the vaccine versus those who received a

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13915 by T
est, W

iley O
nline L

ibrary on [09/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 YAN et al.

TABLE 1 Numerical comparisons of the two estimation approaches. Numbers in brackets are estimated 95% confidence intervals. The
intervals correspond to the direct approach are based on the likelihood ratio statistics derived from the conditional likelihood (4). Those
correspond to the two-step approach are calculated based on the Wald-based bootstrap standard errors.

Direct estimation Two-step approach
30–39 years
Θ1 ∶Week 1–28 𝛽0 = 0.054 (0.016,0.127) 𝛽0 = 0.054 (0.001,0.107)
Θ2 ∶Week 29–49 𝛽1 = 0.021 (0.013,0.031) 𝛽1 = 0.021 (0.013,0.030)
Θ3 ∶Week 50–59 𝛽2 = 0.222 (0.179,0.275) 𝛽2 = 0.223 (0.190,0.256)
70–79 years
Θ1 ∶Week 1–24 𝛽0 = 0.050 (0.026,0.084) 𝛽0 = 0.051 (0.021,0.081)
Θ2 ∶Week 25–49 𝛽1 = 0.067 (0.057,0.079) 𝛽1 = 0.067 (0.057,0.077)
Θ3 ∶Week 50–59 𝛽2 = 0.177 (0.161,0.193) 𝛽2 = 0.181 (0.164,0.198)
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30−39 years: vaccinated (enlarged)

Weeks of 2021

W
ee

kl
y 

ad
m

is
si

on
 r

at
es

0 10 20 30 40 50 60

0e
+

00
1e

−
05

2e
−

05
3e

−
05

4e
−

05

The direct approach: fitted baseline times RR
The two−step approach: spline baseline function times RR
The crude estimates

70−79 years, vaccinated (enlarged)
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F IGURE 1 Predicted weekly hospital admission rates 𝑖0(𝑘) and 𝑖1(𝑘) (lines) against crude incidence rates (circles). Note that the scale of
the y-axis for the 70–79 years is 10 times of that for the 30–39 years.

third booster dose. The questions to be investigated are as
follows:

(1) Are there significant drifts over time in the RRs for
those who received only two doses?

(2) How significant is the Omicron era in influencing
changes in these RR s for those who received only two
doses?

(3) What is the effect of a third (booster) dose on the time-
trend of the RR?
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YAN et al. 9

The Omicron variant in Ontario was first identified on
November 21, 2021 (Week 47) and its prevalence exceeded
90% among cases by December 21 (Week 51). In Ontario,
the ramp up of the third dose began around Week 50
(December 13)when all individuals aged 50 years and older
became eligible. Therefore, the period Θ2 fromWeek 50 of
2021 until February 20, 2022 (Week 59) encompasses the
Omicron era while coinciding with the ramping up of the
third dose.
To address Question 1, we define the time-varying

covariate 𝑧1𝑘 = 𝑘. For Question 2, we define 𝑧2𝑘 = 1 if
𝑘 = 50,… , 59, and 0 otherwise. To address Question 3, we
use the same covariate 𝑧2𝑘. The regression models (14) are
given by{

log 𝑟𝑘 = 𝛽0 + 𝛽1𝑘 + 𝛽2𝑧2𝑘,

log 𝜙𝑘 = 𝛾𝑧2𝑘,
𝑘 = 1,… , 59, (17)

where 𝛽1 captures the drift, 𝛽2 captures the Omicron
effect, and 𝛾 signifies the booster effect, which addresses
Question 3. The conditional likelihood (15) is given by

𝑙∗(𝜷, 𝛾) =

59∑
𝑘=1

[(𝑦𝑘1 + 𝑦𝑘2)(𝛽0 + 𝛽1𝑘 + 𝛽2𝑧2𝑘)] + 𝛾

59∑
𝑘=1

𝑦𝑘2𝑧2𝑘

(18)

−

59∑
𝑘=1

𝑦𝑘 log
(
𝑁𝑘0 + (𝑁𝑘1 + 𝑁𝑘2𝑒

𝛾𝑧2𝑘 )𝑒𝛽0+𝛽1𝑘+𝛽2𝑧2𝑘
)
,

where 𝑦𝑘1 is the weekly incidence counts for those who
only received two doses, and 𝑦𝑘2 is the weekly inci-
dence counts for those who received the third dose. The
total incidence count is 𝑦𝑘 = 𝑦𝑘0 + 𝑦𝑘1 + 𝑦𝑘2. The at-risk
populations are defined accordingly and denoted as
𝑁𝑘0,𝑁𝑘1, and 𝑁𝑘2. The MLEs are (𝛽0, 𝛽1, 𝛽2, 𝛾).
We conducted separate analyses for weekly hospital

admissions and weekly ICU admissions, and the results
are presented in Table 2. The positive drift over time 𝛽1
is significant in all age groups, and the significance level
increases with age (i.e. smaller 𝑝-values). This finding
aligns well with VE studies Lin et al. (2022), Andrews
et al. (2022), and Buchan et al. (2021), which indicate faster
vaccine waning among older populations.
The VE is calculated by

𝑉𝐸𝑘 =

⎧⎪⎨⎪⎩
1 − 𝑒𝛽0+𝛽1𝑘+𝛽2𝑧2𝑘 , if receiving 2 doses only,

1 − 𝑒
𝛽0+𝛽1𝑘+

(
𝛽2+𝛾

)
𝑧2𝑘 , with 3 doses.

(19)
The estimated parameters in Table 2 suggest that, beyond
the existing linear time-drift of the declining VE, there was
significant further reduction of VE during theOmicron era

among individuals who received only two doses. However,
the third dose offered good protection against hospital and
ICU admissions, as illustrated in Figure 2. For Week 59
(between February 14 and February 20, 2022):

(1) the effectiveness of the third vaccine dose (𝑉𝐸59)
against hospital admissions increased from 58% (2
doses only) to 85% (3 doses) for 20- to 49-year-olds,
72% to 93% for 50- to 69-year-olds, 47% to 91% for
70- to 79-year-olds, and 11% to 81% for those aged 80
and above;

(2) the effectiveness of the booster vaccine (𝑉𝐸59) against
ICU admissions increased from 68% to 82% in the 20–
49 age group, 78% to 95% in the 50–69 age group, 61%
to 95% in the 70–79 age group, and 32% to 89% in
individuals 80 years and older.

The model fitted baseline weekly incidence rate in the
unvaccinated is given by

𝑖0(𝑘|𝜷, 𝜸) = 𝑦𝑘0 + 𝑦𝑘1 + 𝑦𝑘2

𝑁𝑘0 + 𝑁𝑘1𝑒𝛽0+𝛽1𝑘+𝛽2𝑧2𝑘 + 𝑁𝑘2𝑒
𝛽0+𝛽1𝑘+

(
𝛽2+𝛾

)
𝑧2𝑘

,

and the model predicted incidence counts are

𝐸[𝑌𝑘0] = 𝑁𝑘0𝑖0(𝑘|𝜷, 𝜸),
𝐸[𝑌𝑘1] = 𝑁𝑘1𝑖0(𝑘|𝜷, 𝜸)𝑒𝛽0+𝛽1𝑘+𝛽2𝑧2𝑘

and 𝐸[𝑌𝑘2] = 𝑁𝑘2𝑖0(𝑘|𝜷, 𝜸)𝑒𝛽0+𝛽1𝑘+(𝛽2+𝛾)𝑧2𝑘 .
Using the estimates fromTable 2, predicted values are plot-
ted in Figures 3 and 4. It is evident that the predicted
values align well with the observed data. Moreover, the
residual plots (not displayed) exhibit random dispersion
around zero without discernible patterns, suggesting that
the model is adequately capturing the data.

3.3 Limitations

3.3.1 Natural immunity due to prior
encounters with infectious agents

The aggregated data analyzed in our study lack informa-
tion on prior exposure to infections. As such, we could
not determine the percentage of individualswith infection-
induced immunity within the “at-risk” populations with
sizes 𝑁𝑘0, 𝑁𝑘1, and 𝑁𝑘2. Assuming that each of these sub-
populations shares an equal proportion of individuals with
preexisting immunity, this proportion would be cancelled
out in the score functions corresponding to the condi-
tional likelihoods, leaving the estimated RRs unchanged.
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10 YAN et al.

TABLE 2 Results for weekly hospital and intensive care unit (ICU) admissions in two separate analyses, where 𝛽1 signifies the drift over
time; 𝛽2 signifies the Omicron effect and 𝛾 signifies the booster (third dose) effect.

Weekly hospital admissions
20–49 years 50–69 years

𝜷 s.e.(𝜷) 𝑝 -value 𝜷 s.e.(𝜷) 𝑝-value
𝛽0 −5.378 0.605 −4.560 0.359
𝛽1 0.045 0.015 0.0025 0.030 0.009 0.0008
𝛽2 1.869 0.245 3 × 10−14 1.538 0.152 < 10−16

𝛾 −1.039 0.114 2 × 10−5 −1.398 0.065 < 10−16

70–79 years 80+ years
𝜷 s.e.(𝜷) 𝑝 -value 𝜷 s.e.(𝜷) 𝑝-value

𝛽0 −4.067 0.394 −3.302 0.203
𝛽1 0.034 0.010 0.0004 0.041 0.006 4 × 10−13

𝛽2 1.425 0.168 < 10−16 0.796 0.140 1 × 10−8

𝛾 −1.819 0.060 < 10−16 −1.673 0.046 < 10−16

Weekly ICU admissions
20–49 years 50–69 years

𝜷 s.e.(𝜷) 𝑝 -value 𝜷 s.e.(𝜷) 𝑝-value
𝛽0 −9.373 1.815 −6.340 0.851
𝛽1 0.135 0.042 0.001 0.062 0.020 0.002
𝛽2 0.298 0.571 0.6 1.167 0.316 0.0002
𝛾 −0.562 0.313 0.3 −1.494 0.147 < 10−16

70–79 years 80+ years
𝜷 s.e.(𝜷) 𝑝 -value 𝜷 s.e.(𝜷) 𝑝-value

𝛽0 −5.192 1.043 −5.828 1.058
𝛽1 0.043 0.025 0.09 0.087 0.026 0.0009
𝛽2 1.749 0.405 0.00002 0.293 0.491 0.55
𝛾 −2.076 0.161 < 10−16 −1.820 0.185 < 10−16

However, a substantial bias arises if the proportions of
individuals with preexisting immunity vary among these
subpopulations. For instance, if 𝑁𝑘0 contains a higher
percentage of individuals with immunity acquired from
recent infections compared to 𝑁𝑘1 and 𝑁𝑘2, RRs would be
overestimated, and VE would be underestimated.
Our analysis may appear to indicate that vaccinations

(including the third dose) in the 20- to 49-year age group
have been less effective after Week 49 than in the 50- to
69-year age group and even less so compared to the 70-
to 79-year age group in some settings (see Table 2 and
Figure 2). However, publicly reported case surveillance
data fromOpenGovernment Licence-Ontario (Web-1) and
test positivity rates from the Open Laboratory Information
System (Web-2) indicate that the population under 49 years
of age had thehighest proportion of test-positive cases from
July to October 2021. Although these data do not provide
a complete picture of the transmission due to unknown
factors such as testing and ascertainment rates (Lawless
& Yan, 2021), they seem to suggest that individuals aged
20 to 49 were predominantly affected by infections during

that period. If most of these infections during this period
occurred among the unvaccinated (according to anecdote)
and if the circulating strains during these months resulted
in at least partial immunity against the Omicron variant,
which emerged in early December 2021, this may par-
tially explain the apparent reduction in VE for this age
group. However, these hypotheses can be only verified
using comprehensive longitudinal cohorts that document
vaccination timing, dose numbers, and infection events,
including infecting variant. Unfortunately, the available
data in this study do not have the required information.

3.3.2 Differential risk-taking and adherence
to other public health measures
Vaccinated and unvaccinated individuals may exhibit
different attitudes towards risk-taking and compliance
with supplementary public health measures, including
mask-wearing and social distancing. These behaviors
could be further confounded with age and may also corre-
latewith the differential acquired immunity resulting from
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F IGURE 2 Vaccine effectiveness with respect to hospital and intensive care unit (ICU) admissions, calculated by (19) based on
parameters from Table 2.

virus exposure. However, this aspect is more difficult to
quantify, even within longitudinal cohorts.

3.3.3 Incidental hospital and ICU
admissions
Our model and method (described in Section 3.2) can
be used to extend the response variables 𝑌𝑘1 and 𝑌𝑘2 to
multiple types, not necessarily limited to vaccine types.
There have been discussions concerning the distinction
between hospital and ICU admission resulting directly
from COVID-19 infection and “incidental admissions”
(referring to patients admitted to the hospital or ICU for
othermedical reasonswho are incidentally diagnosedwith
COVID-19 infection). Unfortunately, the data used in this
study do not contain an indicator to distinguish the reason
for admission. If a longitudinal database were available,
these indicators could have been identified. If such data
were available at an aggregate level, our method could be
extended to analyze them.

3.3.4 Comorbidity
Comorbidity is a crucial confounding factor that operates
at multiple levels. First, it affects the trends of at-risk pop-
ulations 𝑁𝑘0, 𝑁𝑘1, and 𝑁𝑘2 over time, since each new
vaccine rollout (such as the second, third, and fourth
doses) prioritizes individuals with comorbidities before
expanding to the general population. Second, it is associ-
atedwith incidental hospital and ICU admissions. Third, it
is correlated with age. Notably, comorbidity is a prominent
feature in the 80+ years age group, as clearly demon-
strated in Figure 2. Longitudinal individual-based cohort
data offer superior control over this confounding factor
compared to coarsely aggregated count data.

3.3.5 Waning of acquired immunity

In Section 3.2, we intentionally avoided using the term
“waning” to describe the decline of VE over time. This
phenomenon cannot be accurately assessed without a
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F IGURE 3 Predicted weekly hospital admission rates based on parameters in Table 2 against crude estimates based on reported data
(shown as circles).

high-quality longitudinally followed cohort, because wan-
ing is a function of time that must be measured for each
individual from a defined vaccination date. Moreover, it
also depends on the circulating variants since the time of
vaccination. Lin et al. (2022) measured the waning effect
starting from the vaccination date of the first dose, while
Buchan et al. (2021) used the time since the last dose and
stratified their analysis by Delta and Omicron variants.
Unfortunately, the aggregated dataweuse in our study lack
such detailed information. Hence, the best we can provide
is an empirical observation of the diminishing VE at the
population level over time.

3.3.6 Age
Age is inherently associated with all the factors discussed
above, making it a confounding factor as well. There-
fore, we deliberately refrained from incorporating age as a
covariate in our regression analysis. Instead, we conducted
age-stratified analyses to account for its influence.

4 DISCUSSIONS AND CONCLUSION

There is no substitute for high-quality, individual-based
longitudinal cohort data combined with an individual-
based statistical model when analyzing event history
processes in a population. It is also crucial to account for
potential confounders. However, obtaining representative
high-quality data and controlling for confounding factors
pose significant challenges. Separating the “pure” VE from
the influence of other public health measures proves to be
a difficult task.
Considering the readily available data sources and

acknowledging their limitations, we have developed novel
statistical models and methods to demonstrate their appli-
cation using aggregate-level COVID-19 data. Our proposed
proportional incidence rate model is based on the RRs
𝜌1(𝑡)∕𝜌0(𝑡) (aggregated as 𝑟𝑘 in (1)), which determine VE.
This model differs subtly from the proportional inten-
sity model of the two counting processes with intensi-
ties 𝜆0(𝑡) = 𝜌0(𝑡)𝑁0(𝑡) and 𝜆1(𝑡) = 𝜌1(𝑡)𝑁1(𝑡). Given the
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F IGURE 4 Predicted weekly intensive care unit (ICU) admission rates based on parameters in Table 2 against crude estimates based on
reported data (shown as circles).

discrete (i.e., aggregated) nature of the data and the model
formulation, we presented the conditional likelihoods (4),
(12), and (15), treating the baseline incidence rate 𝑖0(𝑘) as
a nuisance parameter. Similar to the proportional hazards
model in survival analysis, 𝑖0(𝑘) can be estimated semi-
parametrically after estimating the RR function using the
conditional likelihood. Although we tailored these mod-
els and methods for a specific application, they can be
extended to other applications with similar settings and
data features.
We have demonstrated that event counts (e.g., hospital

and ICU admissions) within a vaccinated cohort are con-
ditionally sufficient for estimating RR (when it is the only
objective), given the total numbers of these occurrences
across the entire population. Additional trend informa-
tion for the risk functions that define the RR can be
enhanced by incorporating a separate penalized spline
model. This model utilizes the aggregated counts of events
in the unvaccinated group as the baseline incidence rate
for the counterfactuals.

The applications presented in Section 3 not only illus-
trate the statistical models and methods proposed in
Section 2, but also extend the study period to include
the Omicron era and the introduction of third vaccine
dose until February 2022. These aspects have not been
addressed in the existing literature we reviewed. Our
findings are in agreement with other studies, including
test-negative case-control and cohort studies Teerawat-
tananon et al. (2022), Andrews et al. (2022), Buchan et al.
(2021), and Lin et al. (2022). In particular, our study
and Buchan et al. (2021) covered the same population
using an identical mixed vaccine schedule, yielding highly
consistent results.
We extensively discussed the limitations and confound-

ing factors in Section 3.3, emphasizing the need for
improved data collection practices. This includes ensuring
representativeness, comprehensive coverage, individual-
level documentation of event history, and capturing poten-
tial confounding variables. Our recommendation extends
beyond COVID-19 and applies to other infectious diseases,
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promoting the development of a more resilient and adapt-
able public health infrastructure and response. Despite
its limitations, this paper offers a valuable approach for
examining time-related factors at an aggregate level.
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