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ABSTRACT
Contact tracing is an important intervention measure to control
infectious diseases. We present a new approach that borrows the
edge dynamics idea from networkmodels to track contacts included
in a compartmental SIR model for an epidemic spreading in a ran-
domlymixed population. Unlike networkmodels, our approach does
not require statistical information of the contact network, data that
are usually not readily available. The model resulting from this new
approach allows us to study the effect of contact tracing and isola-
tion of diagnosed patients on the control reproduction number and
number of infected individuals. We estimate the effects of tracing
coverage and capacity on the effectiveness of contact tracing. Our
approach can be extended tomore realistic models that incorporate
latent and asymptomatic compartments.
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1. Introduction

The introduction of a novel or rare transmissible pathogen into a susceptible population
requires strong measures to control or prevent ongoing transmission. Recent examples
include Ebola virus, the novel coronavirus causing severe acute respiratory syndrome
(SARS), and the novel coronavirus SARS-CoV-2 causing coronavirus disease (COVID-19).
Depending on the pathogen, these measures include pharmaceutical interventions (e.g.
vaccination and antivirals) or non-pharmaceutical interventions (e.g. social distancing,
mask-wearing, ventilation, business and school closures, and contact tracing). Specifi-
cally, contact tracing is a crucial public health intervention strategy for emerging and
re-emerging infectious diseases to contain and prevent the further spread of the disease
[16, 27]. Following the testing and isolation of a positively diagnosed infectious case, con-
tact tracing is initiated: contacts of the diagnosed case are identified for quarantine and
subsequent testing and isolation are undertaken as required. The isolation of infectious
individuals during their infectious period is crucial for inhibiting further transmission.
Studies have shown that contact tracing can be effective in reducing the control repro-
duction numberRc of SARS-CoV-2, delaying the epidemic peak, and decreasing the epi-
demic growth rate, particularly in the presence of other non-pharmaceutical interventions;
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however, contact tracing on its own may not be able to adequately control an epidemic [6,
10–12, 15, 22].

There are challenges and limitations that can impact the effectiveness of contact tracing
measures. In the initial stages of an emerging outbreak, proper laboratory diagnostics may
not be readily available and must be developed before being able to correctly diagnose
infected patients [4, 34]. As well, case definitions, testing criteria, isolation procedures,
and other public health interventions may vary over time in terms of their implementation
[28, 34].

Contact tracing effectiveness is dependent on the proportion of transmission occur-
ring from individuals in a pre-symptomatic or asymptomatic stage of disease as well as
the number of secondary infections resulting from one infectious individual [6, 10]. For
example, if a pathogen such as SARS-CoV-2 can be transmitted during a pre-symptomatic
stage or from a fully asymptomatic infected individual [32] but guidelines for testing and
isolation of infectious cases are based on symptomatic criteria alone, subsequent contact
tracing activities may not capture a large fraction of infectious individuals that are con-
tributing to the growing number of community-based infections in the population; thus,
the epidemic may not be contained in this scenario [12]. Additionally, the evolution of
pathogen characteristics over time can lead to changes in transmission capabilities and
disease presentation. For example, the transmissibility and infectiousness of SARS-CoV-2
variants over the course of the COVID-19 pandemic have varied greatly [5, 23]. As infec-
tions increase, there may also be challenges in maintaining appropriate and sustainable
resources and capacity levels. Laboratories may be hindered in their ability to undertake
timely and accurate testing and contact tracers may become overwhelmed in attempting
to identify contacts in a timely fashion [3].

Mathematical models can be used to examine the impact of contact tracing and testing
on disease dynamics in terms of the magnitude and duration of transmission of an infec-
tious pathogen in a population [8, 22, 24]. One approach is the use of compartmental mod-
els. Those that assume a random mixing population, such as the Kermack–McKendrick
susceptible-infected-removed (SIR) model and their extensions, have been widely used to
study disease dynamics [2, 19, 26, 33]. However, while some of these models incorporate
contact tracing they are not precise because they do not track the contacts of patients,
which is crucial in understanding contact tracing [18, 31, 33]. In fact, these models assume
that a constant fraction of new infections will be traced; however, realistically this fraction
increases with the number of traced patients. Other powerful approaches that mathemat-
ically model contact tracing are stochastic models, e.g. [15, 17, 21]. These models have
been used to study the effect of contact tracing on the reduction of secondary infections
(the reproduction number). However, it can be difficult to use stochastic models to study
the dynamics of epidemics. Similarly, contact networks are used to study contact tracing
because they keep track of neighbours [7, 11, 13, 20]. However, applying contact networks
to disease dynamics requires a detailed understanding of the underlying network struc-
ture, such as the degree distribution (the distribution of the number of neighbours of a
random node) [1, 9], clustering (the fraction of edges in a triangle) [7, 13, 20], degree cor-
relation (whether nodes with many neighbours are likely to connect to each other) [13,
14], and other information on network topology [25, 29]. This network information is not
usually easily available. Additionally, while agent-based models can be useful, they require
the utilization of many parameters and computational capacity [26].
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Instead, we borrow the idea of tracing the states of nodes and their contacts from contact
networkmodels to develop a new compartmental model for contact tracing. In this model,
we keep track of the states of the patient and the infector together in a pair. This novel
approach allows us to determine the rate that patients are contact traced. Our new model
is introduced in Section 2. For validation, in Section 3, we introduce an agent-basedmodel
for contact tracing of an SIR epidemic, which is used to compare the simulations with the
solutions of our model. In Section 4, the control reproduction number is calculated, and
the model dependence on the contact tracing parameters is discussed. The effect of tracing
capacity is considered in Section 5, with concluding remarks given in Section 6.

2. The compartmental SIR contact tracingmodel

We consider susceptible-infected-recovered (SIR) epidemic spread in a randomly mixed
population that is subject to testing and contact tracing. The population is divided into
the susceptible (S), infectious (I), diagnosed (T for tested positive), contact tracing initi-
ated (X), and recovered and not diagnosed (R) classes. We assume that voluntary testing is
initiated by infectious symptomatic individuals and thus we ignore asymptomatic and pre-
symptomatic disease states. In addition, we assume that the diagnosed patients (T) and
contact traced individuals (X) are fully isolated, and do not transmit disease. We assume
that disease deaths are negligible, and are thus not considered here.We also ignore the pop-
ulation dynamics, so that the population size N remains constant. Assuming a randomly
mixed population, T is typically a small fraction of the total population, and the number
of contact traced (and quarantined) susceptible individuals is also a small fraction of the
population. Therefore, these quarantined susceptible individuals have a negligible effect
on disease dynamics. Thus, we ignore the contact tracing and quarantining of susceptible
individuals. We also assume that contact tracing has no effect on a T, X or R contact.

2.1. Tree of transmission

We consider disease transmission in a randomly mixed population; specifically, the tree of
transmission in such a population. Figure 1 provides a visualization of the chain of infec-
tions occurring from the introduction of an infectious individual (or node) in a population
of susceptible individuals (or nodes). The direction of the arrows in Figure 1(a) shows the
direction of transmission, or, who-infected-who. The purple nodes reflect those who have
been infected and positively diagnosed. We can ignore the remaining susceptible nodes
and examine the remaining tree of transmission and apply contact tracing (Figure 1(b)).
Notice that each individual node that has been infected is part of a pair of nodes. Here,
the orange arrows reflect the direction of contact tracing that has been initiated from the
positively diagnosed node. We now want to study this tree of transmission when diagnosis
and contact tracing occur.

2.2. Model development

To model contact tracing, we keep track of contacts that caused infections. These contacts
form a tree of infections, where the nodes are the patients, and arcs represent who-infected-
who. The infection process generates this tree dynamically, while the contact tracing
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Figure 1. (a) A population of randomly mixed nodes. The arrows between the nodes denote the chain
of transmission within the population following the introduction of an initial infectious node (∗). Pur-
ple nodes represent infectious nodes that have been tested and diagnosed positive. The red nodes are
infectious but undiagnosed. The green node represents recovery of an infectious node that has not been
diagnosed. (b) A tree of transmission resulting from interactions between infectious and susceptible
nodes. The orange arcs represent the direction of contact tracing triggered from a positively diagnosed
node.

Figure 2. Flowchart of SIR model with testing and tracing (Population Dynamics).

operates on the tree. An edge on the tree is labelled as [A � B], representing a node of
classA that was infected by a node currently in classBwhereA,B ∈ {I,T,X,R}, e.g. [I � I],
[I � T], [T � I], etc. Here, the direction of the arrow denotes the direction of transmis-
sion. A diagnosed patient (T) initiates contact tracing (and becomes X) at a rate θ , and
their I contacts are traced with probability p and become diagnosed (T). Thus, the [I � T]
and [T � I] pairs become [T � X] and [X � T], respectively, at a rate θp. This process
then propagates to all I neighbours of the newly diagnosed node.

Figure 2 shows the flowchart of the population dynamics. As in a standard SIR model,
the susceptible individuals (S) are infected and become infectious patients according to

S′ = −β
SI
N
,

where β is the transmission rate, and N is the total population size. A patient (I) may:

• recover and become R at a rate γ ; or,
• be diagnosed positive and become T at a rate τ ; or,
• be traced and also become T either in:

an [I � T] pair if their infector is diagnosed (T); or,
in a [T � I] pair if one of the contacts they infected is T.

We assume that a T individual triggers contact tracing at a rate θ and becomes X. We
also assume that a fraction p of the contacts (independent of their state) of a T individual
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Figure 3. Flowchart of Pair Dynamics.

is captured by contact tracing. This fraction p is called the coverage probability. Then,

I′ = β
SI
N

− γ I − τ I − θp([I � T] + [T � I]),

T′ = τ I + θp([I � T] + [T � I]) − θT,

X′ = θT,

R′ = γ I.

To model the dynamics of the pairs [I � T] and [T � I] (Figure 3), we start with the
dynamics of an [I � I] pair that is formed when a susceptible individual is infected. Both
[I � T] and [T � I] pairs come from an [I � I] pair. In an [I � I] pair, the first I is the
new patient and the second is the infector. There are several possibilities for how the state
of an [I � I] pair changes:

• the patient recovers at a rate γ and enters R; or,
• the infector recovers at a rate γ and the pair becomes [I � R]; or,
• the patient is voluntarily tested and diagnosed at a rate τ and the pair becomes [T � I]

(while the patient enters T); or,
• the infector is tested at a rate τ and the pair becomes [I � T]; or,
• the patient or the infector is contact-traced (described below).

The infectee in an [I � I] pair may be contact traced from one of their secondary infec-
tions, which happens in a triple interaction [T � I � I] (the underline represents the
original [I � I] pair). Similarly, the infector may be traced from their infector in triples
[I � I � T], or from another of their secondary infections in [I � I � T]. Each of these
triple interactions occurs at a rate θp (because the patient is captured by contact tracing
with a probability p).

Thus,

[I � I]′ = β
SI
N

− (2γ + 2τ)[I � I] − θp([T � I � I] + [I � I � T] + [I � I � T]) .

We also track the dynamics of the triple interactions [T � I � I], [I � I � T] and
[I � I � T]. Their dynamics further depend on the interactions of four individuals.
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Eventually, the full interaction dynamics give an infinite-dimensional system. Instead, we
use a closure method that has commonly been used in network models [30]. For exam-
ple, a [T � I � I] triple is a [T � I] pair followed by an [I � I] pair. Thus, the number of
[T � I � I] triples is the product of the number of [T � I] pairs and the average number
of [I � I] pairs where the infector of the [T � I] pair is a patient. From the random mix-
ing assumption, the average number of [I � I] pairs following an I can be approximated
as [I � I]/I. Thus,

[T � I � I] ≈ [T � I]
[I � I]

I
.

Similarly,

[I � I � T] ≈ [I � I]
[I � T]

I
.

The number of [I � I � T] triples is the product of the number of [I � I] pairs and the
average number of [T � I] pairs when the infector of the [I � I] pair has infected the T in
the [T � I] pair. That is,

[I � I � T] ≈ [I � I]
[T � I]

I
.

For the dynamics of the [I � T] pair, they come from [I � I] pairs as stated above. The
patient may recover and become R at a rate γ , or may become [T � T] if the patient is
either tested and diagnosed with a rate τ or contact traced. In the last case, the contact
tracing may be initiated by the infector (and then the pair becomes either [T � X] with
a probability p if the patient is successfully traced, or [I � X] otherwise), or initiated by
another T infected by the patient in a [T � I � T] triple interaction. And thus,

[I � T]′ = τ [I � I] + θp([I � I � T] + [I � I � T]) − (γ + τ + θ)[I � I]

− θp[T � I � T] ,

where

[T � I � T] = [T � I]
[I � T]

I
.

Finally, a [T � I] pair also comes from an [I � I] pair, and may become [T � R] if the
infector recovers, or [T � T] if the infector either tests positive or is traced (from either
the T patient in the pair, or a T infector in a [T � I � T] triple, or another T contact in a
[T � I � T] triple. Thus,

[T � I]′ = τ [I � I] + θp[T � I � I] − (γ + τ + θ)[T � I] − θp([T � I � T]

+ [T � I � T]) ,

where

[T � I � T] = [T � I]
[I � T]

I
= [T � I � T], [T � I � T] = [T � I]

[T � I]
I

.
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Therefore, the system can be written as below:

S′ = −βS
I
N

, (1a)

I′ = βS
I
N

− (γ + τ)I − θp([I � T] + [T � I]) , (1b)

[I � I]′ = βS
I
N

− 2(γ + τ)[I � I] − θp
2[T � I] + [I � T]

I
[I � I] , (1c)

[I � T]′ = τ [I � I] + θp
[I � T] + [T � I]

I
[I � I] − (γ + τ + θ)[I � T]

− θp
[T � I][I � T]

I
, (1d)

[T � I]′ = τ [I � I] + θp
[T � I][I � I]

I
− (γ + τ + θ)[T � I]

− θp
[T � I] + [I � T]

I
[T � I] , (1e)

T′ = τ I + θp([I � T] + [T � I]) − θT , (1f)

X′ = θT , (1g)

R′ = γ I . (1h)

Figure A1 in Appendix 1 gives the flowchart of the model tracking all pairs for which the
patient is an I or T. The I and T populations are I = [I � I] + [I � T] + [I � X] + [I �

R] and T = [T � I] + [T � T] + [T � X] + [T � R].

3. Model verification

To verify that themodel is a good description of the contact tracing process, we constructed
an agent-based simulation model for a contact tracing process in a randomly mixed pop-
ulation and showed that the ensemble average of the agent-based simulation agrees with
the solutions of model (1a).

Consider a population withN individuals. Initially, I0 individuals are randomly selected
and labelled infectious (I), while others are labelled susceptible (S). Each infectious indi-
vidual maintains a list of contacts (that is initially empty). Upon becoming infectious, the
individual is assigned four events. The event times are calculated as the current time (of
becoming infectious) plus a waiting time. The events are

• a transmission event with a waiting time randomly drawn from an exponential distri-
bution with a rate β ;

• a recovery event with a waiting time (i.e. the infectious period) randomly drawn from
a probability distribution with a density fI(t);

• a test event with a waiting time randomly drawn from a probability distribution with a
density fT(t).

• a contact tracing event with waiting time randomly drawn from a probability distribu-
tion with a density fX(t).
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Note that only infectious individuals have events attached. The earliest event of all indi-
viduals is determined and the corresponding infectious individual is noted. The current
time is then set to the next event time. The states are adjusted according to the following
algorithm:

• If it is a transmission event, then a contact is randomly chosen assuming individuals
are uniformly distributed in the population. If the contact is susceptible, then the con-
tact becomes infectious. To implement contact tracing, the contact is added to the list
of contacts of the infectious individual. The infectious individual is also added to the
contact list of the contact. A new contact event with an i.i.d. waiting time is assigned to
the infectious individual.

• If it is a recovery event (at the end of the infectious period), the individual is labelled
recovered, and the contact list and all remaining events attached to this individual are
cleared. A recovered individual obtains lifetime immunity andwill not be infected again.

• If it is a test event, then the infectious individual is relabeled diagnosed (T). A contact
tracing event with a waiting time drawn from the distribution fX(t) is assigned to the
diagnosed individual.

• If it is a contact tracing event, each contact in their contact list is traced. If the contact
is infectious, then the contact becomes diagnosed with a probability p (i.e. the contact
tracing coverage probability). Otherwise, the contact remains intact. The contact tracing
process is recursively applied to the contacts. After all the contacts are traced, the contact
list and all remaining events attached to this individual are cleared. Thus, we do not keep
track of recovery of diagnosed individuals in this process, and diagnosed individuals are
fully isolated and do not further infect others.

The earliest event has now been handled. We then inspect the next event. This process
is repeated until no event remains, or a designated time is reached in the simulation.

To compare with our compartmental SIR contact tracing model, the infectious period
density fI(t) is assumed exponential with rate γ , the test waiting time density fT(t) is
assumed exponential with rate τ , and the contact tracing waiting time density fX(t) is
assumed exponential with rate θ .

Figure 4 shows the comparison of I(t) numerically solved from the compartmental SIR
contact tracingmodel (Equation (1a)-(1h)) with the ensemble average of 100 runs of agent-
based simulations with identical parameter values and initial conditions. The numerical
solutions of our model agree well with the agent-based simulations, especially in the initial
exponential growth phase. Although our model is motivated by the COVID-19 pandemic,
it is an oversimplification, and the parameter values are chosen only as a reasonable illus-
tration of results. Time is a continuous variable. The number of infectious individuals is
counted at the end of each time step in the simulation.

4. Model analysis

In this section, we calculate the control reproduction number Rc for the compartmental
SIR contact tracing model, and analyse how it depends on the contact tracing parameters.
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Figure 4. The comparison of I(t) numerically solved from our contact tracing model (1a)-(1h) with the
ensemble average of 100 runs of agent-based simulations with identical parameter values and initial
conditions. The parameter values are N = 5 × 106, β = 0.4, γ = 0.1, τ = 0.15, θ = 10, I(0) = 20, and
the coverage tracing probability (or probability of diagnosis) is p = 0.1, 0.2, . . . 0.6.

4.1. Disease-free state and control reproduction number

Without disease (i.e. I = 0), the fractions [T � I]/I and [I � T]/I are not defined. We
change the variables to avoid this problem. Let

u = [I � I]
I

, v = [I � T]
I

, w = [T � I]
I

,

then this system can be rewritten as

S′ = βS
I
N

(2a)

I′ = βS
I
N

− (γ + τ)I − θp(v + w)I , (2b)

u′ = β
S
N

(1 − u) − (τ + γ )u − θpuw , (2c)

v′ = τu + θpu(v + w) − (β + θ)v + θpv2 , (2d)

w′ = τu − (β + θ)w + θpuw . (2e)

For this system, the set {S = N, I = 0} is invariant. In addition,

H = {(N, 0, u, v,w) ∈ R
5
+, u + v ≤ 1}
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is also invariant, because [I � I] + [I � T] ≤ I. To analyse the system at the disease-free
state, we restrict the system to the invariant setH.

A disease-free equilibrium (N, 0, u∗, v∗,w∗) must satisfy the following conditions.
From (2c),

u∗ = β

β + τ + γ + θpw∗ , (3)

Substituting this into (2e) gives

G(w∗) := (β + θ)θpw∗2 + [(β + θ)(β + τ + γ ) − βθp]w∗ − βτ = 0. (4)

From (2d),

F(v∗) := θpv∗2 + (θpu∗ − β − θ)v∗ + θpu∗w∗ + τu∗ = 0. (5)

We show in Appendix 2 that this system has a unique biologically meaningful disease-free
equilibrium (DFE) that is globally asymptotically stable in the disease-free invariant set
H. Hence, we can calculate the control reproduction number by linearizing at this DFE.
Note that the u, v and w equations decouple from the linearization, the behaviour of the
linearized system only depends on

I′ = [β − γ − τ − θp(v∗ + w∗)]I .

Thus, the control reproduction number is

Rc = β

γ + τ + θp(v∗ + w∗)
. (6)

Here the denominator is the rate that an infectious individual leaves class I by recovery,
testing, or contact tracing. Thus, Rc is the number of secondary infections caused by a
typical infectious individual in a population where contact tracing and isolation of infec-
tious individuals are implemented. Note that, at the beginning of the epidemic, no one is
diagnosed yet, i.e. T = 0, and thus v = w = 0. Therefore, before any patient is diagnosed
and the contact tracing starts, the basic reproduction number is

R0 = β

γ + τ
. (7)

However, v(t) and w(t) quickly approach v∗ and w∗, respectively, while Rc becomes the
value defined in (6).

4.2. Dependency ofRc onmodel parameters

Because v∗ and w∗ depend on all of the model parameters, the control reproduction
numberRc also depends on all model parameters.

We prove in Appendix 3 that v∗ and w∗ are increasing functions of the contact tracing
coverage probability p and the testing rate τ forRc > 1. That is, the control reproduction
numberRc is a decreasing function of p and τ . This is because testing and tracing increase
the number of tested contacts with an infectious individual (i.e. the number of [I � T] and
[T � I] pairs), and thus v∗ and w∗ increase with p and τ .
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Figure 5. The contour plot of Rc as a function of the contact tracing coverage probability p and the
testing rate τ . Here β = 0.4, γ = 0.1, θ = 1.

To investigate the sensitivity ofRc to coverage tracing probability p and the testing prob-
ability τ , we plot the control reproduction number as a function of p and τ in Figure 5. This
contour plot shows thatRc decreases with both p and τ . In this figure, the level curves have
a negative slope with a magnitude less than 1. This means that a small increase in τ has the
same effect on Rc as a large increase in p. Thus, Rc is more sensitive to τ than to p. In
addition, the magnitude of the slope increases as τ increases for each fixed p; thus, the sen-
sitivity to p increases with τ . This is because more tests trigger more contact tracing, and
thus make tracing more effective.

The dependence of Rc on the tracing rate θ and the transmission rate β is difficult to
study analytically. We illustrate these dependencies using numerical simulations. Figure 6
illustrates thatRc is a decreasing function of θ , because θv∗ and θw∗ are increasing func-
tions of θ . This is because increasing θ speeds up contact tracing, and thus more contacts
are traced. Note that, as θ approaches∞, θv∗, θw∗ andRc have limits. Figure 7 shows that
Rc is an increasing function of β . Interestingly, the average number of diagnosed infectors
v∗ and the average number of diagnosed secondary infections w∗ are unimodal functions
of β . The reason for this is not intuitive. We suspect that a moderate increase in β leads to
more secondary infections, thus, increasing the average number of infectors and infectees
that are diagnosed; while this increase also speeds up contact tracing and thus removes
more infectors than infectees for very large β . Note that here, we use p = 1 to show that
even if the contact tracing coverage is 1,Rc may still be above 1 when θ is small or when
β is large.
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Figure 6. The dependence of the control reproduction numberRc , θv∗, and θw∗ on the tracing rate θ .
Here γ = 0.1, τ = 0.15, p = 1, β = 0.4. Specifically, (b) reflects the contact tracing rate initiated from
the infector and (c) reflects the rate initiated from an infectee. This figure also shows that contact tracing
is more likely to originate from an infector as θv∗ > θw∗.

Figure 7. The dependence of the control reproduction numberRc , the fraction of diagnosed infectors
(v∗), and the average number of diagnosed secondary infections (w∗) on the transmission rate β . Here
γ = 0.1, τ = 0.15, p = 1, θ = 1.

5. The effect of tracing capacity onRc

In the compartmental SIR contact tracing model, the total contact tracing rate in the pop-
ulation is θT. When the diagnosed population T is large, the contact tracing capacity
becomes a limiting factor. To understand the effect of contact tracing capacity on the effec-
tiveness of contact tracing, we model the per capita contact tracing rate θ as a decreasing
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function of T, so that θT is a saturating function of T. Specifically,

θ = θ0

1 + θ0
θ∞T

, (8)

where θ0 is the per capita tracing ratewith units 1/timewhenT is small, and θ∞ = lim
T→∞

θT
is the tracing capacity with units person/time.

At the disease-free equilibrium, T = 0 and θ = θ0, the control reproduction number
defined in (6) becomes

Rc = β

γ + τ + θ0p(v∗ + w∗)
.

On the other hand, asT → ∞, θ → 0, andRc becomesR0 in (7). Thus, when the number
of diagnosed patients T is large so that the tracing reaches capacity,Rc becomes the same
as without contact tracing. Figure 8 illustrates this effect. Note that theRc starts as the basic
reproduction numberR0 because no patient has been diagnosed. ThenRc quickly reduces
to the value given in Equation (6), and if contact tracing reaches capacityRc increases and
may approach R0 again. This may happen long before the epidemic reaches its peak. As
well, we can see that the implementation of contact tracing delays the peak of the epidemic
as shown in the comparison between the curves in both panels of Figure 8 where p = 0 (no
contact tracing) and the tracing capacity θ∞ = 100. The most significant impact, however,
is the inhibition of the growth ofRc and the associated delay and restriction of the epidemic
peak when the tracing capacity θ∞ → ∞.

6. Concluding remarks

Our novel approach for modelling contact tracing of an infectious disease (Section 2)
combines the convenience of a randomly mixed population with the precise tracking of
the contacts in a network model. Thus to apply this model, detailed population contact
information is not required.

Our analysis shows that the reproduction number Rc decreases as the contact tracing
coverage probability p increases (Appendix 3). This is to be expected because as the fraction
of individuals identified for testing and isolation increases, the remaining unidentified frac-
tion of individuals that contribute to transmission decreases. We also find that when there
is a large transmission rate β , contact tracing alone may not control the disease (Figure 7);
thus, additional public health measures to decrease the transmission rate will need to be
implemented in order for contact tracing to be effective. These findings are in alignment
with other study results mentioned previously [6, 10, 12, 15, 22, 33]. We also find thatRc
is more sensitive to the testing rate τ than to coverage probability p (Figure 5). Specifically,
when testing rate is increased,Rc becomesmore sensitive to the coverage probability. Thus,
increasing testing coverage allows the effectiveness of contact tracing to also increase.

While this model only considers symptomatic infections and symptomatic testing, we
can assess the impact of transmission from asymptomatic and pre-symptomatic infected
individuals on the ability of contact tracing to effectively control the disease. When symp-
tomatic testing is the primarymethod for identifying positive cases, this ultimately reduces
the fraction of all infectious individuals (symptomatic, pre-symptomatic, and asymp-
tomatic) who are tested, diagnosed, and isolated. This is represented by a reduced testing
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Figure 8. The change in the control reproductionnumber (Rc , shown in the toppanel), and thenumber
of infectious individuals (I, shown in the bottom panel) as a function of time. The blue dashed curve
with p = 0 reflects the case where contact tracing does not occur. Comparatively, the green dashed
curve shows the casewhere:p = 0.4 and θ∞ = 100. Finally, the red curve shows the casewherep = 0.3
and θ∞ = ∞. Here, the remaining fixed values and parameters are: N = 5 × 106, β = 0.4, τ = 0.15,
γ = 0.1, θ0 = 10.

rate τ , which thereby decreases the contact tracing coverage p. Thus, the reduction of the
fraction of individuals tested reduces the effectiveness of contact tracing. This finding was
also reported in [12].

We also show that at the initial phase of the epidemic and thus when T is small, con-
tact tracing can reduce Rc, and this also agrees with [12]. However, as T increases and
becomes large, contact tracing becomes saturated due to limited resources to effectively
trace all contacts following positive diagnosis (keeping all other parameters fixed). Thus,
Rc quickly increases back toR0 (Figure 8). Note that this only occurs when tracing capac-
ity θ∞ 	 ∞, and this reversal may occur much earlier than the actual epidemic peak.
Overall, contact tracing is most effective during the initial exponential growth phase of
the epidemic in all scenarios. We show that when all other parameters remained fixed,
(i.e. no additional interventions applied to reduce the transmission rate β) and θ∞ 	 ∞,
contact tracing reaches capacity and has limited effectiveness prior to the main peak of
the epidemic. However, when the tracing capacity θ∞ approaches∞, the epidemic peak is
not only delayed, but significantly suppressed. Note that these results implicitly assume a
positive diagnosis rate, i.e. τ > 0.

As this is a simple SIRmodel that has been extended to include both testing and contact
tracing, it does not accurately reflect the reality of many infectious diseases that do have
pre-symptomatic or asymptomatic transmission. However, this model can be extended to
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incorporate exposed, asymptomatic, and pre-symptomatic compartments as well as differ-
ing testing and isolation policies.With these extensions, this model may be fit to case count
data to estimate the contact tracing coverage p and other parameters, and these parameter
values used to evaluate the effect of contact tracing on the control reproduction number
and epidemic final size. Further, the implementation of non-pharmaceutical interventions,
vaccination, and treatment measures can also be included in the model. It is not clear
how these extensions would affect our conclusions if incorporated; this is left for future
work. In the case of SARS-CoV-2, the differences in variant transmissibility and detection
should also be considered with regard to contact tracing effectiveness. Because saturation
of contact tracing and testing capacity and resources have been shown to impact the effec-
tiveness of contact tracing activities, it would be useful to incorporate cost–benefit and
cost-effectiveness analyses to this model to help further inform public health interventions
and policies in responding to current and future epidemics of concern. It may be that if
resources for contact tracing become scarce, public health should shift to more effective
mitigation strategies.
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Appendices

Appendix 1. Flowchart of the full pair dynamics

The flowchart in Figure 3 includes only the dynamics of the pairs [I � I], [I � T] and [T � I]. The
pairs [I � X], [I � R], [T � T], [T � X] and [T � R] are not tracked in that flowchart, even though
they are valid states. In Figure A1, we give the full flowchart for all these pairs. The equations in (1a)
can be read from this flowchart with the relationships I = [I � I] + [I � T] + [I � X] + [I � R]
and T = [T � I] + [T � T] + [T � X] + [T � R].

Appendix 2. Uniqueness and stability of disease-free equilibrium

Here we show that the system (2a)-(2e) has a unique biologically meaningful disease-free equilib-
rium (DFE) that is globally asymptotically stable in the disease-free invariant setH.

Equation (4) gives a unique positive root w∗. We will show that equation (5) has two positive
roots, and only one is in the invariant regionH (i.e. biologically meaningful). This is true if

F(1 − u∗) = τu∗ + θpu∗w∗ + (θpu∗ − β − θ)(1 − u∗) + θp(1 − u∗)2 < 0, (A1)
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Figure A1. The full flowchart of the pair dynamics for Model (1a)-(1h).

and thus the larger root satisfies v∗ > 1 − u∗ and is outside of H, while the smaller root satisfies
v∗ < 1 − u∗ and is insideH. To show that (A1) is true, note that from (2e),

τu∗ + θpu∗w∗ = (β + θ)w∗.

In addition, adding (2c) and (2e) gives,

β − βu∗ − γ u∗ = (β + θ)w∗.

The above two equations give

τu∗ + θpu∗w∗ = β − βu∗ − γ u∗. (A2)

Thus,

F(1 − u∗) = β − βu∗ − γ u∗ + θp(1 − u∗) − (β + θ)(1 − u∗),

= −γ u∗ − θ(1 − p)(1 − u∗) < 0.

This implies that there is a unique biologically meaningful disease-free equilibrium (N, 0, u∗, v∗,w∗)
inH.

To study the stability of the DFE, we linearize this model about the DFE (N, 0, u∗, v∗,w∗), and
restrict to the invariant set H. The dynamics of the linearized system is only determined by the
equations of I, u, v and w. From (2c)–(2e),

u′ = β − βu − (τ + γ )u − θpuw := f (u,w) , (A3a)

v′ = τu + θpu(v + w) − (β + θ)v + θpv2 , (A3b)

w′ = τu − (β + θ)w + θpuw := g(u,w) . (A3c)

Note that u and w are independent of v. We thus first study (A3a) and (A3c). At the positive
equilibrium point (u∗,w∗) where 0 ≤ u∗ ≤ 1, the Jacobian of the (u,w) system is

J =
[−(β + τ + γ + θpw∗) −θpu∗

τ + θpw∗ θpu∗ − (β + θ)

]
.

The trace
tr(J) = −(β + τ + γ + θpw∗) + θpu∗ − (β + θ) < 0,
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and the determinant

det(J) = (β + θ)(β + τ + γ + θpw∗) − (β + γ )θpu∗ > 0.

Hence, this DFE is locally asymptotically stable.
We use the Bendixon criterion to show the global stability of the DFE. Because p ≤ 1 and u ≤ 1,

∂f
∂u

+ ∂g
∂w

= −(β + τ + γ + θpw) − (β + θ) + θpu < 0,

and thus the (u,w) system has no periodic solution in the invariant setH. Thus, inH, all solutions
satisfy u(t) → u∗ andw(t) → w∗ as t → ∞. To study the behaviour of v(t), substitute (u∗,w∗) into
the equation for v:

v′ = τu∗ + θpu∗w∗ + (θpu∗ − β − θ)v + θpv2.
Note that v∗ is the smaller root of F(v) = 0, F′(v∗) < 0, and thus v∗ is locally asymptotically stable.
Because this is a one-dimensional autonomous equation, all solutions in the invariant setH approach
the biologically meaningful DFE (N, 0, u∗, v∗,w∗).

Appendix 3. The dependence ofRc on p and τ

Here we prove that Rc is a decreasing function of the tracing coverage p and the testing rate τ . To
show the dependence on p, we calculate ∂w∗/∂p from equation (4).

∂w∗

∂p
= − ∂G/∂p

∂G/∂w∗ ,

where

∂G/∂p = (β + θ)θw∗
(
w∗ − β

β + θ

)
,

and ∂G/∂w∗ > 0 (becauseG has a positive root and a negative root, thusw∗ is the larger root of (4)).
To determine the sign of ∂G/∂p, we need to calculate the sign of w∗ − β

β+θ
. Consider

G
(

β

β + θ

)
= (β + θ)θp

(
β

β + θ

)2
+ [(β + θ)(β + τ + γ ) − βθp]

β

β + θ
− βτ

= β(β + γ ) > 0 ,

and
∂G
∂w∗

∣∣∣∣
β

β+θ

= θpβ + (β + θ)(β + τ + γ ) > 0 .

Thus, β/(β + θ) > w∗. Hence, ∂G/∂p < 0, giving ∂w∗
∂p > 0, therefore, the value of w∗ increases as

p increases.
Similarly, we calculate ∂v∗/∂p from (5). Equation (A3c) gives

θpu∗w∗ + τu∗ = (β + θ)w∗.

Substituting this into (5) gives

F = θpv∗2 + (θpu∗ − β − θ)v∗ + (β + θ)w∗ = 0. (A4)

Thus, taking the total derivative of F gives

∂v∗

∂p
= −

∂F
∂u∗

∂u∗
∂p + ∂F

∂w∗
∂w∗
∂p + ∂F

∂p

∂F/∂v∗ .

Here,
∂F
∂p

= θ(v∗)2 + θu∗v∗,
∂F
∂u∗ = θpv∗,

∂F
∂w∗ = β + θ ,
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and ∂F/∂v∗ < 0 (because v∗ is the smaller root of (A4)). The sign of ∂v∗/∂p is determined by the
sign of its numerator. From (3),

∂u∗

∂p
= − βθp

(β + τ + γ + θpw∗)2
∂w∗

∂p
− βθw∗

(β + τ + γ + θpw∗)2

= − θpu∗

β + τ + γ + θpw∗
∂w∗

∂p
− θw∗u∗

β + τ + γ + θpw∗ .

Thus,

∂F
∂u∗

∂u∗

∂p
+ ∂F

∂w∗
∂w∗

∂p
+ ∂F

∂p
= − (θp)2v∗u∗

β + τ + γ + θpw∗
∂w∗

∂p
− θ2pv∗w∗u∗

β + τ + γ + θpw∗

+ (β + θ)
∂w∗

∂p
+ θ(v∗)2 + θu∗v∗.

Note that,

− (θp)2v∗u∗

β + τ + γ + θpw∗
∂w∗

∂p
+ θ

∂w∗

∂p
= β + τ + γ + θpw∗ − θp2u∗v∗

β + τ + γ + θpw∗ θ
∂w∗

∂p
> 0 (A5)

in the case ofRc > 1, i.e. β > γ + τ + θp(u∗ + v∗). In addition,

θ2pu∗v∗w∗

β + τ + γ + θpw∗ ≤ θu∗v∗ ,

and thus
∂F
∂u∗

∂u∗

∂p
+ ∂F

∂w∗
∂w∗

∂p
+ ∂F

∂p
> 0.

This gives ∂v∗/∂p > 0. Therefore, ifRc > 1, both v∗ and w∗ are increasing functions of p. Thus,

∂Rc

∂p
< 0.

We use a similar approach to prove that Rc is a decreasing function of τ for Rc > 1. From
Equation (4),

∂w∗

∂τ
= − ∂G/∂τ

∂G/∂w∗ ,

where

∂G/∂τ = (β + θ)w∗ − β ,
and ∂G/∂w∗ > 0. Because β/(β + θ) > w∗, ∂G/∂τ < 0. Thus,

∂w∗

∂τ
= − ∂G/∂τ

∂G/∂w∗ > 0.

To calculate ∂v∗/∂p, we rewrite (5). From (A2),

F = θpv∗2 + (θpu∗ − β − θ)v∗ + β − βu∗ − γ u∗ = 0.

Thus,

∂v∗

∂τ
= −

∂F
∂u∗

∂u∗
∂τ

∂F/∂v∗ .

Here,
∂F
∂u∗ = θpv∗ − β − γ , ∂F/∂v∗ < 0.
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To determine the sign of ∂v∗/∂τ , we calculate the sign of its numerator. From (3),

∂u∗

∂τ
= − βθp

(β + τ + γ + θpw∗)2
∂w∗

∂τ
− β

(β + τ + γ + θpw∗)2

= − θpu∗

β + τ + γ + θpw∗
∂w∗

∂τ
− u∗

β + τ + γ + θpw∗ .

Thus,

∂F
∂u∗

∂u∗

∂τ
= (β + γ − θpv∗)

[
θpu∗

β + τ + γ + θpw∗
∂w∗

∂τ
+ u∗

β + τ + γ + θpw∗

]
.

In the case ofRc > 1 ( i.e. β > γ + τ + θp(u∗ + v∗)),

∂F
∂u∗

∂u∗

∂τ
> 0.

Thus, ∂v∗
∂τ

> 0. Hence, ifRc > 1, v∗ and w∗ are increasing functions of τ . Thus

∂Rc

∂τ
< 0.
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