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Abstract This paper presents a mathematical model to investigate co-infection with HIV/AIDS and zika
virus (ZIKV) in Colombia and Brazil, where the first cases were reported in 2015-2016. The model considers
the sexual transmission dynamics of both viruses and vector-host interactions. We begin by exploring the
qualitative behaviour of each model separately. Then, we analyze the dynamics of the co-infection model
using the thresholds and results defined separately for each model. The model also considers the impact
of intervention strategies, such as, personal protection, antiretroviral therapy (ART), and sexual protection
(condoms use). Using available parameter values for Colombia and Brazil, the model is calibrated to predict
the potential effect of implementing combinations of those intervention strategies on the co-infection spread.
According to these findings, transmission through sexual contact is a determining factor in the long-term
behaviour of these two diseases. Furthermore, it is important to note that co-infection with HIV and ZIKV
may result in higher rates of HIV transmission and an increased risk of severe congenital disabilities linked
to ZIKV infection. As a result, control measures have been implemented to limit the number of infected indi-
viduals and mosquitoes, with the aim of halting disease transmission. This study provides novel insights into
the dynamics of HIV/ZIKV co-infection and highlights the importance of integrated intervention strategies
in controlling the spread of these viruses, which may impact public health.

Keywords Stability · Equilibrium points · Optimal control · Personal protection · Sexual protection ·
Antiretroviral therapy · Model calibration.

1 Introduction

Human immunodeficiency virus (HIV) and zika virus (ZIKV) are two major public health concerns worldwide,
particularly in Latin America and Caribbean countries [1]. While HIV is a chronic infection that attacks
the immune system, ZIKV is transmitted by mosquitoes and can even cause congenital malformations, such
as Guillain-Barré syndrome [2–4] and microcephaly [5, 6]. On the one hand, if HIV is not treated, it can
cause Acquired Immunodeficiency Syndrome (AIDS). This virus can be transmitted through sexual contact,
syringe misuse, and vertically (from mother to child) [7]. HIV/AIDS still has no cure, so treatments seek to
lower or reduce the level of virus replication in the body of infected people, which consists of a mixture of
different drugs, commonly called antiretroviral (or combined) therapy (ART) [8]. On the other hand, ZIKV,
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unlike other arboviruses, also presents transmission through sexual contact. Some studies have demonstrated
its detection and transmission through semen, urine, and saliva [9–11].

Thus, although HIV is not a zoonotic disease, it shares specific transmission characteristics with ZIKV.
Both viruses can be transmitted through sexual contact and vertically from mother to fetus. These additional
modes of transmission can significantly increase the risk of other sexually transmitted infections in endemic
regions, particularly HIV, for both the mother and the fetus [12]. There are few case reports of ZIKV infection
in HIV-infected individuals [13]. The first recorded case of HIV/ZIKV co-infection was confirmed in a 38-year-
old patient in a Rio de Janeiro (Brazil) laboratory in 2016 [6]. In the same region, a zika case was reported
in an HIV-infected pregnant woman [14, 15]. The fetus exhibited significant abnormalities, consistent with
research on pregnant women in Brazil who were infected with ZIKV [16], and the fetus ultimately died. In
2018, five individuals from the departments of Risaralda and Sucre were informed of HIV/ZIKV co-infection
in Colombia [1]. Fortunately, these patients had reasonable immune and virologic controls when infected
with ZIKV, with no relevant differences from patients infected with ZIKV alone.

However, additional research is necessary to understand better the interactions between HIV/ZIKV co-
infection and their impact on immune response, disease severity, and control [1]. The question remains
unanswered as to whether HIV infection increases the likelihood of contracting ZIKV and whether ZIKV
infection could worsen HIV infection, particularly during pregnancy. Nevertheless, laboratory studies have
revealed that placental tissues are vulnerable to ZIKV infection [12]. In addition to causing placental dys-
function in co-infections, ZIKV infection significantly affects the host’s immune response. A recent study
indicated that ZIKV primarily targets CD14+ monocytes, particularly during pregnancy, resulting in in-
flammatory reactions and immune tolerance [12]. However,ZIKV has the potential to facilitate HIV infection
by promoting HIV replication through the release of cytokines that can activate CD4+ T cells or by binding
directly to HIV proteins that encourage HIV replication. Unlike HIV, the relationship between mother-to-
child transmission of ZIKV and fetal disease caused by ZIKV infection has not yet been established. However,
even in the presence of ART, acute viral infection is likely to intensify immune system dysfunction in HIV-
infected pregnant women, increasing the risk and consequences of mother-to-child transmission of HIV and
ZIKV [17]. Therefore, the potential interaction between HIV and ZIKV has recently garnered significant
attention. These interactions can modify the epidemiology, pathogenesis, immune response, and therapy
of both infections. For instance, co-infection can expedite HIV pathogenesis and enhance transmission by
boosting viral replication efficiency. Additionally, the spread of ZIKV infection may reveal new and more
severe clinical manifestations in immunocompromised individuals exposed to the virus.

Given the potential impact of HIV/ZIKV co-infection on public health, it is crucial to understand the
transmission dynamics of these viruses and evaluate the effectiveness of intervention strategies. Mathematical
models are crucial for understanding and providing valuable insights into public health policy decisions. To
our knowledge, there is no evidence of mathematical models studying this phenomenon in the literature.
Therefore, this study aimed to formulate and analyze an HIV/ZIKV co-infection model, assuming that both
diseases are sexually transmitted, and ZIKV is also mosquito-transmitted. The analysis of this model is
expected to identify important transmission factors that will help design and evaluate different control and
prevention strategies to minimize their impact on public health.

The organization of this study is as follows: In Section 2, the co-infection model is introduced, providing
a comprehensive understanding of its structure and dynamics. Subsequently, Sections 2.1 and 2.2 present the
individual dynamics of the HIV-only and ZIKV-only models, respectively, highlighting the unique character-
istics of each infection. Section 3 focuses on the analysis of the co-infection model, delving into the interplay
and synergistic effects between HIV and ZIKV. The optimal control problem is addressed analytically in
Section 4, emphasizing the exploration of strategies to mitigate the spread and impact of the co-infection.
Furthermore, in Section 5, a case study centred in Colombia and Brazil is presented, whereby the uncon-
trolled and controlled models are numerically analyzed using data derived from the comprehensive literature
review. Finally, in Section 6, a discussion and concluding remarks are provided, encompassing the modelling
approach, its results, along with prospects for future research and unresolved questions.
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2 The HIV/ZIKV mathematical model formulation

This model examines two distinct groups: the human (host) and mosquito (vector) populations. We assumed
that an individual who is susceptible to either disease cannot be infected with both diseases simultaneously
at the same time. The total number N(t) of people in the human population at a given time is divided
into six categories: those who are susceptible to both viruses, denoted as S(t); those who are infected with
only ZIKV but still susceptible to HIV, denoted as Iz(t); those who are infected with only HIV but still
susceptible to ZIKV, denoted as Ih(t); those who are infected with both HIV and ZIKV simultaneously,
denoted as Ihz(t); those who are infected with AIDS, denoted as A(t); and those who have recovered from
ZIKV, denoted as R(t). Thus, the total human population can be represented as the sum of all these categories
(N(t) = S(t) + Iz(t) + Ih(t) + Ihz(t) +A(t) +R(t)), as shown in Tables 2.1-2.2.

The total mosquito population Nm(t) at time t can be classified into two compartments: the susceptible
mosquito population Sm(t) and the ZIKV-carrying mosquitoes Im(t). Thus, Nm(t) = Sm(t) + Im(t) (see
Tables 2.1 and 2.2).

Variable Description
N(t) The total human population at time t
S(t) Susceptible human population at time t
Iz(t) Infected human population with only ZIKV at time t
Ih(t) Infected human population with only HIV at time t
Ihz(t) Infected human population with ZIK/HIV at time t
A(t) Infected human population with AIDS at time t
R(t) Recovered human population of ZIKV at time t
Nm(t) The total mosquito population at time t
Sm(t) Susceptible mosquito population at time t
Im(t) ZIKV-carrying mosquito population at time t

Table 2.1: Description of the state variables involved in Model (2.1).

Parameter Description Dimension
Λ Recruitment rate of humans pop× time−1

βm Infection rate of humans by contact with infected mosquitoes with ZIKV (pop× time)−1

βz Infection rate of humans by contact with humans infected with ZIKV through sexual contact (pop× time)−1

βh Infection rate of humans by contact with humans infected with HIV through sexual contact (pop× time)−1

1/σ1 Mean duration of the immunodeficiency period time
1/σ2 Mean duration of the immunodeficiency period in co-infected individuals time−1

1/µ Human mean lifespan time
µz Mortality rate by zika time−1

µh Mortality rate by AIDS time−1

µhz Mortality rate by ZIKV/AIDS time−1

1/δz Mean duration of the zika infection time
ω1 Transition probability from zika to HIV/ZIKV co-infection Dimensionless
ω2 Transition probability from HIV to HIV/ZIKV co-infection Dimensionless
ϵ Modification parameter or decrease recovery rate factor Dimensionless
Λm Recruitment rate of mosquitoes pop× time−1

αm Infection rate of mosquitoes by contact with infected humans with ZIKV (pop× time)−1

1/µm Mosquito mean lifespan time

Table 2.2: Description and dimension of the parameters involved in Model (2.1.
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dS

dt
= Λ− (βmIm + βzIz + βhIh)S − µS

dIz
dt

= (βmIm + βzIz)S − ω2βhIzIh − (µz + δz + µ)Iz

dIh
dt

= βhIhS − ω1(βmIm + βzIz)Ih − (σ1 + µ)Ih

dIhz
dt

= ω1(βmIm + βzIz)Ih + ω2βhIhIz − ϵδzIhz − (σ2 + µhz + µ)Ihz

dA

dt
= σ1Ih + σ2Ihz − (µh + µ)A

dR

dt
= δzIz + ϵδzIhz − µR

dSm

dt
= Λm − αm(Iz + Ihz)Sm − µmSm

dIm
dt

= αm(Iz + Ihz)Sm − µmIm

(2.1)

Figure 2.1 illustrates the dynamics depicted by the equations involved in Model (2.1)..
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Fig. 2.1: HIV/ZIKV co-infection model represented in Model (2.1).
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In the following two sections, we qualitatively analyse the properties of System (2.1). We will start by
analysing the dynamics of the two component models: the HIV/AIDS model and the ZIKV model.

2.1 Qualitative behaviour of the HIV/AIDS model

The HIV/AIDS model, is obtained by setting Iz = Ihz = R = Sm = Im = 0 in System (2.1). Thus, the
ODEs described in (2.1) can be rewritten as:

dS

dt
= Λ− βhIhS − µS

dIh
dt

= βhIhS − (σ1 + µ)Ih

dA

dt
= σ1Ih − (µh + µ)A,

(2.2)

where the total human population is Nh(t) = S(t) + Ih(t) + A(t). For this model, the region of biological
interest is

Ωh =

{
(S, Ih, A) ∈ R3

+ : 0 ≤ Nh ≤ Λ

µ

}
. (2.3)

It can be proved that Ωh is positively-invariant under the flow of (2.2) (see e.g., [18]), that is, all solutions
of System (2.2) starting in Ωh remain in Ωh for all t ≥ 0. Therefore, it is enough to consider the dynamics
of (2.2) in Ωh.

The disease-free equilibrium (DFE) of Model (2.2) is given by

Eh0 =

(
Λ

µ
, 0, 0

)
, (2.4)

which is obtained when Ih = A = 0. The stability of this equilibrium point can be analyzed in terms of the
basic reproduction number for the HIV/AIDS model (Rh), which can be computed using the next-generation
operator [19]. Using the notation of [18] in Model (2.2) the matrices F and V are given by

F =

[
βh

Λ
µ 0

0 0

]
, and V =

[
σ1 + µ 0
−σ1 µh + µ

]
.

Therefore, it follows that Rh associated to Model (2.2) is given by

Rh = ρ(FV−1) =
βh

σ1 + µ

Λ

µ
, (2.5)

where ρ represents the spectral radius of the matrix FV−1.
To determine the endemic equilibrium points of Model(2.2), we must solve the system of algebraic equa-

tions 
0 = Λ− βhIhS − µS

0 = βhIhS − (σ1 + µ)Ih

0 = σ1Ih − (µh + µ)A.

(2.6)

After some algebraic manipulations for Ih, A ̸= 0, we find that the solutions of System (2.6) are

S∗ =
σ1 + µ

βh
, I∗h =

µ

βh
(Rh − 1) and A∗ =

µσ1

βh(µh + µ)
(Rh − 1).

Thus, as long as Rh > 1, System (2.2) has an endemic equilibrium point given by
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E∗
h =

(
σ1 + µ

βh
,
µ

βh
(Rh − 1),

µσ1

βh(µh + µ)
(Rh − 1)

)
. (2.7)

The local stability of Eh0
defined on (2.4) and E∗

h defined on (2.7) is determined by the sign of the
eigenvalues of the linearisation matrix (Jacobian matrix) of System (2.2) around them. The Jacobian matrix
of System (2.2) at an arbitrary point E = (S, Ih, A) is

J(E) =

−(βhIh + µ) −βhS 0
βhIh βhS − (σ1 + µ) 0
0 σ1 −(µh + µ)

 =

[
J11(E) 0

⋆ −(µh + µ)

]
, (2.8)

so eigenvalues of J(E) are −(µh + µ) < 0 and those of J11(E). At Eh0 ,

J11(Eh0
) =

[
−µ −βh

Λ
µ

0 (σ1 + µ)(Rh − 1)

]
is upper triangular with eigenvalues −µ < 0 and (σ1 + µ)(Rh − 1). At E∗

h,

J11(E
∗
h) =

[
−µRh −(σ1 + µ)
µRh 0

]
.

Thus J11(E
∗
h) has positive determinant and negative trace, implying eigenvalues with negative real parts when

E∗
h is biologically relevant, i.e., when Rh > 1. These results are summarized in the following proposition.

Proposition 1 System (2.2) always has a DFE Eh0 given in (2.4), and for Rh > 1 defined in (2.5),
also exists an endemic equilibrium point E∗

h given in (2.7). Additionally, if Rh < 1 the DFE is locally
asymptotically stable (LAS) in Ωh defined in (2.3), whereas E∗

h is unestable. If Rh > 1, then E∗
h is LAS in

Ωh and the DFE becomes an unstable hyperbolic point.

As it is well known, the basic reproduction number of an infection Rh is the average number of new cases
generated by a given case throughout an infectious period. Thus, Proposition 1 tells us that HIV infection
can be controlled in the community if the initial values of the subpopulation of the model are in the region
of attraction of Eh0 . Therefore, to ensure that the control of the virus is independent of initial conditions, we
must prove the global asymptotic stability (GAS ) of the equilibrium points. We obtain the following result.

Proposition 2 If Rh < 1, the DFE Eh0 of Model (2.2), is GAS. If Rh > 1, the endemic equilibrium point
E∗

h, is GAS.

The proof of global asymptotic stability of the DFE when Rh < 1 is found in Appendix A.1. The global
asymptotic stability of E∗

h when Rh > 1 is found in Appendix A.2.

2.2 Qualitative behaviour of the ZIKV model

By setting Ih = Ihz = A = 0 in System (2.1), we obtain the ZIKV model as follows

dS

dt
= Λ− (βmIm + βzIz)S − µS

dIz
dt

= (βmIm + βzIz)S − (µz + δz + µ)Iz

dR

dt
= δzIz − µR

dSm

dt
= Λm − αmIzSm − µmSm

dIm
dt

= αmIzSm − µmIm

(2.9)
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For this model, the total human population is Nz(t) = S(t)+Iz(t)+R(t), and the total mosquito population
is Nm(t) = Sm(t)+Im(t). We are interested in analyzing the solutions within the biological region of interest

Ωz =

{
(S, Iz, R, Sm, Im) ∈ R5

+ : 0 ≤ Nh ≤ Λ

µ
; 0 ≤ Nm ≤ Λm

µm

}
. (2.10)

It can also be shown that Ωz is positively invariant under the flow of (2.9).
The DFE for Model (2.9) is given by

Ez0 =

(
Λ

µ
, 0, 0,

Λm

µm
, 0

)
. (2.11)

Now, we will determine the basic reproduction number Rz for Model (2.9). Similarly as in Section 2.1, the
matrices F and V are given by

F =

[
βz

Λ
µ βm

Λ
µ

αm
Λm

µm
0

]
, and V =

[
δz + µ+ µz 0

0 µm

]
.

Thus, the basic reproduction number for Model (2.9) is given by

Rz = ρ(FV−1) = Rz1 +

√
(Rz1)

2
+ R̄z2 =: Rz1 +Rz2 , (2.12)

where

Rz1 =
βzΛ

2µ(µz + δz + µ)
, R̄z2 =

βmαmΛmΛ

µµ2
m(µz + δz + µ)

and Rz2 =

√
(Rz1)

2
+ R̄z2 . (2.13)

Remark 1 Note that if the transmission of ZIKV by sexual contact is not considered (βz = 0), Rz1 = 0 and
Rz reduces to

Rz|(βz=0) =
√
R̄z2 =

√
βmαmΛmΛ

µµ2
m(µz + δz + µ)

,

indicating that sexual contact transmission of ZIKV has an impact on Rz.

The following lemma makes it easier to determine the sign of Rz.

Lemma 1 Let us define
R∗

z = 2Rz1 + R̄z2

=: R2
z + 2Rz1(1−Rz).

(2.14)

i. If R∗
z < 1, then 2Rz1 < 1 and Rz < 1.

ii. If R∗
z > 1 and 2Rz1 < 1, then Rz > 1.

iii. If R∗
z > 1 and 2Rz1 > 1, then Rz < 1.

iv. If R∗
z = 1, then Rz = 1.

The proof can be found in Appendix A.3.
From the above lemma we can see that the sign of Rz is determined by the signs of R∗

z and 2Rz1 .
We can now determine the local asymptotic stability of the DFE Ez0 . To this end, we order equations

and variables as S, Sm, Iz, Im, R and compute the Jacobian matrix of System (2.9) at an arbitrary point
E = (S, Sm, Iz, Im, R), which is given by

J(E) =

[
J11(E) 0

⋆ −µ,

]
. (2.15)

Thus, the eigenvalues of J(E) are −µ < 0 and those of J11(E). At Ez0

J11(Ez0) =


−µ 0 −βzΛ/µ −βmΛ/µ
0 −µm −αmΛm/µm 0
0 0 βzΛ/µ− (µz + δz + µ) βmΛm/µm

0 0 αmΛmµm −µm

 =

[
D11 ⋆
0 D22

]
.
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Again, the above matrix is 2 × 2 block upper triangular with (1,1) block being a diagonal matrix with
diagonal entries (eigenvalues) −µ < 0 and −µm < 0. So all that remains to determine the eigenvalues of the
2× 2 matrix

D22 =


βz

Λ

µ
− (µz + δz + µ) βm

Λm

µm

αm
Λm

µm
−µm

 .

After some algebraic manipulations, we found that the above matrix has associated the following char-
acteristic polynomial.

q(x) = x2 + a1x+ a2, where (2.16)

a1 = µm − (µz + δz + µ)(2Rz1 − 1)

a2 = µm(µz + δz + µ)(1−R∗
z).

Note that all roots of the characteristic polynomial q(x) have a negative real part if R∗
z defined in (2.14)

satisfies R∗
z < 1 (see Lemma 1). We have the following result.

Proposition 3 If R∗
z < 1, then Ez0 defined in (2.11) is LAS in Ωz defined in (2.10).

Now, in order to determine the endemic equilibrium points of System (2.9), we have to solve the following
system of algebraic equations 

0 = Λ− (βmIm + βzIz)S − µS

0 = (βmIm + βzIz)S − (µz + δz + µ)Iz

0 = δzIz − µR

0 = Λm − αmIzSm − µmSm

0 = αmIzSm − µmIm.

(2.17)

To this end, we first define the following threshold

Rmax =
Λ

µ

δz
µz + δz + µ

. (2.18)

Therefore, after some algebraic manipulations in (2.17), we can write the variables S, Iz, Sm and Im in
terms of the variable R and the thresholds defined in (2.18) as follows.

S =
Λ

µ

(
1− R

Rmax

)
, Iz =

µ

δz
R,

Sm =
Λm

µm

(
1− αmµR

µmδz + αmµR

)
, Im =

αmΛmµ

µmδz + αmµR
R.

(2.19)

From the above expressions, it can be observed that Sm is always positive (because µmδz+αmµR > αmµR
and, if R < Rmax then S > 0). Replacing the above values into the second equation of (2.17), we get the
following quadratic equations in the variable R:

aR2 + bR+ c = 0, where (2.20)
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a =
βzΛαmµ

δzRmax

b =
µ(µz + δz + µ)

δz

[
βmαmΛm

µm
+ βzµm + αmµ(1− 2Rz1)

]
c = (µz + δz + µ)µµm (1−R∗

z) .

(2.21)

Note that a > 0, and the signs of b and c depends on the sign of R∗
z and 2Rz1 . We have the following

possibilities.

P1) If R∗
z < 1, then 2Rz1 < 1 (Lemma 2.14 item i). Therefore b > 0 y c > 0 and thus, the quadratic equation

(2.20) has not any positive root.
P2) If R∗

z > 1, then c < 0 and regardless of the sign of b, the quadratic equation (2.20) has only one positive
root given by

R∗ =
−b+

√
b2 − 4ac

2a
. (2.22)

P3) If R∗
z = 1 and 2Rz1 < 1, then c = 0 and b > 0. Therefore, the quadratic equation (2.20) has as solution

R = −b/a. Thus, there are no positive roots.
P4) If R∗

z = 1 and b < 0, the quadratic equation (2.20) has a positive root given by R = −b/a.

Remark 2 The case R∗
z < 1 and 2Rz1 > 1 (c > 0 and b < 0), which gives the possibility of the existence of

two positive roots for the quadratic equation (2.20) whenever b2−4ac > 0, is not considered since by Lemma
2.14 item i, when R∗

z < 1 leads to 2Rz1 < 1.

Based on the information presented earlier, the quadratic equation (2.20) has only one positive root
defined in (2.22) whenever R∗

z > 1. The proof that the condition R∗ < Rmax is satisfied can be found in
Appendix A.4. Thus, we can ensure the conditions for the existence of the endemic equilibrium point.

Proposition 4 If R∗
z > 1 System (2.9) has an endemic equilibrium point given by

E∗
z =

(
Λ

µ

(
1− R∗

Rmax

)
,
µ

δz
R∗, R∗,

Λm

µm

(
1− αmµR∗

µmδz + αmµR∗

)
,

αmΛmµ

µmδz + αmµR∗R
∗
)
, (2.23)

with Rmax given in (2.18) and R∗ in (2.22).

We have already stated in Proposition 3 the local asymptotic stability of the DFE. In a similar way, we
can prove the local asymptotic stability of the endemic equilibrium E∗

z. To this end, we determine the sign of
the eigenvalues of the matrix defined in (2.15) evaluated in E∗

z. In order to simplify algebraic manipulations
we make the following change of variables

κ = µz + δz + µ, t1 = βmI∗m + βzI
∗
z ,

t2 = βzS
∗, t3 = βmS∗,

t4 = αmS∗
m, t5 = αmI∗z ,

thus, the matrix J(E∗
z) can be rewritten as

J(E∗
z) =


−(t1 + µ) −t2 0 0 −t3

t1 t2 − κ 0 0 t3
0 δz −µ 0 0
0 −t4 0 −(t5 + µm) 0
0 t4 0 t5 −µm

 .

After some algebraic manipulations, we find that the characteristic polynomial associated to the matrix
J(E∗

z) is
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r(y) = (y + µ)(y + µm)(y3 + b1y
2 + b2y + b3), where (2.24)

b1 = t6 + κ(1− 2Rz1)

b2 = t7 + κ(R∗
z − 1)

b3 = t8(R∗
z − 1),

and t6, t7 and t8 defined as a positive linear combination of ti, i = 1, ..., 5. The characteristic polynomial
r(y) gives five roots, two of them are y = −µ and y = −µm, whereas the Routh-Hurtwiz criteria assures
that the other three roots have negative real part if bi > 0 for i = 1, 2, 3 and b1b2 − b3 > 0. Clearly the
coefficients bi > 0, i = 1, 2, 3 are all positive if R∗

z > 1 and 1− 2Rz1 > 0. Thus, it follows that the endemic
equilibrium E∗

z of System (2.9) is LAS if R∗
z > 1. To conclude the qualitative analysis of Model (2.9), we

prove the global stability of the DFE (Ez0) using similar techniques to those used in Section 2.1.

Proposition 5 If R∗
z > 1, the endemic equilibrium point E∗

z defined in (2.23), is LAS in Ωz defined in
(2.10). Conversely, if R∗

z < 1, the DFE Ez0 of Model (2.2) defined in (2.11), is GAS.

The proof of the global stability of Ez0 when R∗
z < 1 can be found in Appendix A.5.

3 Qualitative behaviour of the HIV/ZIKV model

In this section, we discuss the qualitative properties of the HIV/ZIKV co-infection model (2.1). To achieve
this purpose, we use the existence and stability results as well as the definition of the basic reproduction
number for the HIV model Rh in (2.5) and Rz in (2.12) obtained in Sections 2.1 and 2.2.

In Model (2.1), the total human population is denoted by N(t) = Nh(t) +Nz(t), and the total mosquito
population is Nm(t) = Sm(t)+ Im(t). Additionally, to simplify algebraic calculations we rename parameters:

κ1 = µz + δz + µ, κ2 = σ1 + µ,

κ3 = σ2 + µhz + µ, κ4 = µh + µ.
(3.1)

The interest region set is given by

Ω =

{
(S, Iz, Ih, Ihz, A,R, Sm, Im) ∈ R8

+ : 0 ≤ N ≤ Λ

µ
; 0 ≤ Nm ≤ Λm

µm

}
. (3.2)

As in the previous sections, it can be proved that Ω is positively invariant under the flow of (2.1).

3.1 Computation of the basic reproduction number

The DFE for Model (2.1) is given by

E0 =

(
Λ

µ
, 0, 0, 0, 0, 0,

Λm

µm
, 0

)
. (3.3)

Similarly to Sections 2.1 and 2.2, the basic reproduction number associated to Model (2.1) can be deter-
mined through the matrices F and V given by

F =


βz

Λ
µ 0 0 0 βm

Λ
µ

0 βm
Λ
µ 0 0 0

0 0 0 0 0
0 σ1 σ2 0 0

αm
Λm

µm
0 αm

Λm

µm
0 0

 , and V =


κ1 0 0 0 0
0 κ2 0 0 0
0 0 ϵδz + κ3 0 0
0 0 0 κ4 0
0 0 0 0 µm

 .
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Here, the matrix FV−1 is given by

FV−1 =


βz

Λ
µκ1

0 0 0 βm
Λ

µµm

0 βm
Λ

µκ2
0 0 0

0 0 0 0 0
0 σ1

κ2

σ2

ϵδz+κ3
0 0

αm
Λm

µmκ1
0 αm

Λm

µm(ϵδz+κ3)
0 0

 .

The above matrix has as eigenvalues λ1,2 = 0 (twice) and λ3 =
βhΛ

µκ2
= Rh, whereas the other two

eigenvalues are

λ4,5 =
βzΛ

2µκ1
±

√(
βzΛ

2µκ1

)2

+
αmβmΛmΛ

µµ2
mκ1

= Rz1 ±Rz2 ,

with the positive eigenvalues being

λ4 =
βzΛ

2µκ1
+

√(
βzΛ

2µκ1

)2

+
αmβmΛmΛ

µµ2
mκ1

= Rz1 +Rz2 = Rz.

Thus, the basic reproduction number for Model (2.1) is given by

R0 = ρ(FV−1) = max{Rh,Rz}, (3.4)

where Rh is the basic reproduction number for the HIV model defined in the equation (2.5) and Rz =
Rz1 +Rz2 is the basic reproduction number of the ZIKV model, which is defined in the equation (2.12).

3.2 Local sensitivity analysis of the parameters

A local sensitivity analysis of R0 with respect to model parameters allows quantifying parameter variations’
effect on the value of R0. The sign of the sensitivity index denotes the direction of the change, where a
positive index for a particular parameter indicates that increasing that parameter will increase R0 and vice
versa. In addition, the magnitude of the sensitivity index provides insight into the relative significance of
each parameter in the model predictions [20].

The normalized sensitivity index of a variable concerning a parameter is a measure of how much the
variable relatively changes to the change in the parameter [21]. In other words, the normalized sensitivity
index of the variable X, which is differentially dependent on parameter p, is defined as:

ΓX
p =

∂X

∂p

p

X
. (3.5)

Because R0 is defined as max{Rh,Rz}, the sensitivity indices of R0 with respect to the eleven parameters
{βh, Λ, µ, σ1, βz, µz, δz, βm, αm, Λm, µm} in the expression ofR0 in (3.4), can be determined for the sensitivity
indices of Rh and Rz, respectively. A calculation example of the sensitivity index of Rz with respect to the
parameter βz can be found in Appendix A.6.

3.3 Stability analysis

Similarly to in Sections 2.1 and 2.2, the local stability of the DFE E0 is determined by the lin-
earization of (2.1) around an arbitrary equilibrium. By ordering the equations and variables as
S, Sm, Iz, Im, Ih, Ihz, A,R and computing the Jacobian matrix of System (2.9) at an arbitrary equilibrium
point E = (S, Sm, Iz, Im, Ih, Ihz, A,R), we obtain
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J(E) =

J11(E) 0 0
0 −κ4 0
0 0 −µ

 . (3.6)

The matrix shown above has eigenvalues −µ < 0, −κ4 = −(µh + µ) < 0 and the eigenvalues of J11(E). By
evaluating the matrix J11 at the DFE E0 we obtain

J11(E0) =


−µ 0 ⋆ ⋆
0 −µm ⋆ ⋆
0 0 M33 ⋆
0 0 0 D44

 , whereM33 =


−κ1 +

Λβz

µ

Λβm

µ

Λmαm

µm
−µm



andD44 is a diagonal matrix with entries −(ϵδz+κ3) < 0 and κ2− βhΛ
µ = σ1+µ− βhΛ

µ = (σ1+µ)(1−Rh) <

0 if and only if Rh < 1. Therefore, the remaining eigenvalues of J11(E0) are those of the matrix M33, whose
characteristic equation is

λ2 + c1λ+ c2 = 0, (3.7)

where

c1 = κ1 + µm − βzΛ
µ = µm + κ1(1− 2Rz1)

c2 = κ1µm − αmβmΛmΛ
µµm

− βzΛµm

µ = k1µm(1−R∗
z).

Thus, the roots of the equation (3.7) have negative real part if and only if R∗
z < 1 and 2Rz1 < 1, where

R∗
z and Rz1 are defined in (2.14) and (2.13), respectively. We have the following result:

Proposition 6 If R0 = max{Rh,Rz} < 1, then E0 defined in (3.3) is LAS in Ω defined in (3.2).

Techniques similar to those used in Sections 2.1 and 2.2 can be applied to confirm the presence of endemic
solutions and assess their local and global stability.

4 The control problem analysis

In this section, we formulate an optimal control problem (OCP) by adding three intervention strategies to
control the spread of HIV/ZIKV co-infection to Model (2.1). The proposed approach mitigates HIV and zika
infections through the implementation of personal protection measures (such as the use of repellents) using
control η1, the use of ART with control η2 and preventive sexual contact (such as condom use) with control
η3. The control functions η1, η2 and η3 are defined in the interval [0, T ], where T denotes the final time of
the controls, 0 ≤ ηi(t) ≤ 1 and t ∈ [0, T ] for i = 1, 2, 3. Based on the aforementioned considerations, the
following OCP is formulated, where the controls are shown in red for emphasis.
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minJ (η) =
∫ T

0

(
c1Iz + c2Ih + c3Ihz + c4Im + c5A+ d1

η21
2

+ d2
η22
2

+ d3
η23
2

)
dt

dS

dt
= Λ− [(1− η1)βmIm + (1− η3)(βzIz + βhIh)]S − µS

dIz
dt

= [(1− η1)βmIm + (1− η3)βzIz]S − ω2(1− η3)βhIzIh − (µz + δz + µ)Iz

dIh
dt

= (1− η3)βhIhS − ω1[(1− η1)βmIm + (1− η3)βzIz]Ih − [(1− η2)σ1 + µ]Ih

dIhz
dt

= ω1[(1− η1)βmIm + (1− η3)βzIz]Ih + ω2(1− η3)βhIhIz − ϵδzIhz − [(1− η2)σ2 + µhz + µ]Ihz

dA

dt
= (1− η2)σ1Ih + (1− η2)σ2Ihz − (µh + µ)A

dR

dt
= δzIz + ϵδzIhz − µR

dSm

dt
= Λm − (1− η1)αm(Iz + Ihz)Sm − µmSm

dIm
dt

= (1− η1)αm(Iz + Ihz)Sm − µmIm

X(0) = (S0, Iz0, Ih0, Ihz0, A0, R0, Sm0, Im0) = X0

X(T ) = (Sf , Izf , Ihf , Ihzf , Af , Rf , Smf , Imf ) = Xf .
(4.1)

In the above formulation η = (η1(t), η2(t), η3(t)), and c1, c2, c3, c4, c5, d1, d2, and d3 are positive weights.
Therefore, we seek an optimal control η∗(t) determined as

J (η∗(t)) = min {J (η(t)|η ∈ A)} , (4.2)

with a set A of controls defined as

A = {η(t) = (η1(t), η2(t), η3(t))|0 ≤ η1(t) ≤ ηmax
1 , 0 ≤ η2(t) ≤ ηmax

2 , 0 ≤ η3(t) ≤ ηmax
3 } ,

where ηmax
i ≤ 1, i = {1, 2, 3} and η is Lebesgue measurable. In order to define the formulation of our OCP

using Pontryagin’s Maximum Principle (PMP) [22], we have the Lagrangian as

L = c1Iz(t) + c2Ih(t) + c3Ihz(t) + c4Im(t) + c5A(t) + d1
η21(t)

2
+ d2

η22(t)

2
+ d3

η23(t)

2
, (4.3)

and we determine the Hamiltonian function as

H = L(Iz, Ih, Ihz, Im, A, η) + p1
dS

dt
+ p2

dIz
dt

+ p3
dIh
dt

+ p4
dIhz
dt

+ p5
dA

dt
+ p6

dR

dt
+ p7

dSm

dt
+ p8

dIm
dt

. (4.4)

In the remainder, we investigate the minimum value of Lagrangian (4.3). Firstly, we must prove existence
of the optimal control η∗ according to the controlled system (4.1).

Proposition 7 There exists an optimal control η∗ such that

J (η∗(t)) = min
η∈A

(J (η(t))),

subject to Control System (4.1) with initial conditions as X0.
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The proof of the above proposition can be found in Appendix A.7.
In the following, we apply PMP [22] to provide a characterization of an optimal control solution to the

Hamiltonian (4.4) subject to the OCP (4.1). If (X∗, η∗) is an optimal solution for the controlled system (4.1),
then there exists a non trivial vector function p = (p1, p2, p3, p4, p5, p6, p7, p8), such that

∂H

∂ηi
= 0, i = 1, 2, 3 and ṗi =

dpi
dt

= − ∂H

∂Xi
, i = 1, . . . , 8. (4.5)

Proposition 8 Let (S∗, I∗z , I
∗
h, I

∗
hz, A

∗, R∗, S∗
m, I∗m) be the optimal state variables solution associated to the

optimal control variable η∗ subject to the control problem (4.2). Then, there exists an adjoint vector p that
satisfies the controlled system (4.1), with transversality conditions pi(T ) = 0, for i = 1, . . . , 8, where the
optimal controls are

η∗1 =
((p2 − p1)S + (p4 − p3)Ih)βmIm + (p8 − p7)αm(Iz + Ihz)Sm

d1

η∗2 =
(p5 − p3)σ1Ih + (p5 − p4)σ2Ihz

d2

η∗3 =
(p2 − p1)βzIzS + (p3 − p1)βhIhS + (p4 − p3)ω1βzIzIh + (p4 − p2)ω2βhIzIh

d3
.

(4.6)

The proof is in Appendix A.8.

5 HIV/ZIKV co-infection in Brazil and Colombia

As mentioned previously, during 2015 and 2016, Brazil and Colombia experienced an alarming occurrence
involving the co-infection of two significant viral diseases: HIV/AIDS and zika. This phenomenon emerged
as a complex public health issue challenging the healthcare system in these regions. In fact, the co-infection
highlighted the need for further research, comprehensive surveillance, and implementation of prevention and
early reaction strategies to mitigate the impact of these dual infections.

Owing to the lack of temporal records on HIV/ZIKV co-infection to date, it was no possible to estimate
the parameters of Model (2.1) in this section. However, specific parameter values were derived from available
demographic information and previous research conducted on zika and HIV/AIDS in Colombia and Brazil.
In cases where there was a lack of available data, these values were either estimated based on specific
assumptions or adapted from research conducted on different regions or diseases. The following outlines the
main assumptions for extracting these parameter values.

Firstly, the precise relationship between humans and population densities of Aedes aegypti remains un-
certain and has been a subject of considerable interest and investigation within the field of entomology.
Examining the existing literature, it can be inferred that during 2015-2016, there existed an approximate
ratio of one human to three female Aedes aegypti mosquitoes (1:3) in Colombia and Brazil. Secondly, the
modification parameter related to the recovery rate of humans ϵ was assumed to be much smaller than one
because, according to research in this area, an individual with HIV/ZIKV co-infection recovers more slowly
than an individual with only zika [12,13,17,23,24]. Thirdly, the parameters associated with the co-infection
probability w1 and w2 were assumed to be small because by 2016, only five cases had been reported in
Colombia and one in Brazil [1, 6]. However, a hypothetical scenario in which these parameters are escalated
is depicted to demonstrate the correlation between rising probabilities of co-infection and the subsequent
increase in the number of co-infected individuals. Finally, certain parameter values pertaining to HIV/AIDS
were predominantly adjusted at a population level, drawing upon estimations derived from Luxembourg, the
Czech Republic, Japan, Croatia, the United Kingdom, and Mexico [25].

As in [26], we assume that Colombia and Brazil share some common parameter values (see Table 5.1),
except for those related to country population size and initial conditions (see Table 5.2).

Due to the dispersion of the units of measurement of the parameters in the different sources consulted,
all parameter values were adapted to day as the unit of measurement.
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Parameter Range Reference
δz [1.11e-2,7.14e-2] [26]
σ1 [2.1e-4,5.46e-4] [25]
µh 5.46e-5 [25]
µm [5e-2,1.2e-1] [26]
µz [3.42e-5,5.46e-5] Assumed
µhz 0 [1, 6]
σ2 4.55e-5 [1, 6]
ω1 [1e-3,1e-2] [1, 6]
ω2 [1e-3,1e-2] [1, 6]
ϵ 1e-10 [1, 6]

Table 5.1: Shared (Colombia-Brazil) range of parameter values (minimum and maximum) involved in Model
(2.1). Time in days.

Parameter Colombia Brazil Reference
βm [6.25e-10,1.25e-9] [2.42e-10,2.9e-10] [26]
βz [2.08e-12,1.04e-11] [4.83e-13,2.42e-12] [26]
βh [6.25e-12,1.46e-11] [1.45e-12,3.38e-12] [25]
αm [2.08e-10,4.17e-10] [4.83e-11,9.66e-11] [26]
Λ [1.73e+03 1.73e+03] [7.44e+03,7.44e+03] [27]
µ 3.21e-5 3.21e-5 [27]
Λm [1.03e+7,1.03e+7] [4.43e+7,4.43e+7] [27]

Table 5.2: Range of parameter values (minimum and maximum) involved in Model (2.1) that differ in
Colombia and Brazil. Time in days.

Parameter Colombia Brazil Reference
S(0) 28,800,000 124,200,000 [26]
Iz(0) 9,600,000 41,400,000 [26]
Ih(0) 4,320,000 18,630,000 [25]
Ihz(0) 4.8 20.7 [1, 6]
A(0) 2,832,000 12,213,000 [1, 6]
R(0) 2,448,000 10,557,000 [1, 6]
Sm(0) 33,600,000 144,900,000 [26]
Im(0) 14,400,000 62,100,000 [26]

Table 5.3: Initial conditions involved in Model (2.1).

Once parameter values have been set, the case study is organized into three separate stages. The initial
stage involves numerical determination of the basic reproduction number defined in Section 3.1. Furthermore,
numerical values of the sensitivity indices determined analytically in Section 3.2 are also presented. In the
second stage, the uncontrolled model defined by (2.1) is simulated numerically. Finally, the third stage
focuses on numerically simulating the control problem described in (4.1). This sequential framework allows
for a thorough exploration of the various aspects under investigation, providing a comprehensive analysis of
the case study.

5.1 Value of the basic reproduction number and its sensitivity indices

In Section 3.1, we calculated the basic reproduction number (3.4) for Model (2.1). Figure 5.1 shows the
possible values for the basic reproduction number using the extreme parameter values given in Tables 5.1
and 5.2 for Colombia and Brazil, that result in the minimum or maximum value of R0, respectively.
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Fig. 5.1: Possible values for the thresholds using the extreme parameter values given in Tables 5.1 and 5.2
for Colombia and Brazil, that result in the minimum or maximum value of R0, respectively. In each case,
R0 = max{Rh,Rz}. The vertical red line represents Rh,z = 1.

The normalized sensitivity indices of Rh and Rz summarized in Figure 5.2, are obtained using the values
of the parameters in Tables 5.1 and 5.2.
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Fig. 5.2: Normalized sensitivity index of Rh to the parameters {βh, Λ, µ, σ1} and Rz to the parameters
{Λ, µ, βz, µz, δz, βm, αm, Λm, µm}. Thus, the red dot line represents sensitivity of zero. A calculation example
using Equation (3.5) can be found in Appendix A.6.

.

Regarding Rh, the primary driver is the human death rate µ, followed by the infection rate βh of humans
through sexual contact with HIV-infected individuals and the human recruitment rate Λ. This implies that
a reduction in the the human death rate µ would result in the most significant increase in the likelihood
of HIV infection among humans. Regarding Rz, the outcomes reveal that the parameter with the highest
impact is the mosquitoes death rate µm: longer surviving mosquitoes lead to an increase in Rz. Additionally,
the human recruitment rate Λ and death rate µ are also essential factors influencing Rz.
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5.2 Evaluation of uncontrolled population behaviour over time

We then performed numerical simulations of the uncontrolled Model (2.1). We begin by representing the
DFE for Colombia and Brazil. The DFE is obtained when the value of R0 is less than one. As shown in Figure
5.1, for Colombia and Brazil, R0=0.47192. Figure 5.3 shows the behaviour of the solutions for both human
and mosquito populations. In both cases, on day 50 after the first observation, infected individuals (with
either disease) tended to zero, whereas susceptible humans are stabilized. A similar scenario was observed
in the mosquito population. On day 25 of the first observation, infected mosquitoes decreased to zero, and
susceptible mosquitoes stabilized. In this scenario, HIV/AIDS cases outnumbered ZIKV cases. No outbreaks
of infected individuals were observed under the initial conditions used. Similarly, the endemic equilibrium is
obtained when the value of R0 is greater than one (see Figure 5.1). This scenario is simulated and depicted in
Figure 5.4. For Colombia R0=3.2338 and for Brazil R0=3.2326. We can observe a significant increase in the
number of individuals infected with ZIKV during the first 70 days of the first observation, with the number
of HIV/AIDS-infected individuals being lower. Individuals infected with ZIKV reached maximum values on
day 70 of the first observation. In contrast, individuals infected with HIV/AIDS did not generate peaks and
appear to have a constant behaviour throughout the observed period (approximately a year). During the first
250 days from the first observation, ZIKV-infected individuals outnumber HIV/AIDS-infected individuals.
However, after day 250, HIV/AIDS-infected individuals constantly outnumber ZIKV-infected individuals.

For the mosquito population, there is always a higher population density of susceptible than infected
mosquitoes, but there is stable coexistence between them. Both countries differ mainly in population den-
sity (Brazil has a larger population than Colombia).The simulations indicated that the behaviour of both
populations in Colombia and Brazil was highly similar, with a notable distinction in terms of population den-
sities. This suggests that the dynamics and patterns of infection transmission were comparable between the
two countries, with variations primarily related to the size of the populations being studied. An interesting
observation from the simulations was that the behaviour of individuals infected with ZIKV displayed more
significant variability than those infected with HIV/AIDS. This implies that the progression and manifesta-
tions of the ZIKV infection were more diverse and fluctuating, potentially influenced by various factors such
as environmental conditions, viral load, or other epidemiological characteristics. In contrast, the behaviour
of HIV/AIDS-infected individuals appeared to be more consistent and stable over time. These findings high-
light the distinctive characteristics of ZIKV and HIV/AIDS infections, particularly in terms of the dynamic
nature of zika infection compared to the relatively more constant nature of HIV/AIDS infection.
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Fig. 5.3: Simulations of the DFE for Colombia and Brazil. For Colombia, Rh= 0.4719, Rz= 0.2306. For
Brazil, Rh= 0.4719, Rz= 0.2977. In both countries, R0= 0.4719. The solutions tend to the DFE.

A hypothetical scenario for HIV/ZIKV co-infected individuals is shown in Figure 5.5. We contrasted three
different possibilities for the probability of co-infection: ω1,2=0.001, 0.0055, 0.01. The first value (0.001)
was named low probability, the second value (0.0055) medium probability and the last value (0.01) high
probability. It can be seen that for higher values of this pair of parameters, a higher population density of
individuals co-infected with ZIKV and HIV follows. Evidently, an increase in these two probabilities increased
the density of co-infected individuals.
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Fig. 5.4: Simulations of the endemic equilibrium. For Colombia, Rh= 3.2308, Rz= 3.2338. For Brazil, Rh=
3.2308, Rz= 3.2326. The solutions tend to the endemic equilibrium.
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Fig. 5.5: HIV/ZIKV co-infected human population for different values of the co-infection probabilities ω1

and ω2.

These numerical experiments showed that for values of R0 < 1, the HIV/ZIKV co-infection epidemics
tend to fade away after some time, with infected individuals tending to zero and the susceptible population
reaching a stable level. The same trend was observed for the mosquito population, with infected mosquitoes
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decreasing to zero and susceptible mosquitoes stabilizing. A noticeable increase in the number of individuals
infected with ZIKV, with a lower number of individuals infected with HIV/AIDS, was observed during the
first 70 days of the first observation for the values ofR0 > 1. Infected individuals with ZIKV peaked on day 70,
whereas HIV-infected individuals did not generate any peaks during the 300 simulated days. Regarding the
mosquito population, susceptible mosquitoes always outnumber infected mosquitoes; however, both coexist.

In addition, Figure 5.5 provides insights into the hypothetical scenario of ZIKV/HIV co-infection. Com-
paring three different scenarios for co-infection probabilities (high, medium and low), an increase in these
probabilities above 0.01, leads to an increase in the density of co-infected individuals. These findings sug-
gest that the values of these parameters can significantly impact the spread and severity of HIV/ZIKV
co-infection, highlighting the importance of considering multiple factors when designing effective strategies
to prevent and control the spread of these viruses, particularly in pregnant women to avoid congenital
malformations in children.

These findings suggest that the behaviour of populations in Colombia and Brazil was similar but different
in population densities. This suggests that the patterns of infection transmission were comparable, primarily
influenced by population size. Notably, individuals infected with ZIKV exhibited more significant behaviour
variability than those infected with HIV/AIDS. This indicates that ZIKV infection showed diverse and
fluctuating progression and manifestations, potentially influenced by various factors. In contrast, HIV/AIDS-
infected individuals displayed more consistent and stable behaviour over time.

5.3 Evaluation of controlled population behaviour over time

This stage focuses on numerically simulating the control problem described by (4.1). To this end, we inves-
tigate the effects of mixing strategies to control HIV/ZIKV co-infection in Colombia and Brazil. Table 5.4
shows the balancing and weighting constants values associated with the OPC (4.1).

Parameter c1 c1 c3 c4 d1 d2 d3

Value 0.5 0.5 0.5 0.5 105 107 7× 106

Table 5.4: Balancing and weighting constants values associated to the OPC (4.1).

On the one hand, controlling the spread of ZIKV and HIV in Colombia requires specialized actions to
address the particular problems that the population has to overcome. To combat ZIKV, efforts must be
directed toward preventing mosquito bites using insect repellents, protective clothing, and mosquito control
measures. Therefore, the zika Fever Response Plan [28] enacted in 2016 was a priority for the Colombian
government and focused on improving public health surveillance systems for vector-transmitted diseases and
raising awareness of health issues [29]. To prevent sexually transmitted infections from spreading, safe sex
practices must be emphasized in public health campaigns among vulnerable populations [30]. Therefore,
ART and condoms are critical for controlling the spread of the human immunodeficiency virus. To ensure
that people living with HIV in Colombia receive the care they require to be healthy and to lower their risk
of spreading the virus to others, it is essential to increase access to HIV testing and treatment. Condom use
and other harm reduction techniques must also be promoted in public health campaigns, especially among
high-risk groups, such as drug injectors. By addressing these challenges through a comprehensive approach,
including education, prevention, and access to care, Colombia can make significant progress in controlling
the spread of ZIKV and HIV.

On the other hand, Brazil has implemented a countrywide strategy to manage Aedesmosquito populations
and to stop the spread of ZIKV [31]. This effort has incorporated activities, including insecticide application,
the elimination of standing water, and public awareness campaigns to motivate people to take action to
lessen mosquito breeding grounds, which are incorporated as η1 in the epidemic model (4.1). Additionally,
it has been noted that zika can be transmitted sexually; hence, condom use is advised as a preventative
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measure. Brazil has implemented a comprehensive strategy for HIV prevention and care [32]. This has
involved administering ART to all HIV-positive individuals since 2013. Brazil started a campaign to distribute
condoms, encouraging condom use among vulnerable populations. As a result, the number of AIDS-related
deaths in Brazil has significantly decreased.

Hence, using the controls η∗1 , η
∗
2 , and η∗3 determined in Proposition 8 to optimize the controlled dynamical

system (4.1), and by simulating the endemic scenario for Colombia and Brazil (Figure 5.4), we obtain in
Figures 5.6–5.8 a timely controlled pattern. The sizes of humans infected with ZIKV, HIV/ZIKV, and
HIV/AIDS are reduced due to mixed strategies to maintain the level of infection. However, the size of
the HIV-infected population is increasing because of ART, resulting in better healthcare for the infected
population, which helped to reduce the number of individuals with AIDS. In contrast, in Figure 5.6, ZIKV
prevention measures helped reduce the number of infected mosquitoes and their contact with susceptible
individuals.

In Figure 5.7, the control η1 is required at its full maximum at the beginning by establishing measures
such as mosquito repellents and nets, elimination of mosquito breeding sites, and protective clothing. η2
goes in three months to its maximum capacity to contain the number of individuals who attended the
AIDS stage, which slows the progression of the disease, prevents further damage to the immune system, and
reduces the risk of HIV transmission. Additionally, η3 describes a gradual campaign to promote condom use
can help reduce the transmission of HIV and increase awareness about the importance of protecting oneself
and one’s partners from sexually transmitted infections, such as educating people about the benefits of using
condoms to prevent the spread of HIV, increasing easy access to condoms, and recruiting community leaders,
influential individuals, or social media influencers to encourage the use of condoms.
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Fig. 5.6: Simulations of the mosquito population in Colombia and Brazil with the activation of different
controls.
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Fig. 5.7: Simulations of the behaviour of the controls in Colombia and Brazil.
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Compartments Iz and A are controlled to a smaller size than the η1 = η2 = η3 = 0 simulation, while
compartments Ih and Ihz have a larger size owing to the ART that prevents infected people from reaching
the AIDS stage. However, the mixed strategies were maintained at their approximate total capacities, as
illustrated in Figure 5.8.

In addition, the size of the infected mosquito population remained below the initial condition which
prevented the spread of ZIKV due to the effect of the η1 control.
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Fig. 5.8: Simulations of controlling infected human sizes in Colombia and Brazil.
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Finally, to corroborate the behaviour of the co-infected human and the mosquitoes populations with
respect to the variation of the combined controls η1, η2 and η3, (see Figures 5.9 and 5.10), we have performed
some additional numerical experiments. Figure 5.9 shows that the concurrent activation of η1 (personal
protection) and η2 (ART) generate comparable trends in the co-infected individuals with zika and HIV
within the contexts of Colombia and Brazil. Hence, in Figures 5.9 (a)-(b), we investigated the co-infection
patterns by fixing the control η1 for personal protection and increasing gradually the ART control from 0 to
its maximum value 1 with an increment value of ∆η1 = ∆η2 = 0.003. In both cases for Brazil and Columbia,
the increase of the personal protection did not play a significant role as the gradual increase of ART for the
co-infection. However, the personal protection plays an important role to reduce the overall ZIKV infected
population. Analogously, the simultaneous implementation of ART and condoms use (η3) in Colombian and
Brazil reduce the number of co-infected individuals burden. Hence, in Figures 5.9 (c-d), the condom use
plays a more significant role in reducing the size of co-infected size.

(a) Colombia (η1-η2) (b) Brazil (η1-η2)

(c) Colombia (η2-η3) (d) Brazil (η2-η3)

Fig. 5.9: Simulation of the effects of combined η1-η2 and η2-η3 on the co-infected human population in
Colombia and Brazil.

This supports the outcomes derived from the simulations presented in Figure 5.8, wherein the control
strategy involving the simultaneous application of all controls above was previously established. The dynam-
ics exhibited by the population of zika virus-carrying mosquitoes, when subjected to concurrent interventions
involving personal protection, ART, and condom use, diverge from those observed within the co-infected hu-
man population. This contrast is evident upon examining Figure 5.10, wherein distinct patterns manifest for
Colombia and Brazil. Notably, the impact of personal protection emerges as more pronounced than that of
ART, as underscored by the observation that mosquito density exhibits heightened levels when the efficacy
of personal protection approaches to zero. The limited influence of sexual transmission dynamics of zika and
HIV on mosquito density substantiates this outcome. Conversely, upon simultaneous implementation of ART
and condom use in Colombia and Brazil, the peaks in mosquito densities materialize when both controls are
administered at 50%. In contrast, the lowest densities align with situations with no controls or controls im-
plemented at 100%. These observations significantly explain the complex interplay between control strategies
and their varying effects on human and mosquito populations in the HIV/ZIKV co-infection context. This
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information could guide policymakers and public health authorities in making informed decisions regarding
the most effective strategies for managing and controlling these diseases.

(a) Colombia (η1-η2) (b) Brazil(η1-η2)

(c) Colombia (η2-η3) (d) Brazil (η2-η3)

Fig. 5.10: Simulation of the effects of combined η1-η2 and η2-η3 on the infected mosquito population in
Colombia and Brazil.

6 Discussion and concluding remarks

The first reported cases of HIV/ZIKV co-infection in Colombia and Brazil highlighted the potential interac-
tions between these two viruses. The co-circulation of these infections in South America presented a unique
challenge for public health officials, as both viruses were known to be transmitted through sexual contact
and had overlapping clinical symptoms.

The mathematical modelling conducted in this study was used to consider the transmission dynamics of
both viruses in co-infected individuals, allowing for the evaluation of different intervention scenarios. The
findings of this study were particularly relevant during the 2015-2016 zika outbreak in South America, which
overlapped with the ongoing HIV epidemic in the region. By identifying the patterns of co-infection and their
potential impact on transmission, the results of this study could inform public health strategies to control
and prevent the spread of both viruses.

On the one hand, numerical simulations conducted with parameter values for Colombia provided valuable
insights into the potential impact of HIV/ZIKV co-infection. By comparing three distinct scenarios about co-
infection probabilities (high, medium, and low), the study demonstrated that an increase in these parameters
led to a higher density of co-infected individuals. By comparing the qualitative behaviour of zika and HIV
in Brazil and Colombia, we found the following results: First, both countries exhibited similar trends in
spreading and stabilizing these viruses, with differences primarily attributable to population density. Second,
individuals infected with ZIKV demonstrated greater variability in their behaviour than those infected with
HIV/AIDS. This suggests that ZIKV infection displayed a diverse and fluctuating progression with various
manifestations, potentially influenced by multiple factors. In contrast, individuals infected with HIV/AIDS
exhibited more consistent and stable behaviour over time. Third, the simulation results demonstrated that
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increasing the values of the co-infection probabilities ω1 and ω2 could lead to a higher population density
of co-infected individuals. This finding underscores the importance of implementing effective strategies to
prevent and control the spread of these viruses, particularly in pregnant women, to prevent congenital
complications.

The primary preventative methods for zika and HIV infection included avoiding mosquito bites, using
condoms during sexual activity, and a treatment strategy such as antiretroviral therapy (ART). Given that
zika is mainly spread by mosquitoes, we established a timely control to describe measures such as using insect
repellent, donning long sleeves, and staying indoors during prime mosquito-biting hours are all personal
protection measures. In addition, we illustrated a control for condoms use to lower the risk of transmission
of zika, which can also spread sexually. Similarly, since sexual contact is the primary way HIV spreads, the
most effective strategy to prevent HIV transmission during sex is to use condoms appropriately and regularly.
Additionally, we incorporated a control variable for ART, which included using a variety of HIV medications
to successfully suppress the virus, maintain or enhance immune function, and lower the risk of transmission.

In summary, this study highlighted the need for continued research on the transmission dynamics of
zika and HIV/AIDS and developing effective intervention strategies to control and prevent their spread.
Future work in this field plans to incorporate compartments of women giving birth to babies with and
without congenital malformations to understand the impact of co-infection in children better. Including
these compartments would allow for a more detailed assessment of the long-term effects of co-infection
on child health outcomes, including the potential for developmental delays, neurological deficits, and other
complications. This approach could also facilitate the development of more targeted prevention and treatment
strategies for the affected children and their families. Ultimately, this research is critical for improving our
understanding of the complex interactions between HIV and zika and developing effective public health
interventions to mitigate their impact on affected individuals and communities.
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20. S. Bañuelos, M. Martinez, C. Mitchell, and A. Prieto-Langarica, “Using mathematical modelling to investigate the effect of
the sexual behaviour of individuals and vector control measures on Zika,” Letters in Biomathematics, vol. 6, no. 1, pp. 1–19,
2019.

21. N. Chitnis, J. M. Hyman, and J. M. Cushing, “Determining important parameters in the spread of malaria through the
sensitivity analysis of a mathematical model,” Bulletin of Mathematical Biology, vol. 70, 2008.

22. L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidze, E. Mishchenko, K. Trirogoff, and L. Neustadt, LS Pontryagin Selected
Works: The Mathematical Theory of Optimal Processes. Routledge, 2018.

23. B. Joob and V. Wiwanitkit, “Concurrent HIV and Zika virus infection, a problem to be address in HIV medicine,” Int J
Virol AIDS, vol. 3, p. 035, 2017.

24. M. R. Bidokhti, D. Dutta, L. S. Madduri, S. M. Woollard, R. Norgren, L. Giavedoni, and S. N. Byrareddy, “SIV/SHIV-Zika
co-infection does not alter disease pathogenesis in adult non-pregnant rhesus macaque model,” PLoS Neglected Tropical
Diseases, vol. 12, 2018.

25. K. Prieto and J. P. Romero–Leiton, “Current forecast of HIV/AIDS using Bayesian inference,” Natural Resource Modeling,
vol. 34, 2021.

26. D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell, and S. Ruan, “Prevention and control of zika as a mosquito-borne
and sexually transmitted disease: a mathematical modeling analysis,” Springer, 2016.

27. S. K. Biswas, U. Ghosh, and S. Sarkar, “Mathematical model of Zika virus dynamics with vector control and sensitivity
analysis,” Infectious Disease Modelling, vol. 5, pp. 23–41, 2020.

28. W. H. Organization et al., “Zika strategic response plan quarterly update,” tech. rep., World Health Organization, 2016.
29. L. J. Forero-Mart́ınez, R. Murad, M. Calderón-Jaramillo, and J. C. Rivillas-Garćıa, “Zika and women’s sexual and repro-
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A Appendices

A.1 Proof that Eh0
is GAS when Rh < 1

Let X be the vector field given by the right side hand of System (A.2). It is enough to prove the existence of a Lyapunov
function for the translated system

Ẋ = F (X+Eh0
)− F (Eh0

) = f(X),

where the system Ẏ = F (Y) has Y = 0 as equilibrium solution. Let us consider the function

V ∗(S, Ih, A) =
1

σ1 + µ
Ih,

and define

V (S̄, Īh, Ā) = V ∗
(
S −

Λ

µ
, Ih, A

)
. (A.1)

We verify that the function V defined on (A.1) is a Lyapunov function. Indeed, V is positive definite, that is, V (Eh0
) = V ∗(0) = 0

and V > 0 for all (S̄, Īh, Ā) ̸= Eh0
inΩh. Additionally, the orbital derivative of V along the trajectories of system (2.2) is

V̇ =
∂V ∗

∂
(
S − Λ

µ

) Ṡ +
∂V ∗

∂Ih
İh +

∂V ∗

∂A
Ȧ

=
1

σ1 + µ
(βhIhS − (σ1 + µ)Ih)

≤
1

σ1 + µ
(σ1 + µ)

(
βh

Λ
µ

σ1 + µ
− 1

)
Ih

= (Rh − 1)Ih ≤ 0, ∀Ih ≥ 0.

.

Let △ = {(S, Ih, A) ∈ R3
+ : V̇ = 0} ⊂ {(S, Ih, A) ∈ R3

+ : Ih = 0} and △′ ⊂ △ the largest invariant set respect to (2.2). It
can be easily showed that △′ = {Eh0

}. Therefore by the LaSalle’s invariance principle [33], Eh0
is a global attractor whenever

Rh < 1.

A.2 Proof that E∗
h is GAS when Rh > 1

Note that the third equation of System (2.2) is uncoupled in the variable S and its equilibrium is Ih = µh+µ
σ1

A. Replacing this

value in the two first equations, we obtain the planar system
dS

dt
= Λ− βh

µh + µ

σ1
SA− µS

dA

dt
= βhAS − (σ1 + µ)A.

(A.2)

Therefore, solutions to system (2.2) tend asymptotically to those of the planar system (A.2) (see e.g. [34]). The Dulac
criterion [35] claims that if there exists a real continuously differentiable function ϕ(S,A) such that ∇ · [ϕ(S,A)X(S,A)] ̸= 0,
where X(S,A) = (F (S,A), G(S,A) is the right side hand of system (A.2), then there are no periodic orbits contained entirely
inside Ωh. Let

ϕ(S,A) =
1

SA
for S > 0, A > 0,

then

∇ · [ϕ(S,A)X(S,A)] =
∂(Fϕ)

∂S
+

∂(Gϕ)

∂A

=
∂

∂S

(
Λ
SA

− βh(µh+µ)
σ1SA

SA− µS
SA

)
+

∂

∂A

(
βhAS
SA

−
σ1 + µ

SA
A

)

=
∂

∂S

(
Λ
SA

− βh(µh+µ)
σ1

− µ
A

)
+

∂

∂A

(
βh − σ1+µ

S

)
= −

Λ

AS2
< 0, forS,A > 0.

.
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Thus, there are no periodic orbits in Ωh. Given that Ωh is positively invariant, and the endemic equilibrium exists if Rh > 1,
it follows from the Poincaré-Bendixson Theorem [35] that all solutions of the system starting in Ωh remain in Ωh for all t.
Thus, because of the absence of periodic orbits in Ωh, this implies that the unique endemic equilibrium of System (2.2) is GAS
when Rh > 1.

A.3 Proof of Lemma 1

We prove item i); all others are proved in a similar way. On the one hand, from the definition of R∗
z , we immediately have that

if R∗
z = 2Rz1 + R̄z2 < 1, then 2Rz1 < 1. On the other hand,

R∗
z < 1 ⇒ R2

z + 2Rz1 (1−Rz) < 1

⇒ Rz(1− 2Rz1 ) + 2Rz

⇒ Rz(1− 2Rz1 ) < 1− 2Rz , (2Rz1 < 1)

⇒ Rz < 1.

A.4 Proof of the condition R∗ < Rmax

We have to prove that R∗ < Rmax is satisfied. To this end, we consider the polynomial p(R) associated to system (2.20), whose
coefficients are in equation (2.21). The graph of p(R) is a parabola that opens upward (see Figure A.1). Since R∗ > 0 and
p(0) = c < 0 as long as Rz1 +Rz2 > 1, then to ensure that R∗ < Rmax, it is enough to prove that p(Rmax) > 0. In fact

p(Rmax) = aR2
max + bRmax + c

=
βzΛαmµ

δzRmax
R2

max +

[(
βmαmΛm

µm
+ βzµm

)
Λ

Rmax
+ [αmµ(µz + δz + µ)− βzΛαm]

µ

δz

]
Rmax

+(µz + δz + µ)µµm (1−R∗
z)

=
βzΛαmµ

δz
Rmax +

(
βmαmΛm

µm
+ βzµm

)
Λ+ [αmµ(µz + δz + µ)− βzΛαm]

µ

δz
Rmax

+(µz + δz + µ)µµm (1−R∗
z)

=

(
βmαmΛm

µm
+ βzµm

)
Λ+

αmµ2(µz + δz + µ)Rmax

δz
+ (µz + δz + µ)µµm (1−R∗

z)

= (µz + δz + µ)µµm(R∗
z)(R∗

z −R∗
z) + αmΛµ2 + (µz + δz + µ)µµm

= αmΛµ2 + (µz + δz + µ)µµm > 0.

Fig. A.1: Polynomial p(R) associated to system (2.20).
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A.5 Proof that Ez0 is GAS when R∗
z < 1

We will use κ = µz+δz+µ and the notation and reasoning analogous to that used in the proof of Proposition ??, with functions

V ∗(S, Iz , R, Sm, Im) =

(
S −

Λ

µ
log

Sµ

Λ

)
+ Iz +

βmΛ

µµm

(
Sm −

Λm

µm
log

Smµm

Λm

)
+

βmΛ

µµm
Im

and

V (S̄, Īz , R̄, S̄m, Īm) = V ∗
(
S −

Λ

µ
, Iz , R, Sm, Im −

Λm

µm

)
. (A.3)

We must prove that V defined in (A.3) is a Lyapunov function. V is positive definite and the orbital derivative of V along the
trajectories of (2.9) is

V̇ =
(
1− Λ

µS

)
Ṡ + İz + βmΛ

µµm

(
1− Λm

µmSm

)
Ṡm + βmΛ

µµm
İm

=
(
1− Λ

µS

)
(Λ− βmImS − βzIzS − µS) + (βmImS + βzIzS − κIz)

+βmΛ
µµm

(
1− Λm

Smµm

)
(Λm − αmIzSm − µmSm) + βmΛ

µµm
(αmIzSm − µmIm)

= (Λ− µS)− Λ
µS

(Λ− µS) + Λ
µS

(βmIm + βzIz)S − κIz + βmΛ
µµm

(Λm − µmSm)

− βmΛΛm
µµmSmµm

(Λm − µmSm) + βmΛΛmαmSmIz
µµmSmµm

− βmΛµmIm
µµm

= − (Λ−µS)2

µS
− βmΛ

µµ2
m

(Λm−µmSm)2

Sm
+
(

Λ
µ
βz + βmαmΛmΛ

µµ2
m

− κ
)
Iz

= − (Λ−µS)2

µS
− βmΛ

µµ2
m

(Λm−µmSm)2

Sm
+ κ (R∗

z − 1) Iz .

Note that the last expression in the above inequality is negative if R∗
z < 1 and for S = Λ

µ
, Sm = Λm

µm
and Iz = Im = 0.

Finally, using the LaSalle’s invariance principle [33], Ez0 defined in (2.11) is a global attractor whenever R∗
z < 1.

A.6 Sensitivity index of Rz with respect to βz

We have

∂Rz

∂βz
=

∂

∂βz

(
βzΛ

2µκ1
+

√(
βzΛ

2µκ1

)2

+
αmβmΛmΛ

µµ2
mκ1

)

=
Λ

2µ(δz + µ+ µz)
+

βzΛ2

4µ2(δz + µ+ µz)2

√
β2
zΛ

2

4µ2(δz + µ+ µz)2
+

αmβmΛΛm

µµ2
m(δz + µ+ µz)

.

Then, it is enough to compute the expression for

∂Rz

∂βz

βz

Rz
=

∂Rz

∂βz

βz

βzΛ

2µκ1
+

√(
βzΛ

2µκ1

)2

+
αmβmΛmΛ

µµ2
mκ1

.

A.7 Proof of Proposition 7

All state variables and controls are non-negative and, for i = {1, 2, 3}, the set of control variables ηi ∈ A is also convex and
closed. We note that the boundedness of the optimal system (4.1) determines the compactness for the existence of the optimal
control. Moreover, there exists a constant ν > 1, ω1 = min(d1, d2, d3), and ω2 > 0 such that

J (η) ≥ ω1||η||ν − ω2. (A.4)

Therefore, according to [36], the controlled system (4.1) admits an optimal control solution η∗.
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A.8 Proof of Proposition 8

We have

p1

dt
= −

∂H

∂S
= p1 [(1− η1)βmIm + (1− η3)(βzIz + βhIh) + µ]− p2 [(1− η1)βmIm + (1− η3)βzIz ]

−p3 [(1− η3)βhIh] ,

p2

dt
= −

∂H

∂Iz
= −c1 + p1(1− η3)βzS − p2 [(1− η3)βzS − ω2(1− η3)βhIh − (µz + δz + µ)]− p3(1− η3)βzIh

−p6δz + p7(1− η1)αmSm − p8(1− η1)αmSm,

p3

dt
= −

∂H

∂Ih
= −c2 + p1(1− η3)βhS + p2ω2(1− η3)βhIz − p3 [ω1[(1− η1)βmIm + (1− η3)βzIz ]

−(1− η2)σ1 − µ]− p4 [ω1[(1− η1)βmIm + (1− η3)βzIz ] + ω2(1− η3)βhIz ]

−p5(1− η2)σ1,

p4

dt
= −

∂H

∂Ihz
= −c3 + p4 (ϵδz + (1− η2)σ2 + µhz + µ)− p5(1− η2)σ2 − p6ϵδz + p7(1− η1)αmSm

−p8(1− η1)αmSm,

p5

dt
= −

∂H

∂A
= −c5 + p5(µh + µ),

p6

dt
= −

∂H

∂R
= p6µ,

p7

dt
= −

∂H

∂Sm
= p7 ((1− η1)αm(Iz + Ihz) + µm)− p8(1− η1)αm(Iz + Ihz),

p8

dt
= −

∂H

∂Im
= −c4 + p1(1− η1)βmS − p2(1− η1)βmS + p3(1− η1)βmIh − p4ω1(1− η1)βmIh + p8µm,

with transversality conditions pi(T ) = 0, for i = {1, 2, 3, 4, 5, 6, 7, 8}. According to PMP, the optimal conditions are

∂H

∂η1
= d1η1 − ((p2 − p1)S + (p4 − p3)Ih)βmIm − (p8 − p7)αm(Iz + Ihz)Sm = 0,

∂H

∂η2
= d2η2 − (p5 − p3)σ1Ih − (p5 − p4)σ2Ihz = 0,

∂H

∂η3
= d3η3 − (p2 − p1)βzIzS − (p3 − p1)βhIhS − (p4 − p3)ω1βzIzIh − (p4 − p2)ω2βhIzIh = 0.

Hence, we get assertions (8). This completes the proof.
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