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Abstract

During epidemics, people will often modify their behaviour patterns over time in response
to changes in their perceived risk of spreading or contracting the disease. This can substantially
impact the trajectory of the epidemic. However, most infectious disease models assume stable
population behaviour due to the challenges of modelling these changes. We present a flexi-
ble new class of models, called behavioural change individual-level models (BC-ILMs), that
incorporate both individual-level covariate information and a data-driven behavioural change
effect. Focusing on spatial BC-ILMs, we consider four “alarm” functions to model the effect
of behavioural change as a function of infection prevalence over time. We show how these
models can be estimated in a simulation setting. We investigate the impact of misspecifying
the alarm function when fitting a BC-ILM, and find that if behavioural change is present in a
population, using an incorrect alarm function will still result in an improvement in posterior
predictive performance over a model that assumes stable population behaviour. We also find
that using spike and slab priors on alarm function parameters is a simple and effective method
to determine whether a behavioural change effect is present in a population. Finally, we show
results from fitting spatial BC-ILMs to data from the 2001 U.K. foot and mouth disease epi-
demic.
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1 Introduction
Human behaviour often has a substantial impact on the transmission dynamics of infectious diseases, whether
it be by directly reducing one’s own risk of contracting or passing on a disease, or by taking preventative
action to protect animals or crops during an outbreak. Incorporating the effect of behaviour change (BC)
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into infectious disease transmission models may lead to a more accurate representation of the disease spread
[Weitz et al., 2020]. Additionally, having the ability to identify how behaviour changes over time and how
these changes impact transmission can provide valuable information to public health units and policy mak-
ers.

Incorporating BC into a data-driven statistical infectious disease model has the potential to improve
our understanding of infectious disease transmission processes and increase the accuracy of model fit and
forecasting. However, there are many challenges associated with doing this. Firstly, and particularly
in historical contexts, there may be limitations in availability of the type of data which may be used
to inform BC. We may expect mobility data such as Google COVID-19 Community Mobility Reports
[Google LLC, 2022], livestock movement records, or mobile phone records to be informative of BC, for
example. However, mobility data has only been available as of fairly recently and still has differential avail-
ability between countries [Wardle et al., 2023]. One data source may also not be sufficient for informing BC;
with COVID-19, while mobility data may capture some changes in contact patterns, it would not capture
behaviours such as physical distancing and mask-wearing which are also important factors in influencing
spread [Mendez-Brito et al., 2021]. Data for many such behaviours would likely not exist for most popula-
tions, or over an extended time period. Furthermore, even if such data is available, using it in a model would
limit forecasting ability since it would only be known up to the current time point. Finally, human behaviour
is a very complex process, and it is difficult to select a function by which to model it. Funk et al. (2015)
provides a discussion of some additional challenges for incorporating BC into infectious disease models.

Likely due to the data-related challenges of measuring BC, studies that incorporate BC have been largely
limited to deterministic models and have focused on model characteristics. Funk, Salathé and Jansen (2010)
provide an early review of mathematical models of human diseases that incorporate the effect of individual
behavioural responses due to extrinsic information. In their review, they classify studies by the source of
information used to inform BC (belief- or prevalence-based, considered on either a local or global scale)
as well as the effect the BC has in the model (change of disease state, parameter modification, or change
in contact structure). Verelst et al. (2016) carried out a more recent systematic review of BC models, and
noted that less than 20% of included studies used any real data to fit or validate their models. Mathematical
modelling studies are helpful for exploring possible mechanisms of behaviour change in theoretical scenar-
ios, however, it is also important to investigate the practical suitability of these models in analysing and
interpreting real data.

Most of the previous work on BC models has been done within a population-averaged framework.
Population-averaged models are computationally efficient and often appropriate for large populations. How-
ever, such models assume homogeneity of susceptibility and mixing patterns across all individuals in the
population. For some diseases and in smaller populations, a more complex model with less restrictive as-
sumptions may be necessary to adequately describe transmission. Therefore in our study, we focus on the
individual-level model (ILM) framework described by [Deardon et al., 2010].

Individual-level models, alternatively known as individual-based models, can flexibly incorporate individual-
level covariate information that may affect susceptibility or, when infected, transmission ability. They can
also incorporate indicators of population mixing, such as the spatial locations of (or distances between) in-
dividuals or contact networks, thus relaxing the homogeneous mixing assumption made in many models.
However, ILMs have generally been constructed based on the aforementioned assumption that susceptibility
and population mixing behaviours remain constant over time, with temporal differences in transmission dy-
namics arising solely due to the progression of individuals through different infectious states. This ignores,
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for example, the possibility that individuals or the population overall may be modifying their infection prob-
abilities based on their perception of risk at a given time.

Here, we propose a new class of ILMs, called BC-ILMs, that allows for time-varying susceptibility or
transmission based on a prevalence-driven BC effect. Focusing on spatial ILMs, we investigate the proper-
ties of these BC-ILMs through a simulation study, including an exploration of the effects of misspecifying
the so-called “alarm” (or BC) function to address the challenge of selecting a suitable function to describe
BC. Additionally, we suggest a method that can be used to screen a data set for the presence of a BC effect.
Finally, we illustrate the use of our methods on real data from the 2001 U.K. epidemic of foot and mouth
disease in livestock.

2 Methods

2.1 Behavioural change individual-level models
Deardon et al. (2010) introduced a framework for ILMs that allows the probability of infection over discrete
time-steps to be modelled based on individual-level data, which may include individual-level covariate or
spatial information. These models are typically placed within compartmental (or multi-state) frameworks,
such as the susceptible, infectious, removed (SIR) framework. In the SIR framework, individuals progress
from being susceptible to the disease to becoming infectious and able to transmit the disease, and finally
to being in a permanent removed state. After removal, individuals can no longer contract nor transmit the
disease. At any given time-point, each individual in the population must be classified as either susceptible,
infectious, or removed, and can only progress to other states in a forward direction. The transition from
susceptible to infectious is determined by an infection probability, and the transition from infectious to re-
moved is dictated by the infectious period of the disease, λI . The infectious period may be considered to be
the same or varying across individuals, and can either be assumed to be known or be estimated as part of the
model.

Let S(t), I(t), and R(t) represent the sets of susceptible, infectious, and removed individuals at time t
respectively. The general form of an epidemic ILM is:

P (i, t) = 1− exp

−ΩS(i)
∑
j∈I(t)

ΩT (j)κ(i, j)

+ ϵ(i, t)

 , (1)

where P (i, t) represents the probability of susceptible individual i becoming infected at time t (leading to
them becoming infectious at time t+1). The ΩS(i) term is a function of susceptibility factors describing the
risk of susceptible individual i contracting the disease, and ΩT (j) is a function of transmissibility factors de-
scribing the risk of infectious individual j transmitting the disease to susceptible individual i. The infection
kernel, κ(i, j), incorporates factors such as spatial separation between pairs of susceptible and infectious
individuals. The final term, ϵ(i, t), represents infections that arise due to factors otherwise unexplained by
the model. A constant ϵ(i, t), for example, might represent a constant and spatially homogeneous rate of in-
troduction of new infections into the epidemic, originating from outside the population under consideration.

We propose a new class of ILM called the BC-ILM. In the BC-ILM we introduce an “alarm function”
term. The alarm function reflects the possibility that individuals modify their behaviour over time according
to their perception of either becoming infected or infecting others. The alarm function at may be included
as a multiplicative factor to any of the terms of the ILM, provided that a function fk(·) of at results in P (i, t)
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decreasing as at increases. Therefore the BC-ILM may take one of four forms, where each form includes
one of the bold terms in the following equation:

P (i, t) = 1− exp

−ΩS(i;at)
∑
j∈I(t)

ΩT (j;at)κ(i, j;at)

+ ϵ(i, t;at)

 . (2)

One may also consider additional forms of the BC-ILM where more than one of the bold terms are retained,
if BC is expected to impact more than one aspect of disease transmission.

The likelihood function for a BC-ILM remains the same as for a general ILM. For an epidemic fit within
an SIR framework, we can write the likelihood for the observed data consisting of the infectious states of
each individual at a given time-point t. The likelihood is given by the product of the infection probabilities
for individuals who are infected at time t and so become infectious at time t+ 1, multiplied by the product
of the complement of the infection probabilities for susceptible individuals at time t who do not become
infected, and thus remain susceptible at time t+ 1. This can be expressed as:

ft (S(t), I(t), R(t)|θ) =

 ∏
i∈I(t+1)\I(t)

P (i, t)

 ∏
i∈S(t+1)

(1− P (i, t))

 . (3)

The likelihood for the epidemic data D across all time-points in the study period, given values for the model
parameters θ, is then given by:

f (D|θ) =
tmax∏
t=1

ft (S(t), I(t), R(t)|θ) . (4)

2.2 Spatial ILMs
We can define a spatial ILM by selecting a spatially-based infection kernel. For example, the infection kernel
might be a function of the Euclidean distance between individuals. We will focus on a simple spatial ILM
(SILM), referred to herein as the “baseline SILM”, where we assume each individual has equal susceptibility
and transmissibility values, and the variability in infection probability between individuals at a given time
point arises purely due to spatial information. Spatial location is considered to be static throughout the study
period. The model for the baseline SILM is given by:

P (i, t) = 1− exp

−α
∑
j∈I(t)

d−β
ij

 , α, β > 0. (5)

In this model, ΩS(i) = α and ΩT (j) = 1 represents the susceptibility and transmissibility levels of all
individuals, respectively. The infection kernel is κ(i, j) = d−β

ij , where dij is the Euclidean distance between
susceptible individual i and infectious individual j. The spatial parameter β determines the decay of infec-
tion risk over distance.

The baseline SILM given in Equation 5 can easily be extended to allow susceptibility or transmissibility
to vary between individuals. For example, we could use a k−level categorical susceptibility covariate such
that ΩS(i) = αzi , where zi ∈ 0, 1, ..., k − 1 indicates to which susceptibility subgroup individual i belongs.
However, such models still assume that the susceptibility and transmissibility of an individual remains con-
stant across time. We can use BC-ILMs to relax this assumption (note that while we continue to use the
term BC-ILMs, for the remainder of the article this term is used to refer to spatial BC-ILMs specifically).
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2.3 Spatial BC-ILMs
In this paper, we consider two options for where the BC term is added into the simple SILM. Firstly, we
consider a model where BC impacts an individual’s susceptibility level, with ΩS(i; at) = α(1 − at). This
gives a BC-ILM in the form of:

P (i, t) = 1− exp

−α(1 − at)
∑
j∈I(t)

(dij + 1)−β

 . (6)

Secondly, we consider the scenario where BC influences the spatial parameter, β, with κ(i, j; at) = (dij +

1)−β(1−at)−1
:

P (i, t) = 1− exp

−α
∑
j∈I(t)

(dij + 1)−β(1−at)−1

 . (7)

Note that one is added to the Euclidean distances to avoid an issue where an increased BC effect would
increase transmission between susceptible and infectious individuals when dij < 1 in Equation 7. The same
adjustment was made in Equation 6 for consistency in the interpretations of α and β between the two forms.
Alternatively, prior to fitting the model the spatial coordinates in the data set could be rescaled such that the
condition min(dij) ≥ 1 is satisfied.

As discussed in Section 1, there are many factors upon which BC may depend, however there are many
challenges to finding and using external BC-related data. To avoid these challenges, we propose using alarm
functions that depend on (reported) prevalence as a surrogate for the population’s perceived risk over time.
Several previous studies have illustrated the properties of a prevalence-driven BC effect in various ways in
a deterministic modelling setting [Perra et al., 2011, Kassa and Ouhinou, 2011, Kassa and Workineh, 2018,
Eksin et al., 2019, Kim et al., 2020].

There are many forms of a prevalence-driven at that may be considered; here we describe four possibil-
ities. A simple option is to use a threshold alarm,

at =

{
δ1 if |It−1| > δ2

0 otherwise

where 0 < δ1 < 1 is the alarm parameter, |It−1| is the prevalence at time t− 1, and δ2 > 0 is a prevalence
threshold above which the population enters an alarmed state. With this alarm function, we assume that
individuals maintain a baseline susceptibility or transmissibility level unless the prevalence is above a cer-
tain threshold, in which case they immediately reduce their susceptibility or transmissibility by a constant
amount until prevalence returns to being under the threshold. This might be appropriate for modelling a
situation where public health mandates are introduced based on case counts, for example.

We can also consider smooth functions of prevalence for our alarm function, where the behaviour change
effect becomes stronger as prevalence increases. An example of a one-parameter smooth alarm function is
the exponential cumulative distribution function, or exponential alarm,

at = 1− exp(−δ1|It−1|),

where at will approach an asymptote of one at a rate determined by 0 < δ1 < 1. To make this alarm function
more flexible, we can scale it using an additional parameter,

at = δ2(1− exp(−δ1|It−1|)),
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where 0 < δ2 ≤ 1 is the value of the asymptote (we call this the scaled exponential alarm). The
final alarm function option we consider here is a Hill-type alarm, which has previously been used by
[Kassa and Ouhinou, 2011], and is based on the Hill function [Hill, 1910]

at =
pδ2t−1

δδ21 + pδ2t−1

.

Here pt−1 is the proportion of the population that is infectious at time t − 1, 0 < δ1 < 1 is the proportion
of the population that needs to be infectious to achieve half the maximal BC effect, and δ2 > 0 is the Hill
coefficient. As δ2 increases, the Hill function will produce a more gradual introduction of a BC effect than
is possible with the other two smooth alarm functions mentioned here. At very large values of δ2, the Hill
alarm is approximately equal to a threshold alarm.

3 Simulation Study

3.1 Simulation methodology
A simulation study was conducted to explore how well BC-ILM parameters are estimated under various
scenarios. We considered the four alarm functions described previously - one with a changepoint structure
and three smooth functions of prevalence. These alarm functions are incorporated into one of two possible
models: Model Type A which follows Equation 6, and Model Type B which follows Equation 7. Therefore,
in total we have eight BC-ILMs. Data were simulated from each model under three scenarios: “weak”,
“medium”, and “strong” BC effects (note that these terms are used relative to each other; the “weak” effect
is still fairly strong in that it changes the shape of the epidemic curve considerably compared to the no BC
case). The alarm functions and corresponding simulation settings are summarized in Table 1. Figure 1
shows plots of each alarm function used. A total of m = 20 populations each containing n = 1000 indi-
viduals each were generated for each scenario. The spatial coordinates for individuals in each population
were randomly sampled over a 200 × 200 unit square, i.e. x, y ∼ Uniform(100, 300). Epidemics were
generated within an SIR framework across a total of tmax +1 = 31 time points. Three individuals from each
population were selected at random to initialize the epidemics by starting their infectious periods at t = 1.

Models were fit within a Bayesian framework using Markov Chain Monte Carlo (MCMC). An adaptive
random-walk Metropolis-Hastings (RWMH) algorithm was used to update parameters [Roberts and Rosenthal, 2009].
The RWMH algorithm was run for 100,000 iterations, with the first 10,000 iterations discarded as burn-in,
and convergence was assessed both visually and using Geweke’s diagnostic [Geweke, 1992]. For all mod-
els and scenarios, vague Uniform(0,100) priors were used for the susceptibility and spatial (transmission)
parameters (α and β). Vague or weakly informative priors were used for the alarm function parameters (see
Table 2). The MCMC computations were performed using the Julia language version 1.6.3 in the University
of Calgary’s Advanced Research Computing (ARC) network [Bezanson et al., 2017]. Post-model fitting
analyses and plotting were performed in R [R Core Team, 2022].

To evaluate model fit, we considered the posterior predictive distribution (PPD) of the epidemic curve:
C = {|I(t+ 1) \ I(t)|}tmax+1

t=1 , which is the set of the number of new infections at each time point through-
out the epidemic period. The posterior predictive distribution of C was estimated by simulating epidemics
from a random sample of 100 values from the MCMC-based posterior estimate. From the posterior pre-
dictive distributions we calculated 95% highest posterior density intervals (HPDIs) for each time point of
C. We also assessed each model’s forecasting ability by fitting the model to only the first eight time points
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of each epidemic, and then used the resultant parameter estimates to generate 95% HPDIs for the epidemic
curve over times t = 9 to t = 21. For most scenarios and populations, t = 8 is near the turning point of
the largest infection peak, where the BC effect is strongest. Additionally, in all the scenarios that use the
threshold alarm function, the prevalence in each population reached the threshold by t = 8.

Table 1: Simulation study settings. Note |It−1| indicates the number of infectious individuals and
pt−1 denotes the proportion of infectious individuals at time t− 1. The alarm function parameters
are listed from top to bottom in the order of weak, medium, and strong BC scenarios.

Susceptibility
and Spatial
Parameters

Alarm Function
Parameter(s)

Model Alarm Function Model Type α β δ1 δ2

1

Threshold Alarm

at =

{
δ1 if |It−1| > δ2

0 otherwise

A 2.2 2.0
0.50 40
0.65 40
0.80 40

B 2.2 2.0
0.10 40
0.15 40
0.20 40

2
Exponential Alarm

at = 1− e−δ1|It−1|

A 2.4 2.0
0.005 -
0.01 -

0.015 -

B 2.4 2.0
0.001 -

0.0015 -
0.002 -

3
Scaled Exponential Alarm

at = δ2(1− e−δ1|It−1|)

A 2.4 2.0
0.02 0.80
0.03 0.80
0.04 0.80

B 2.4 2.0
0.005 0.40
0.007 0.40
0.009 0.40

4

Hill-Type Alarm

at =
p
δ2
t−1

δ
δ2
1 +p

δ2
t−1

A 2.4 2.0
0.10 3
0.075 3
0.05 3

B 2.4 2.0
0.20 3
0.15 3
0.10 3
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Table 2: Priors used on alarm function parameters in the simulation study.

Model Prior for δ1 Prior for δ2
1 (Threshold Alarm) Beta(1, 1) Gamma(3, 20)
2 (Exponential Alarm) Beta(1, 2) -
3 (Scaled Exponential Alarm) Beta(1, 2) Beta(1, 1)
4 (Hill-type Alarm) Gamma(2, 4) Beta(1, 2)

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
Prevalence at t−1

A
la

rm
 V

al
ue

Scenario
δ1= 0.50
δ1= 0.65
δ1= 0.80
δ1= 0.10
δ1= 0.15
δ1= 0.20

Threshold Alarm (Model 1)

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
Prevalence at t−1

A
la

rm
 V

al
ue

Scenario
δ1= 0.005

δ1= 0.01
δ1= 0.015
δ1= 0.001

δ1= 0.0015
δ1= 0.002

Exponential Alarm (Model 2)

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
Prevalence at t−1

A
la

rm
 V

al
ue

Scenario
δ1= 0.02
δ1= 0.03
δ1= 0.04

δ1= 0.005
δ1= 0.007
δ1= 0.009

Scaled Exponential Alarm (Model 3)

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5
Proportion Infectious at t−1

A
la

rm
 V

al
ue

Scenario
δ1= 0.10

δ1= 0.075
δ1= 0.05
δ1= 0.20
δ1= 0.15
δ1= 0.10

Hill−Type Alarm (Model 4)

Figure 1: Alarm functions for each simulation scenario. Both model types, A and B, are plotted
on the same graph for a given model. Refer to Table 1.
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a) b)

Figure 2: a) Example epidemic curves under various BC scenarios for each model type. b) Average
number of infections (epidemic size) over t = 1 − 31 under various scenarios, with the error bars
showing standard deviation in epidemic size.

3.2 Simulation results
Parameter estimates

Figures 11 - 14 show the 95% HPDIs and posterior medians for the parameter estimates obtained under
each model. Overall, parameter estimation across models was fairly good. For all models, although the
posterior medians for α were generally lower than the true value, the 95% HPDIs captured the true value
in most populations. The posterior medians for β consistently underestimated the true parameter value. In
fact, in a number of cases, the upper limits of the 95% HPDIs for β were also lower than the true value. In
most cases, the 95% HPDIs for the alarm function parameters (δ1 and δ2) captured the true parameter value.
When looking at posterior median estimates, it was more common to see underestimation of δ1 in Models 1,
2 and 3, and δ2 in Model 3. These parameters, when lowered, decrease the BC effect and increase the rate of
epidemic spread. Conversely, the remaining alarm function parameters which, when lowered, increase the
BC effect and slow epidemic spread, were often overestimated.

A lower value of α results in a slower spreading epidemic, as it indicates that individuals are at lower
susceptibility to the disease. Since a BC effect also results in an overall slower spreading epidemic, the
downward bias observed in the estimates for α may be a result of compensation for the BC effect. This
aligns with the patterns observed in the alarm function parameter estimation, as the parameters which tended
to be somewhat underestimated were those that decrease the BC effect when lowered, and the parameters
which tended to be overestimated were those that decrease the BC effect when raised. Therefore, in general,
the BC effect was underestimated a little in most populations, which (if not compensated for by the suscep-
tibility and spatial parameters) would lead to a faster spreading epidemic.
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As the value of β decreases, susceptible individuals do not need to be as close in distance to infectious
individuals to become infected. Decreasing the value of β thus results in a more “randomly” spreading
epidemic as infectious individuals can infect susceptibles from further away. Because of this, it is common
to see β underestimated when fitting such spatial ILMs (see for example Malik, Deardon and Kwong, 2016
and Mahsin, Deardon, and Brown, 2022). In addition to being more spatially random, epidemics generated
from a model with a lower value of β tend to spread faster. The underestimation of α and the BC effect also
therefore help compensate for the underestimation of β. Due to this correlation between all the parameters,
estimation of the parameters for ILMs can be quite difficult, so overall the estimates we have observed here
can be considered reasonably good for this type of model.

Posterior predictive ability

We examined the PPD of the epidemic curve to assess the predictive performance of each model. Figure
3 shows the results for one randomly selected epidemic under each model for the medium BC scenario.
Generally, the PPD of the epidemic curve indicated a good fit from each BC-ILM. The PPD of the epidemic
curves under Model 1A tended to be further from the true curves when compared to the other models. In
particular, in the weak and medium BC scenarios the number of incident infections at the peak of the epi-
demic was commonly overestimated in Model 1A. In the strong BC scenario, the epidemic data generated
by Model 1A tended to have multiple peaks of similar magnitudes over the study period, and the 95% HPDIs
usually captured these peaks well.

For every population and scenario, the 95% HPDIs from Model 2A captured the true curve at nearly
every time point. In Model 3A, it was somewhat more common for the 95% HPDIs to miss several time
points (typically by slightly overestimating the number of incident infections near the middle of the study
period). However, in the majority of populations the 95% HPDIs captured the true curve at nearly every
time point. In Model 4A, the shape of the epidemic curve tended to be captured well by the 95% HPDIs and
posterior median. In some populations, although the general shape was correct, the posterior medians were
shifted relative to the true curve such that the peaks might be predicted to occur one time point too early, for
example. Regardless, the 95% HPDIs still captured the majority of time points of the true epidemic curve.
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Figure 3: 95% HPDIs for the epidemic curve of one representative epidemic from the medium BC
scenarios, where the true model was fit. Posterior medians are shown as dashed blue lines, and the
true epidemic curves are shown with solid black lines.

Forecasting ability

We assessed the forecasting ability of the BC-ILMs by fitting the model to the first eight time points of each
epidemic and then using those posterior estimates to generate epidemics across time points t = 9 − 21.
Figure 4 shows the posterior predictive forecasts for one randomly generated epidemic under each model
for the medium BC scenario.

The 95% HPDIs of the forecasts for Model 1A were generally very accurate in the weak and medium
BC scenarios, with most time points of the true epidemic curves falling between the limits of the HPDIs.
In the strong BC scenario, the epidemic curves generated by Model 1 had multiple peaks which were not
captured as well in the forecasts. The 95% HPDIs for the strong BC scenario forecasts tended to be very
wide, with the upper limit being close to the incidence observed during peaks and the lower limit being close
to the minimum incidence across most time points.

The 95% HPDIs of the forecasts for Model 2A captured most time points of the true curve across all
populations and scenarios. It was somewhat more common to see time points missed in the strong BC
scenario where, like in Model 1A, there were often multiple large peaks in the true epidemic curve. Most
of the forecasts of Model 3A were fairly accurate, however in 6/20 of the weak BC scenario populations,
5/20 of the medium BC scenario populations, and 3/20 of the strong BC scenario populations the forecasts
incorrectly predicted that the incidence would continue to increase after the true epidemic peak. In these
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populations, the forecasted epidemic curves had very high peaks around t = 10 to t = 15, instead of cap-
turing the plateau or decline of the true epidemic curves.

The forecasted curves from Model 4A were typically quite accurate and tended to capture the oscilla-
tions of the epidemic curves well, particularly in the weak and medium BC scenarios. In the strong BC
scenario, it was more common for the 95% HPDIs to be wide across all the timepoints rather than capturing
the individual peaks and valleys (similar to what was observed in Model 1A). Despite this, in the vast ma-
jority of populations, most time points of the true epidemic curves fell within the limits of the 95% HPDIs
of the forecasts from Model 4A.
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Figure 4: 95% HPDIs for the forecasted epidemic curve of one representative epidemic from the
medium BC scenarios. Posterior medians are shown as dashed blue lines, and the true epidemic
curves are shown with solid black lines.

4 Alarm Function Misspecification and Model Choice
In this section, we investigate the effects of misspecifying the alarm function in a simulation setting where
the generative alarm function is known. This is important since in practice, for example at the beginning
of an epidemic, there may be great uncertainty as to which form of at would be most appropriate. All
models under consideration were fit to each simulated data set. In addition to each of the models listed in
Table 1, we also fit the baseline SILM which assumes no BC (Equation 5) to each data set. Therefore, in
total nine models (Models 1A-4A, 1B-4B, and the baseline SILM) were fit to each data set. We used the
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Watanabe-Akaike information criterion (WAIC, Watanabe, 2010) for model comparison. For each fitted
model, posterior prediction and forecasting were performed using the methods described in Section 3.

4.1 Misspecification study results
Figure 5 and Figures 15 - 18 show 95% epidemic curve HPDIs from under each model, for a single repre-
sentative epidemic. Overall, regardless of which of the BC-ILMs was used to simulate the epidemic data,
the baseline model was not able to provide a good fit. This is especially noticeable at medium and strong
levels of underlying BC, where the PPD for the epidemic curve obtained with the baseline model typically
peaked much later than the true epidemic does, and did not capture the initial steep increase in incidence
followed by multiple infection peaks that are characteristic of BC data.

Amongst the four BC-ILMs, the exponential, scaled-exponential, and Hill-type alarm models (Models
2-4) tended to produce similar PPDs for the epidemic curve for each data set. Regardless of what the true
model was, the 95% HPDIs for the epidemic curve from each of these models generally provided a good fit
to the true curves. When fitting the threshold alarm (Model 1), it tended to give a somewhat worse-fitting
HPDI for the epidemic curves compared to the other models. Additionally, in general when the genera-
tive model was Model 1, the resultant epidemic curves seemed to be less likely to be captured well by any
model. This may be attributed to the higher variation seen in the epidemic curves that arise from this model
compared to the other models.

The results of the simulation study suggest that, overall, it is more important to include an alarm mech-
anism to achieve a good model fit than to specify the exact form of the alarm function correctly, as each
misspecified BC-ILM still provided a substantial improvement in fit over the baseline SILM. When choos-
ing between different alarm functions in practice, the choice between a threshold-based versus a smooth
alarm function may be more important than the choice between different formulations of smooth alarm
functions. Since the threshold alarm model tended to produce quite variable epidemics that were less likely
to fit well even when using the true model, in an application setting it may be better to choose a smooth
alarm function unless there is specific reason to believe a threshold-based BC occurred in a population. Al-
ternatively, it may be possible to combine the threshold and smooth alarm formulations by modelling BC
using the exponential alarm but only after a certain prevalence threshold is achieved, for example. This
could allow for additional flexibility in situations where there is uncertainty around what BC mechanism is
most appropriate.
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Model 1A

Model 2A

Model 3A

Model 4A

Generative Model

Figure 5: 95% HPDIs for the epidemic curve of one representative epidemic from the medium
BC scenarios. Posterior medians are shown as dashed blue lines, and the true alarm functions
are shown with solid black lines. Plot titles indicate which model was fit; titles with an asterisk
indicate where the true model was fit.

Figure 6 shows 95% HPDIs of posterior predictive forecasts of the epidemic curve for one representative
population. As was observed in the PPD of the full epidemic curves, the forecasts obtained with the baseline
model were poor and considerably overestimated the incidence at the peak of the epidemics. However, the
BC-ILMs all provided reasonably good forecasts for most populations. As was also seen in the PPD of the
full epidemic curves, the choice of model did not have a large impact on the epidemic forecasts, although
the widths of the HPDIs for Model 1 when the generative model was not Model 1 tended to be wider than
those of the other three models.
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Model 1A

Model 2A

Model 3A

Model 4A

Generative Model

Figure 6: 95% HPDIs for the forecasted epidemic curve of one representative epidemic from the
medium BC scenarios. Posterior medians are shown as dashed blue lines, and the true alarm
functions are shown with solid black lines. Plot titles indicate which model was fit, and row labels
indicate which model was used to generate the data set. Plot titles with an asterisk show the true
model fit.

4.2 Model choice using WAIC results
Tables 3 and 4 summarize the WAIC values obtained from fitting each model to the true data simulated
under the medium BC scenario. Similar results were observed in the weak and strong BC scenarios. Table
3 shows the proportion of time each model had the lowest WAIC value of all the models fit. When the
model used to simulate the data set was Model 1, 2, or 4, the true model was most often correctly selected.
However, when the generative model was Model 3, the WAIC values from Model 2 were typically lower
than those from the true model. This may be because the alarm function in Model 2 is a special case of the
more flexible alarm function in Model 3 where δ2 is constrained to be equal to one, such that there is one
fewer parameter to estimate. The mean differences in WAIC between Models 2 and 3 (and within a given
model type, eg. A) were minimal (< 2), so in practice neither would be considered “significantly” different
from the other.

Generally, the difference in WAIC between types within a model (eg. comparing Model 1A to 1B) was
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fairly small on average (see Table 4). This aligns with what was observed in the PPD for the epidemic curve,
where model type typically had minimal impact on the HPDIs. The baseline model was never selected as
the best model using the WAIC, and on average it had much higher WAIC values compared to when the true
model was fit. Based on the WAIC and the PPD of the epidemic curve, we conclude that the baseline model
is unable to provide a good fit when the data has a BC effect present.

Table 3: Proportion of epidemic data sets selected using the WAIC, for the medium BC scenario.
Bold numbers indicate where the true model was fit.

Model fit

True Model Base 1A 1B 2A 2B 3A 3B 4A 4B

1A 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1B 0.00 0.10 0.90 0.00 0.00 0.00 0.00 0.00 0.00
2A 0.00 0.10 0.00 0.60 0.00 0.05 0.00 0.20 0.05
2B 0.00 0.00 0.20 0.05 0.40 0.00 0.00 0.00 0.35
3A 0.00 0.00 0.05 0.60 0.05 0.25 0.00 0.05 0.00
3B 0.00 0.05 0.05 0.10 0.55 0.00 0.15 0.00 0.10
4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
4B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 4: Mean difference in WAIC between the misspecified model and true model fits, for the
medium BC scenario. A positive value indicates the misspecified model on average had a higher
WAIC (worse fit) compared to the true model. Bold numbers indicate where the correct model
number but incorrect model type (A/B) was fit.

Model fit

True Model Base 1A 1B 2A 2B 3A 3B 4A 4B

1A 35.19 - 5.33 27.05 29.63 13.16 18.97 20.34 36.41
1B 26.02 3.41 - 20.45 20.16 12.13 10.50 17.67 26.24
2A 76.50 15.53 26.71 - 7.97 1.91 9.59 1.22 9.16
2B 75.06 24.31 19.10 4.58 - 6.41 1.33 4.99 -0.31
3A 40.94 8.87 11.57 -1.05 4.09 - 5.11 0.62 5.68
3B 56.77 16.30 12.30 4.46 -1.18 6.23 - 5.38 -0.22
4A 289.12 57.61 74.60 16.51 41.11 19.09 43.18 - 28.72
4B 502.19 105.99 120.89 93.23 77.89 94.59 79.98 29.51 -
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5 Spike and Slab Priors as a Behavioural Change Screening
Tool

The simulation studies in described earlier in this paper consider cases where there is a BC effect present in
an epidemic data set. In scenarios where there is no BC, or only a very small degree of BC, identifiability
issues can arise. For example, in the threshold alarm model, if the threshold parameter δ2 takes on a value
close to or greater than the maximum prevalence observed in the data, the alarm parameter δ1 can change
to any value with negligible or no effect on the value of the computed likelihood. Similarly, if δ1 = 0, δ2
can take on any value without affecting the likelihood. In the scaled exponential alarm model, the same
phenomenon occurs when either δ1 = 0 or δ2 = 0. Additionally, although Model 2 would not have this
identifiability issue since it only has one BC parameter, using a typical prior on δ1 when there is no BC
present can still result in poor MCMC mixing and biased parameter estimates.

We propose using spike and slab priors as a screening tool for identifying whether there is a BC effect
present. By taking this approach, we can identify whether a baseline SILM is adequate or if including the
BC effect is necessary, then use this information to determine which type of model should be used for a
given epidemic data set.

5.1 Spike and slab priors
Spike and slab priors (also called sparsity-inducing priors) are mixture distributions with either a point mass
or continuous distribution with very small variance centred at one value (the spike), and the remaining mass
represented by a continuous and typically flat or non-informative distribution (the slab, pslab(·)). The mix-
ture weights are determined by a prior probability of the variable(s) being included in the model. Spike and
slab priors were originally proposed as a method for variable selection in Bayesian linear regression. In the
initial discrete mixture construction of spike and slab priors by [Mitchell and Beauchamp, 1988], the spike
follows a Dirac delta (δ0) distribution, while the slab follows a uniform distribution with a large variance.
Later, [George and McCulloch, 1993] proposed spike and slab priors with the construction of a continuous
mixture of two normal distributions, where the spike had very small variance. In this case, effect sizes may
shrink to very near but not equal to zero. Kuo and Mallick (1998) described another discrete spike and
slab prior construction where indicator variables are used to determine the inclusion or exclusion of model
variables [Kuo and Mallick, 1998].

In the case of BC-ILMs, we wish to allow the alarm function parameters to take on values of zero if
there is no BC present in the system, and therefore we will focus on the discrete Kuo-Mallick construction
of spike and slab priors (illustrated in Figure 7). Mathematically, these priors on the jth parameter θj can be
expressed as: θj = zjθ

∗
j , where zj ∼ Bern(πj), θ∗j ∼ pslab(·), and πj , the inclusion probability for θj , may

either be set to a constant or might follow a distribution (typically a Beta distribution). When there is little
information available to inform whether θj should take on a non-zero value, πj = 0.5 or πj ∼ Beta(5, 5)
are often used.
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Figure 7: Illustration of discrete spike and slab prior construction where θj ≥ 0.

Implementation of discrete spike and slab priors for BC-ILMs presents some challenges. First, most
applications of spike and slab priors have been to linear regression, where they are conjugate to the likelihood
function and Gibbs sampling can be employed. This is not the case with other models such as BC-ILMs, and
thus (less efficient) independence sampling from the priors themselves is generally used to update the alarm
function parameters. Second, to prevent the identifiability issue described above, a joint prior for δ1 and δ2
which constrains them to both equal zero in the same iterations is necessary. Because of this requirement,
independence sampling is particularly inefficient. We therefore propose using spike and slab priors as an
initial “screening” tool to select the class of ILM which can then be fit using typical priors and MH-MCMC
to obtain final parameter samples and model estimates.

5.2 Simulation set-up
In the main simulation study described in Section 3, only fairly strong BC effects were considered as the
goal was to investigate the properties of an epidemic where BC was present. In this section, the goal is to
investigate whether a weak BC effect in an epidemic is distinguishable from no BC effect, so new simulation
settings were considered. For each alarm type (excluding the Hill-type alarm), epidemics were generated
under six different scenarios for each alarm and model type where the six values for δ1 were equally spaced
between 0 and the smallest value in Table 1 (inclusive). Values of α = 2.4 and β = 2 were used in each
scenario, and for δ2 the values from Table 1 were used (except in the cases where δ1 = 0, wherein δ2 was
also set equal to zero).

Aside from the parameter values, the spike and slab simulation study followed the same set-up as the
main simulation study. The priors listed in Table 2 were used as the slab distribution, and we let πj ∼
Beta(5, 5). The spike and slab step using an independence sampler for δ1 and δ2 (and an MH-MCMC
sampler with vague priors for α and β) was run for 25,000 iterations. The selected model class (either
baseline SILM or BC-ILM) was then fit to the data set using MH-MCMC for 75,000 iterations. The median
value of each chain from the spike and slab step was used to initialize the chains for the MH-MCMC step.
Only these final 75,000 iterations (minus a 7,500 iteration burn-in period) were used for parameter estimates
and posterior prediction.
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5.3 Results
As in the other simulation study, we will report the results from fitting model type A as similar patterns
were observed for model type B. Table 5 shows the proportion of populations for which the correct model
was selected through the spike and slab screening process for the various simulation scenarios. In the first
row, the correct model would be the baseline SILM as there was no true BC effect in the data, whereas for
the other rows the BC-ILM is the correct model. For example, the value in the first row and column of
the table indicates that when fitting Model 1A (threshold alarm model) to data with no BC effect, the spike
and slab screening process correctly selected the baseline SILM in 95% of populations. When there was no
BC effect in the data set, the spike and slab screening process was effective at identifying that the baseline
SILM is more appropriate. When the generative model had a scaled-exponential alarm function, the spike
and slab screening process always correctly selected the BC-ILM, even when the BC effect was very weak.
However, when the generative model had a threshold or exponential alarm, the spike and slab screening
process tended to incorrectly select the baseline SILM in the weakest BC scenarios.

Table 5: Proportion of m = 20 generated epidemics where the correct model (baseline SILM for
the No BC scenario, BC-ILM for scenarios i-v) was selected through the spike and slab screening
procedure in the simulation study. Scenarios are ordered from weakest BC effect (i) to strongest
(v).

BC-ILM Alarm Type
Scenario Threshold Exponential Scaled-Exponential
No BC 0.95 1.0 0.80
i 0.30 0.0 1.0
ii 0.45 0.05 1.0
iii 0.65 0.35 1.0
iv 0.95 0.40 1.0
v 1.0 1.0 1.0

When we examine the posterior predictive distribution of the epidemic curve for the populations where
the baseline SILM was incorrectly selected, there is little difference between the abilities of the baseline
SILM and the BC-ILMs to capture the true epidemic curve. Figure 8 shows two populations for each of the
three weakest scenarios where the generative model was Model 1A: one where the true model was selected
and one where the baseline SILM was selected. The 95% HPDIs obtained by both model types are very
similar for all three scenarios. By contrast, as seen in the original simulation study, when there is a stronger
BC effect it becomes impossible for the baseline SILM to capture the shape of the true epidemic curve.
These results show that there is a BC effect “threshold”, where for effects weaker than the threshold the
baseline SILM can provide an adequate fit and the more complex BC-ILM may not be required, while for
effects stronger than the threshold the BC-ILM is required to achieve a good fit.
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Figure 8: 95% HPDIs for the epidemic curve for the three weakest BC scenarios considered in
the spike and slab simulation study, where the generative model was Model 1A. The true curve
is shown as a solid black line, and posterior medians are shown as a dashed blue line. The left
column shows an example population where the baseline SILM was (incorrectly) selected, and the
right column shows an example population where the BC-ILM was (correctly) selected.

6 Application: 2001 U.K. Foot and Mouth Disease
In this section we apply the methods of previous sections to a real data set from the 2001 U.K. foot and
mouth disease (FMD) epidemic. During the FMD epidemic, several interventions were introduced. An
overview of control strategies used is provided by [Kitching et al., 2005] and includes a total ban on sus-
ceptible animal movement, restrictions on veterinarian movements, and mass culling. The direct effects of
these have been incorporated into previous mathematical and statistical models (see Pomeroy et al., 2017
for a review). However, it is possible that the general awareness of the epidemic amongst farmers, and the
resultant BC, reduced transmission further in addition to the direct impacts of any control strategies. It has
also been speculated that farmers decreased their adherence to control measures as cases began to decline,
which may have contributed to the prolonged period of low incidence observed at the end of the epidemic
[Ferguson, 2007]. We aim to use BC-ILMs to investigate whether this BC effect can be estimated from
FMD data from the Cumbria region.
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6.1 Analysis
We used the data set described in [Deeth and Deardon, 2013], which contains 1,177 cattle and sheep farms
from a portion of the Cumbria region in north-west England. The first recorded infection from the region
represented in our data set occurred on day 21 of the overall epidemic. However, although we did attempt to
fit the models to data starting from day 20 in the epidemic, MCMC chain convergence could not be achieved
using this time period (possibly due to the sparsity of infections early on). We therefore fit our models to
the infection data for days 30-50 (March 8th - 28th, 2001) of the epidemic.

The FMD data set contains Cartesian coordinates for each farm as well as their infection and cull dates
and the number of sheep and cattle kept on the farm. A binary susceptibility covariate zi was defined based
on farm size, following the methods described by [Deeth and Deardon, 2013]. Farms with more than 50
cattle and/ or more than 200 sheep were considered to be at higher susceptibility to infection. Based on
this definition, in our analysis 442 farms were considered to have low susceptibility (zi = 0), and 735 were
considered to have high susceptibility.

We assume transmission takes place within an SEIR compartmental framework. In an SEIR frame-
work, after a previously susceptible individual becomes infected they remain in an exposed (or latent) period
before they become infectious to others. In our analysis, farms’ exposed periods were considered known and
fixed at γE = 5 days and their infectious periods were fixed at γI = 4 days, unless the farm was known to
have been culled sooner. In the infection probability P (i, t), baseline susceptibility may take on one of two
values, α0 or α0 + α1, depending on the farm’s covariate status. The baseline SILM infection probability is
therefore given by:

P (i, t) = 1− exp

−(α0 + α1zi)
∑
j∈I(t)

(dij + 1)−β

 , α0, α1, β > 0.

For the SEIR framework, the likelihood function is changed slightly to reflect farms entering the exposed
compartment instead of the infectious compartment upon infection. The likelihood function for the set of
infectious states at time t is given by:

ft (S(t), E(t), I(t), R(t)|θ) =

 ∏
i∈E(t+1)\E(t)

P (i, t)

 ∏
i∈S(t+1)

(1− P (i, t))

 ,

and the likelihood across the full study period is therefore:

f (D|θ) =
tmax∏
tmin

ft (S(t), E(t), I(t), R(t)|θ) .

We compare the baseline SILM to BC-ILMs that account for farmers changing their behaviour over
time. As in the simulations study, we considered the cases where BC affects either the farms’ susceptibility,
or the degree to which spatial information impacts epidemic spread (ie. how nearby a susceptible farm needs
to be to an infectious farm in order to have a high probability of becoming infected). In model type A, the
alarm level of the population impacts susceptibility level. We multiply the entire susceptibility term by the
alarm term such that the susceptibility of both low and high risk farms are scaled to the same degree by the
alarm function:

P (i, t) = 1− exp

−(α0 + α1zi)(1− at)
∑
j∈I(t)

(dij + 1)−β

 .
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In model type B, the alarm level of the population impacts the spatial parameter in the same way as was
described in Section 2.3:

P (i, t) = 1− exp

−(α0 + α1zi)
∑
j∈I(t)

(dij + 1)−β(1−at)−1

 .

While in the simulation study we used lagged prevalence to inform the alarm function in the BC-ILMs,
in the FMD analysis we found that instead using a seven day rolling average (concluding on day t − 1) of
culling incidence in the entire U.K. provided the best model fit (see Figure 9). Initially, we fit the models
using standard MH-MCMC with 50,000 iterations. Additionally, we fit the models again using the spike
and slab screening process with 50,000 iterations in the spike and slab step and 50,000 iterations to fit the
final model. In both cases, the first 5,000 iterations removed as burn-in. Vague priors were used for the
susceptibility and spatial parameters (α0, α1, and β).
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Figure 9: FMD infection incidence for a subset of the Cumbria region in the U.K. from March
8th (t = 30) - 29th (t = 51), 2001, along with the seven day average for culling incidence in the
overall U.K..

6.2 Results
MCMC convergence was not able to be achieved for Models 3 and 4 (the scaled-exponential and Hill-type
alarms), so we only report the results from fitting Models 1 and 2 (the threshold and exponential alarms).
Table 6 shows the posterior median estimates and corresponding 95% HPDIs for each model parameter. In
the BC-ILMs where alarm was assumed to affect susceptibility (Models 1A and 2A), the posterior median
estimates for α0 and α1 were somewhat higher than those from the baseline SILM, though their 95% HPDIs
still captured the baseline SILM medians. The posterior median estimates for β were very similar between
the baseline SILM and Models 1A and 2A. This is expected, as in these BC-ILMs the alarm term multiplies
the (α0 + α1zi) term, and thus the effect of the higher susceptibility (which leads to faster spread) in these
models is counteracted by the alarm term to slow down epidemic spread during times of higher culling inci-
dence. Similarly, in Models 2A and 2B, the posterior median estimates for α0 and α1 were very similar to
those obtained using the baseline SILM, while their estimates for β were somewhat lower than that of the
baseline SILM. In this case, the faster spread resulting from a lower value of β in the BC-ILMs would be
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counteracted by the alarm term multiplying it.

The WAIC values (Table 7) were fairly similar for the baseline SILM and Models 1A, 1B, and 2B,
although the WAIC values for these BC-ILMs were all slightly lower than that of the baseline SILM. The
WAIC value for Model 2A was highest, suggesting it may be a somewhat worse fit for this data compared to
even the baseline SILM. Based on the WAIC, there does not seem to be much evidence that including a BC
effect improves fit for this subset of the FMD data set. When we used the spike and slab screening procedure
on the FMD data set, Models 1A and 2A were selected over the baseline SILM, however the baseline SILM
was selected over Models 1B and 2B. There is some disagreement between the results of the spike and slab
screening procedure and the WAIC values, according to which Models 1B and 2B would be selected over
the baseline SILM and Model 2A would not be.

The estimated alarm functions (along with their 95% HPDIs) are shown in Figure 10. The estimated
threshold alarm function suggests that alarm begins fairly late in the epidemic, with the 95% HPDIs for when
the smoothed incident culling threshold would be achieved covering t = 42 to t = 48, which corresponded
to BC thresholds of 28.65 and 54.12 (smoothed) incident cullings, respectively. When fitting Model 1B the
estimated culling incidence threshold was very similar to that obtained by fitting Model 1A, although the
lower bound for the 95% HPDI on the alarm parameter δ1 was very close to zero. The 95% HPDI for the
estimated exponential alarm function was fairly wide. Based on the wide HPDI and the higher WAIC value,
it seems the exponential alarm function may not be particularly effective at describing the BC dynamics for
this time period of the FMD epidemic in the Cumbria region.

Table 6: Parameter posterior median estimates and 95% HPDIs for the baseline SILM and BC-
ILMs fit to the FMD data set.

Baseline SILM Model 1A Model 1B

Parameter Estimate 95% HPDI Estimate 95% HPDI Estimate 95% HPDI

α0 0.0127 (0.0061, 0.0249) 0.0169 (0.0079, 0.0352) 0.0136 (0.0067, 0.0256)
α1 0.0592 (0.0322, 0.1023) 0.0790 (0.0424, 0.1438) 0.0625 (0.0341, 0.1102)
β 2.0491 (1.7531, 2.3325) 2.0541 (1.7656, 2.3369) 1.9506 (1.6483, 2.2442)
δ1 0.4257 (0.1651, 0.6028) 0.1283 (0.0416, 0.3521)
δ2 36.3380 (28.6478, 54.1146) 36.9210 (28.2905, 59.0117)

Model 2A Model 2B

Parameter Estimate 95% HPDI Estimate 95% HPDI

α0 0.0223 (0.0047, 0.0535) 0.0133 (0.0062, 0.0255)
α1 0.1040 (0.0222, 0.2021) 0.0619 (0.0347, 0.1038)
β 2.0562 (1.2505, 2.3441) 1.8408 (1.5306, 2.1531)
δ1 0.0160 (0.0043, 0.0284) 0.0033 (0.0007, 0.0062)
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Table 7: WAIC values for the models fit to the FMD data set.
Model WAIC

Baseline SILM 1577.32
Model 1A 1571.15
Model 1B 1572.79
Model 2A 1590.32
Model 2B 1573.95

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

Model 1A

Culling Incidence

A
la

rm

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

Model 1B

Culling Incidence

A
la

rm

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

Model 2A

Culling Incidence

A
la

rm

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

Model 2B

Culling Incidence

A
la

rm

30 35 40 45 50

0.
0

0.
2

0.
4

0.
6

0.
8

Time

A
la

rm

30 35 40 45 50

0.
0

0.
2

0.
4

0.
6

0.
8

Time

A
la

rm

30 35 40 45 50

0.
0

0.
2

0.
4

0.
6

0.
8

Time

A
la

rm

30 35 40 45 50

0.
0

0.
2

0.
4

0.
6

0.
8

Time

A
la

rm

Figure 10: Alarm functions estimated from each BC-ILM for the Cumbria region of the U.K.. Solid
black lines represent the posterior median, while dashed lines indicate the 95% HPDIs. Alarm
value is plotted against (7-day smoothed) culling incidence in the top row and time from March
8th (t = 30) - 29th (t = 51), 2001 in the bottom row.

7 Discussion
Understanding how a population changes their behaviour in response to an ongoing epidemic is important in
order to be able to accurately project future case trajectories and appropriately plan public health responses
[West et al., 2020]. We aimed to explore the properties and estimability of spatial ILMs that include the
effect of prevalence-driven BC. In our simulation study, we demonstrated that ILMs with a BC effect can be
successfully estimated from epidemic data, and these models have good posterior predictive and forecasting
ability. Additionally, we found that BC-ILMs are still capable of capturing epidemic curves fairly well when
the model is misspecified, while baseline SILMs that ignore BC are unable to provide a good model fit. We
identified an area of challenge for fitting BC-ILMs that could arise when using data where the population
did not actually have change their behaviour in response to increasing prevalence, and proposed using spike
and slab priors as a method to screen for this. Finally, we demonstrated the use of BC-ILMs on real data
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from the 2001 U.K. FMD epidemic.

The BC-ILMs that we proposed in this study were able to produce epidemics where a relatively low
incidence is sustained over a long period of time, as well as epidemics with multiple peaks. These dynamics
are unable to be represented by a traditional spatial ILM, where we see a single peak and faster depletion of
susceptibles compared to BC-ILMs. This was demonstrated through the simulation study, where the base-
line SILM tended to miss the location of, and overestimate the number of new cases, at the epidemic peak
when it was fit to data generated from a BC-ILM. This result underlines the importance of having models
which can account for BC, and we have found that it is possible to estimate a BC effect from data and use a
BC-ILM to accurately forecast future cases, even when there are multiple epidemic peaks.

We used fairly simple models in our study, however there are many ways we could extend the BC-ILMs
described here to include more complex dynamics. In the simulation study we considered a model with no
covariates, such that each individual was assumed to experience BC in the same way. However, it is plau-
sible that there may be either individual or group-level factors which influence the degree to which BC will
impact infection transmission or susceptibility. For example, [Hills and Eraso, 2021] found various factors
had a significant effect on the odds of an individual adhering to COVID-19 social distancing rules in North
London, U.K., in May 2020. These factors included whether an individual identified as highly vulnerable
to COVID-19, and if they felt they had control over the social distancing of others. Risk perception has also
been found to vary by age [Rosi et al., 2021], so allowing for different age groups to have different alarm
function parameters may improve model accuracy.

In the alarm function misspecification study, we found that there was not much difference in posterior
predictive ability between the different BC-ILMs with smooth alarm functions, regardless of which alarm
type was used to generate the data. We also did not observe noticeable differences in fit if the incorrect
model type (A, where alarm affects susceptibility, versus B, where alarm affects spatial weighting) was
fit. Overall, including a function of some kind to capture the BC effect appears to be more important for
achieving a good model fit than correctly specifying the form of the BC-ILM. An area for future investi-
gation is the potential effect of the baseline model on estimation of the BC effect, particularly when fitting
more complex models. For example, if the model is specified to have BC multiply the susceptibility term,
would failure to include an important susceptibility covariate result in poor estimation for the BC effect?
Additionally, non-parametric alarm function estimation methods could be used as an alternative approach to
defining parametric alarm functions. These more flexible estimation methods would have the advantage of
not being constrained to follow a specific alarm function, and thus avoid the difficulty one might encounter
in selecting an appropriate alarm function.

We found that the spike and slab prior BC screening approach generally worked well for identifying
when there was no BC, although it is a fairly computationally expensive process and in some scenarios
tended to miss when weak BC was present. The screening process may be improved (at least in terms of
computational efficiency) by using more complex MCMC methods, such as an adaptive algorithm (see Ji
and Schmidler, 2013) or by updating the slab distribution based on the empirical distribution of early pos-
terior samples. The spike and slab prior approach also has the limitation of not being appropriate for the
Hill-type alarm function models and any other alarm functions where there are no parameter values at which
the alarm function will stay constant at zero across all prevalences. Due to these limitations, screening meth-
ods for BC require more development, however this was not a main focus of this study. We believe that the
approach we have described here offers a straightforward and fairly reliable way to identify whether fitting
a BC-ILM or a baseline SILM would be more appropriate for a given data set.
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In the application, our goal was to identify whether BC-ILMs could estimate a BC effect and describe
population alarm. We found that there was some evidence of a BC effect in the FMD data, although in-
cluding the BC effect did not appear to affect model fit considerably. As farmers would have been aware
of culling incidence in the entire U.K., as opposed to only within the subset of the Cumbria region that we
focused on for our analysis, we used the overall U.K incidence to inform the alarm function. This had the
disadvantage that we were no longer using a direct epidemic metric that would be predicted by the model,
and therefore there was no straightforward way to look at the posterior predictive distribution for the epi-
demic curve or forecast cases in Cumbria. With additional computational resources, future work could use
BC-ILMs to model the epidemic across the entire U.K. so directly-predicted incidence or prevalence could
be used to inform the alarm function like we described in the simulation studies. However, all posterior
predictive and forecasting analyses of the FMD data are somewhat restricted by the culling that occurred
during this epidemic and would need to be either ignored or modelled, and unfortunately modelling the U.K.
2001 culling policy is very difficult.

When using the spike and slab screening process on the FMD data set, models where BC impacted
susceptibility were selected over the baseline SILM, while models where BC impacted the weighting of the
spatial effect were not. If BC impacted the weighting of the spatial effect, that would imply that as farmers
became more “alarmed”, farms further away in distance would have a lower probability of infecting a sus-
ceptible farm. This type of change in spatial weighting may have occurred despite it not necessarily being
reflected in our models; it is possible that BC affecting spatial weighting occurred prior to March 8th and
was sustained over our study period, thus being captured as part of the “baseline” transmission dynamics
over the time period that was modelled. Conversely, BC affecting susceptibility may have started later in the
epidemic, or stronger measures to reduce a farm’s susceptibility may have been taken as time went on and
incidence increased.

Despite the limitations discussed in the introduction of using external data sources to inform behavioural
change, integrating different levels of information into BC models, and infectious disease models more
generally, is an area which needs further development [Kretzschmar et al., 2022, Marion et al., 2022]. The
prevalence-driven alarm described in this paper has the advantage of allowing for easy posterior prediction
and forecasting, but is somewhat simplistic in that it ignores the many other factors that could influence an
individual’s behaviour. Where other data sources about behaviour change such as mobility data are avail-
able, it would be interesting to explore how these could be integrated into a BC model. For example, one
might consider a model with prevalence-driven changes to susceptibility and mobility-informed changes to
contact network structure (contact networks were not in the scope of this paper but have been previously
incorporated into ILMs, see Almutiry and Deardon, 2020).

A final area for future work would be to allow for a time-varying alarm function. This would allow
for time-dependent changes in protective behaviour adherence to be captured; for example, the strength
of people’s behavioural change may wane to some extent over time. This particular theory of “behaviour
fatigue” was part of the rationale that drove a delay in implementing lockdown measures at the beginning of
the COVID-19 pandemic in England, although the concept had limited supporting evidence [Harvey, 2020].
There have been some mathematical modelling studies done which have incorporated this type of behaviour
dynamic [Juher et al., 2015, Kassa and Workineh, 2018, Rypdal et al., 2020, Meacci and Primicerio, 2021].
However, to our knowledge it has yet to be incorporated into any data-driven transmission models. By
including a term representing fatigue (or to phrase more generally, a decrease in adherence) in a BC-ILM,
we could investigate whether there is evidence for the existence of such an effect in an epidemic data set.
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Additionally, if behavioural fatigue or a similar phenomenon does exist, accounting for it in the model could
improve accuracy, particularly if longer-term modelling or forecasting are of interest.
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Figure 11: 95% HPDIs and posterior medians (blue circles) for Model 1A parameters. Horizontal
lines represent the true parameter values.
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Figure 12: 95% HPDIs and posterior medians (blue circles) for Model 2A parameters. Horizontal
lines represent the true parameter values.
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Figure 13: 95% HPDIs and posterior medians (blue circles) for Model 3A parameters. Horizontal
lines represent the true parameter values.
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Figure 14: 95% HPDIs and posterior medians (blue circles) for Model 4A parameters. Horizontal
lines represent the true parameter values.
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B Posterior predictive distributions
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Figure 15: 95% HPDIs for the epidemic curve under the true and misspecified models for a single
representative epidemic simulated from Model 1A.
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Figure 16: 95% HPDIs for the epidemic curve under the true and misspecified models for a single
representative epidemic simulated from Model 2A.
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Figure 17: 95% HPDIs for the epidemic curve under the true and misspecified models for a single
representative epidemic simulated from Model 3A.
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Figure 18: 95% HPDIs for the epidemic curve under the true and misspecified models for a single
representative epidemic simulated from Model 4A.
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